74 research outputs found

    Convergent Incremental Optimization Transfer Algorithms: Application to Tomography

    Full text link
    No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomography have been proposed to date. In contrast, in emission tomography, there are two known families of convergent OS algorithms: methods that use relaxation parameters , and methods based on the incremental expectation-maximization (EM) approach . This paper generalizes the incremental EM approach by introducing a general framework, "incremental optimization transfer". The proposed algorithms accelerate convergence speeds and ensure global convergence without requiring relaxation parameters. The general optimization transfer framework allows the use of a very broad family of surrogate functions, enabling the development of new algorithms . This paper provides the first convergent OS-type algorithm for (nonconcave) penalized-likelihood (PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS) which yield closed-form maximization steps. We found it is very effective to achieve fast convergence rates by starting with an OS algorithm with a large number of subsets and switching to the new "transmission incremental optimization transfer (TRIOT)" algorithm. Results show that TRIOT is faster in increasing the PL objective than nonincremental ordinary SPS and even OS-SPS yet is convergent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85980/1/Fessler46.pd

    Incremental Optimization Transfer Algorithms: Application to Transmission Tomography

    Full text link
    No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomography have been proposed to date. In contrast, in emission tomography, there are two known families of convergent OS algorithms: methods that use relaxation parameters (Ahn and Fessler, 2003), and methods based on the incremental expectation maximization (EM) approach (Hsiao et al., 2002). This paper generalizes the incremental EM approach by introducing a general framework that we call “incremental optimization transfer.” Like incremental EM methods, the proposed algorithms accelerate convergence speeds and ensure global convergence (to a stationary point) under mild regularity conditions without requiring inconvenient relaxation parameters. The general optimization transfer framework enables the use of a very broad family of non-EM surrogate functions. In particular, this paper provides the first convergent OS-type algorithm for transmission tomography. The general approach is applicable to both monoenergetic and polyenergetic transmission scans as well as to other image reconstruction problems. We propose a particular incremental optimization transfer method for (nonconcave) penalized-likelihood (PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS). Results show that the new “transmission incremental optimization transfer (TRIOT)” algorithm is faster than nonincremental ordinary SPS and even OS-SPS yet is convergent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85800/1/Fessler200.pd

    Globally Convergent Image Reconstruction for Emission Tomography Using Relaxed Ordered Subsets Algorithms

    Full text link
    We present two types of globally convergent relaxed ordered subsets (OS) algorithms for penalized-likelihood image reconstruction in emission tomography: modified block sequential regularized expectation-maximization (BSREM) and relaxed OS separable paraboloidal surrogates (OS-SPS). The global convergence proof of the existing BSREM (De Pierro and Yamagishi, 2001) required a few a posteriori assumptions. By modifying the scaling functions of BSREM, we are able to prove the convergence of the modified BSREM under realistic assumptions. Our modification also makes stepsize selection more convenient. In addition, we introduce relaxation into the OS-SPS algorithm (Erdogan and Fessler, 1999) that otherwise would converge to a limit cycle. We prove the global convergence of diagonally scaled incremental gradient methods of which the relaxed OS-SPS is a special case; main results of the proofs are from (Nedic and Bertsekas, 2001) and (Correa and Lemarechal, 1993). Simulation results showed that both new algorithms achieve global convergence yet retain the fast initial convergence speed of conventional unrelaxed ordered subsets algorithms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86017/1/Fessler67.pd

    Regularized Image Reconstruction Algorithms for Dual-Isotope Myocardial Perfusion SPECT (MPS) Imaging Using a Cross-Tracer Prior

