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Željko Kereta1,∗ , Robert Twyman2, Simon Arridge1 ,
Kris Thielemans2 and Bangti Jin1

1 Department of Computer Sciences, University College London, Gower Street,
London WC1E 6BT, United Kingdom
2 Institute of Nuclear Medicine, University College London, London, United
Kingdom

E-mail: z.kereta@ucl.ac.uk, s.arridge@ucl.ac.uk, b.jin@ucl.ac.uk,
robert.twyman.18@ucl.ac.uk and k.thielemans@ucl.ac.uk

Received 31 May 2021, revised 25 August 2021
Accepted for publication 6 October 2021
Published 22 October 2021

Abstract
Expectation-maximisation (EM) is a popular and well-established method for
image reconstruction in positron emission tomography (PET) but it often suffers
from slow convergence. Ordered subset EM (OSEM) is an effective reconstruc-
tion algorithm that provides significant acceleration during initial iterations, but
it has been observed to enter a limit cycle. In this work, we investigate two
classes of algorithms for accelerating OSEM based on variance reduction for
penalised PET reconstructions. The first is a stochastic variance reduced EM
algorithm, termed as SVREM, an extension of the classical EM to the stochas-
tic context that combines classical OSEM with variance reduction techniques
for gradient descent. The second views OSEM as a preconditioned stochas-
tic gradient ascent, and applies variance reduction techniques, i.e., SAGA and
SVRG, to estimate the update direction. We present several numerical experi-
ments to illustrate the efficiency and accuracy of the approaches. The numerical
results show that these approaches significantly outperform existing OSEM
type methods for penalised PET reconstructions, and hold great potential.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Positron emission tomography (PET) is a nuclear imaging technique that allows for the mea-
surement of biochemical changes in the body by observing the spatial distribution of a radioac-
tive tracer. Positron emitting radionuclides are attached to a biochemical compound to create
a radioactive tracer, e.g. fluorodeoxyglucose, that is used in natural metabolic processes by an
organ or tissue of interest. The radionuclides decay and the emitted positron travels a short
distance before encountering and annihilating with an electron. This annihilation interaction
results in a pair of 511 keV photons that travel anti-parallel. The emitted photons may be
measured by a pair of detector elements along a ring of crystalline detectors surrounding the
subject. If two photons are detected within a short coincidence timing window, a PET scanner
will record a coincidence event along the line-of-response between the two measuring detec-
tors. The goal of PET image reconstruction problem is then to reconstruct an estimate of the
emission distribution from the measured coincidence data. This inverse problem is ill-posed
in the sense of Hadamard since the solution to the problem is not stable with respect to the
perturbation in the data.

Iterative methods have been widely used in PET reconstruction [34], amongst which the
expectation maximisation (EM) algorithm and its various variants, e.g., MLEM [16], OSEM
[24], RAMLA [3], BSREM [1, 13] and OS-SPS [18], are predominant. Shepp and Vardi
[37, 38] reformulated the PET reconstruction problem into a maximum likelihood (ML) esti-
mation of the tracer distribution, and developed an iterative scheme via the EM algorithm
(MLEM), which enjoys several desirable features, e.g., a closed-form for iterate updates and
nonnegativity preservation. The EM algorithm consists of two steps: (i) the E-step computes
the complete data sufficient statistic; and (ii) the M-step updates the estimate by maximising
the complete data log-likelihood. The algorithm converges monotonically (in decreasing the
objective) but slowly. Moreover, full batch updates (i.e. using all measured data to compute
the sufficient statistic) can be costly for large data sizes. To mitigate the ill-posedness of the
PET reconstruction problem, a suitable penalty is employed, leading to a maximum a pos-
teriori (MAP) problem [23, 25]. This requires adapting the standard EM algorithm, since a
closed-form solution at the M-step is often no longer available [34, p R561]. There are sev-
eral approaches to address the challenge, such as the one-step-late algorithm [21] (applicable
to differentiable penalty terms but generally not convergent to the MAP solution), or more
principled methods via modified EM algorithms [12] or separable parabolic surrogates for the
penalty [18].

One established procedure to mitigate the aforementioned computational challenge with
full batch data is ordered subset EM (OSEM) [24], which first divides the measured data into
disjoint subsets and then applies the EM algorithm to one subset at each iteration, either in
a cyclic or a stochastic manner [24]. This greatly reduces the cost per update, and leads to
significant acceleration during initial iterations. However, the standard OSEM algorithm has
been observed to often not converge but instead enters a limit cycle [4, 13]. This has motivated
intensive development of modified OSEM algorithms that retain both the speed-up in early
iterations but also exhibit convergence to the MAP solution (e.g., by suitably adjusting the
step-size schedule) [1, 3, 13].

EM and OSEM can also be written in a gradient ascent-like form, where the search direc-
tion is a preconditioned gradient of the objective [28]. This viewpoint enables designing a
range of new methods that allow a general class of differentiable penalties. This idea has
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recently been experimentally studied for PET with iteration-dependent and constant precon-
ditioners in [41, 42], respectively, both for standard stochastic ascent approaches and for
variance reduction methods. For nonsmooth convex penalties, e.g., total (generalised) vari-
ation [2], gradient approaches are no longer directly applicable, and one may resort to a saddle
point reformulation, and then update primal and dual variables accordingly [7]. Chambolle et al
[6, 17] developed a stochastic variant of such an algorithm using only one random component
of the dual variable at each update, and provide a convergence guarantee. Alternatively, one
may employ proximal methods to handle non-smooth penalties, and many variance reduction
algorithms have been extended to the proximal setting [44].

In this work, we contribute to stochastic variance reduction algorithms for the MAP problem
in PET, for a popular class of penalty terms, by drawing on recent advances in stochastic optimi-
sation and machine learning. First, we develop a novel algorithm, termed as stochastic variance
reduced EM (SVREM), for the MAP reconstruction. It is motivated by the Online-EM [5] (see
also [31]) and its variance reduction variants [9, 27], originally developed for an un-penalised
problem. We present an extension to the MAP problem by combining variance reduced EM
for computing a variance reduced running average of the sufficient statistics with the surrogate
approach for the penalty [8]. The resulting SVREM algorithm maintains the EM nature for PET
reconstruction, e.g., nonnegativity preservation, and admits an explicit maximiser at each M-
step. The overall algorithm is mathematically principled and numerically easy to implement. To
summarise, SVREM extends the framework in [9] to the penalised PET reconstruction problem
by incorporating the surrogate approach for the penalty. Second, we revisit variance reduction
algorithms for stochastic gradient ascent (SGA), and their use in iterative PET reconstruction,
which were recently experimentally studied [41, 42]. These algorithms do not belong to the
EM family, but rather to the class of diagonally preconditioned gradient ascent algorithms. Due
to the inclusion of the penalty, the non-negativity of the iterates is no longer ensured, which
requires a projection step (i.e., the proximal map of the characteristic function on the admissible
set { f � 0}). In theorem 4.1, we show the almost sure convergence to a maximiser for a mod-
ified likelihood with a constant preconditioner. Third and last, we conduct extensive numerical
experiments, which show that these algorithms enjoy steady convergence, outperform classical
OSEM type methods, and are very promising for penalised PET reconstruction.

The rest of the paper is organised as follows. In section 2, we describe the mathematical
formulation of the ML problem in PET, and EM and its stochastic variants for ML estimation.
Then in section 3, we discuss the EM algorithm for MAP reconstruction using parabolic surro-
gates. In section 4, we discuss a second class of numerical algorithms, i.e., variance reduction
algorithms based on gradient ascent for the MAP problem. Last, in section 5 we present numer-
ical results that examine and illustrate features of these algorithms. Throughout, the notation

c
=

denotes expressions that are equal up to an additive constant that is independent of a function’s
argument. The notation � and � denote entrywise division and multiplication of matrices or
vectors. For any fixed M ∈ N we denote [M] to be the set [M] = {1, . . . , M}. We use lower-
case letters, e.g., g and f for column vectors, and upper case letters for matrices and operators.
For a matrix A we let am denote its mth row. The notation P�0(x) denotes the coordinate-wise
projection of x onto the non-negative plane, i.e., P�0(x) = (max(0, xn))N

n=1. The notation 1 is
slightly abused for a constant vector of suitable size with all entries equal to one.