    Full text link
    In simultaneous dual-isotope myocardial perfusion SPECT (MPS) imaging, data are simultaneously acquired to determine the distributions of two radioactive isotopes. The goal of this work was to develop penalized maximum likelihood (PML) algorithms for a novel cross-tracer prior that exploits the fact that the two images reconstructed from simultaneous dual-isotope MPS projection data are perfectly registered in space. We first formulated the simultaneous dual-isotope MPS reconstruction problem as a joint estimation problem. A cross-tracer prior that couples voxel values on both images was then proposed. We developed an iterative algorithm to reconstruct the MPS images that converges to the maximum a posteriori solution for this prior based on separable surrogate functions. To accelerate the convergence, we developed a fast algorithm for the cross-tracer prior based on the complete data OS-EM (COSEM) framework. The proposed algorithm was compared qualitatively and quantitatively to a single-tracer version of the prior that did not include the cross-tracer term. Quantitative evaluations included comparisons of mean and standard deviation images as well as assessment of image fidelity using the mean square error. We also evaluated the cross tracer prior using a three-class observer study with respect to the three-class MPS diagnostic task, i.e., classifying patients as having either no defect, reversible defect, or fixed defects. For this study, a comparison with conventional ordered subsets-expectation maximization (OS-EM) reconstruction with postfiltering was performed. The comparisons to the single-tracer prior demonstrated similar resolution for areas of the image with large intensity changes and reduced noise in uniform regions. The cross-tracer prior was also superior to the single-tracer version in terms of restoring image fidelity. Results of the three-class observer study showed that the proposed cross-tracer prior and the convergent algorithms improved the ima- - ge quality of dual-isotope MPS images compared to OS-EM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85873/1/Fessler3.pd

    Ordered subsets algorithms for transmission tomography

    Full text link
    The ordered subsets EM (OSEM) algorithm has enjoyed considerable interest for emission image reconstruction due to its acceleration of the original EM algorithm and ease of programming. The transmission EM reconstruction algorithm converges very slowly and is not used in practice. In this paper, we introduce a simultaneous update algorithm called separable paraboloidal surrogates (SPS) that converges much faster than the transmission EM algorithm. Furthermore, unlike the `convex algorithm' for transmission tomography, the proposed algorithm is monotonic even with nonzero background counts. We demonstrate that the ordered subsets principle can also be applied to the new SPS algorithm for transmission tomography to accelerate `convergence', albeit with similar sacrifice of global convergence properties as for OSEM. We implemented and evaluated this ordered subsets transmission (OSTR) algorithm. The results indicate that the OSTR algorithm speeds up the increase in the objective function by roughly the number of subsets in the early iterates when compared to the ordinary SPS algorithm. We compute mean square errors and segmentation errors for different methods and show that OSTR is superior to OSEM applied to the logarithm of the transmission data. However, penalized-likelihood reconstructions yield the best quality images among all other methods tested.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48964/2/m91111.pd

    Stochastic EM methods with variance reduction for penalised PET reconstructions

    Get PDF
    Expectation-maximisation (EM) is a popular and well-established method for image reconstruction in positron emission tomography (PET) but it often suffers from slow convergence. Ordered subset EM (OSEM) is an effective reconstruction algorithm that provides significant acceleration during initial iterations, but it has been observed to enter a limit cycle. In this work, we investigate two classes of algorithms for accelerating OSEM based on variance reduction for penalised PET reconstructions. The first is a stochastic variance reduced EM algorithm, termed as SVREM, an extension of the classical EM to the stochastic context that combines classical OSEM with variance reduction techniques for gradient descent. The second views OSEM as a preconditioned stochastic gradient ascent, and applies variance reduction techniques, i.e., SAGA and SVRG, to estimate the update direction. We present several numerical experiments to illustrate the efficiency and accuracy of the approaches. The numerical results show that these approaches significantly outperform existing OSEM type methods for penalised PET reconstructions, and hold great potential

    Penalized Likelihood Transmission Image Reconstruction:Unconstrained Monotonic Algorithms

    Full text link
    Statistical reconstruction algorithms in transmission tomography yield improved images relative to the conventional FBP method. The most popular iterative algorithms for this problem are the conjugate gradient (CG) method and ordered subsets (OS) methods. Neither method is ideal. OS methods "converge" quickly, but are suboptimal for problems with factored system matrices. Nonnegativity constraints are not imposed easily by the CG method. To speed convergence, we propose to abandon the nonnegativity constraints (letting the regularization discourage the negative values), and to use quadratic surrogates to choose the step size rather than using an expensive line search. To ensure monotonicity, we develop a modification of the transmission log-likelihood. The resulting algorithm is suitable for large-scale problems with factored system matrices such as X-ray CT image reconstruction with afterglow models. Preliminary results show that the regularization ensures minimal negative values, and that the algorithm is indeed monotone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85849/1/Fessler195.pd

    Study of a convergent subsetized list-mode EM reconstruction algorithm

    Get PDF
    Abstract-We have implemented a convergent subsetized (CS) list-mode reconstruction algorithm, based on previous work [1]- [3] on complete-data OS-EM reconstruction. The first step of the convergent algorithm is exactly equivalent (unlike the histogrammode case) to the regular subsetized list-mode EM algorithm, while the second and final step takes the form of additive updates in image space. A hybrid algorithm based on the ordinary and the convergent algorithms is also proposed, and is shown to combine the advantages of the two algorithms: it is able to reach a higher image quality in fewer iterations while maintaining the convergent behavior, making the hybrid approach a good alternative to the ordinary subsetized list-mode EM algorithm. Reconstructions using various LOR-driven projection techniques (Siddon method, trilinear and bilinear interpolation) were considered and it was demonstrated that in terms of FWHM, the Siddon technique is inferior to the other two algorithms, with the bilinear interpolation technique performing nearly similarly as the trilinear while being considerably faster

    Monotonic Algorithms for Transmission Tomography

    Full text link
    Presents a framework for designing fast and monotonic algorithms for transmission tomography penalized-likelihood image reconstruction. The new algorithms are based on paraboloidal surrogate functions for the log likelihood, Due to the form of the log-likelihood function it is possible to find low curvature surrogate functions that guarantee monotonicity. Unlike previous methods, the proposed surrogate functions lead to monotonic algorithms even for the nonconvex log likelihood that arises due to background events, such as scatter and random coincidences. The gradient and the curvature of the likelihood terms are evaluated only once per iteration. Since the problem is simplified at each iteration, the CPU time is less than that of current algorithms which directly minimize the objective, yet the convergence rate is comparable. The simplicity, monotonicity, and speed of the new algorithms are quite attractive. The convergence rates of the algorithms are demonstrated using real and simulated PET transmission scans.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85831/1/Fessler83.pd

    Emission Image Reconstruction for Randoms-Precorrected PET Allowing Negative Sinogram Values

    Full text link
    Most positron emission tomography (PET) emission scans are corrected for accidental coincidence (AC) events by real-time subtraction of delayed-window coincidences, leaving only the randoms-precorrected data available for image reconstruction. The real-time randoms precorrection compensates in mean for AC events but destroys the Poisson statistics. The exact log-likelihood for randoms-precorrected data is inconvenient, so practical approximations are needed for maximum likelihood or penalized-likelihood image reconstruction. Conventional approximations involve setting negative sinogram values to zero, which can induce positive systematic biases, particularly for scans with low counts per ray. We propose new likelihood approximations that allow negative sinogram values without requiring zero-thresholding. With negative sinogram values, the log-likelihood functions can be nonconcave, complicating maximization; nevertheless, we develop monotonic algorithms for the new models by modifying the separable paraboloidal surrogates and the maximum-likelihood expectation-maximization (ML-EM) methods. These algorithms ascend to local maximizers of the objective function. Analysis and simulation results show that the new shifted Poisson (SP) model is nearly free of systematic bias yet keeps low variance. Despite its simpler implementation, the new SP performs comparably to the saddle-point model which has shown the best performance (as to systematic bias and variance) in randoms-precorrected PET emission reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85994/1/Fessler61.pd
    • …
    corecore