2. Expectation maximisation and its stochastic variants

In this section, we describe the ML PET problem, and the EM algorithm and its stochastic
variants for finding ML solutions.
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2.1. ML PET problem

First we recall the standard mathematical formulation of the PET reconstruction problem. Let
M denote the number of detector bins, and gm the number of emissions detected in the mth
bin, so that the measured data are g = (g1, . . . , gM)� ∈ R

M . It is customary to approximate the
measurement means of the unknown tracer distribution in the form of a linear problem

E[g] = A f + r,

where A ∈ R
M×N is the system matrix with nonnegative elements, f ∈ R

N is vector of voxel
values, and r � 0 represents the mean number of background events such as scatters, back-
ground radiation, and random coincidences, which will often be omitted below. Emission
measurements in the mth bin are modelled by the following Poisson model:

gm ∼ Poisson(E[gm]).

Recall that a random variable g follows the Poisson distribution Poisson(λ) with a parameter
λ > 0 if Prob(g = k) = λk e−λ

k! , for k = 0, 1, . . . . Assuming that detector bins record indepen-
dent measurements, and conditioning on the tracer distribution f , it follows that the probability
distribution function p(g| f ) of the emission measurements g is given by

p(g| f ) =
M∏

m=1

exp(−E[gm])
E[gm]gm

gm!
. (2.1)

The ML estimator fml of f is computed by maximising the likelihood p(g| f ) in (2.1), or equiv-
alently its logarithm. Omitting terms independent of f , this yields the following objective

L( f ) := log(p(g| f ))
c
=

M∑
m=1

(−a�
m f − rm + gm log(a�

m f + rm)). (2.2)

The term gm log(a�
m f + rm) is defined to be 0 when gm = 0, for any value of the logarithm [1].

The ML estimator fml is then defined as

fml ∈ argmax
f �0

L( f ). (2.3)

The functional L( f ) is concave on the space of all admissible tracer distributions ( f � 0),
but a direct solution via Karush–Kuhn–Tucker conditions is intractable, and instead iterative
approaches are commonly used, which we discuss in more detail in section 2.2 below.

Next we introduce the concept of ordered subsets. Consider a partition S = {S1, . . . , SNs}
of the set [M], i.e. a collection of (sub)sets such that ∅ 	= St ⊂ [M]; St1 ∩ St2 = ∅ for t1 	= t2;
and∪Ns

t=1St = [M]. For a vector v and a matrix A, we denote by vt and At the subvector of length
|St| and an |St| × N submatrix whose entries, respectively row indices, belong to St. Then given
the partition S, we can subdivide the log likelihood L( f ) into

L( f ) =
Ns∑

t=1

Lt( f ), with Lt( f ) =
∑
m∈St

(−a�
m f − rm + gm log(a�

m f + rm)).
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The partition S needs to be carefully constructed, in order to optimise the quality of the recon-
structions [24]. Moreover, subsets should be balanced so that emission probabilities

∑
m∈St

amn

are nearly independent of the subset index t [4], which is what we also adhere to. Thus, it is
recommended that subset iterations should follow an order such that projections corresponding
to the next subset are as ‘perpendicular’ as possible to previous ones [22].

2.2. ML expectation maximisation

EM is the most well-known example of an iterative, functional substitution scheme for PET
reconstruction. It solves the ML problem (2.3) by replacing the objective (2.2) through a com-
plete data framework. We follow the complete data framework due to [37]. Let G ∈ R

M×N and
Gt ∈ R

|St|×N denote the full and subset complete data matrices, respectively, with entries gmn

that denote the number of emissions detected in bin m that originated from voxel site n. For
notational simplicity, we omit the background term rm below. Since

E[gmn| f ] = amn fn and E[gm] =
N∑

n=1

E[gmn],

the (subset) complete data likelihood p(Gt| f ) corresponding to the subset St satisfies

p(Gt| f ) =
∏
m∈St

N∏
n=1

p(gmn| f ) =
∏
m∈St

N∏
n=1

e−E[gmn| f ]E[gmn| f ]gmn

gmn!
.

Now consider the conditional expectation

EG|g, f [log p(G| f )] =
Ns∑

t=1

EGt |gt , f [log p(Gt| f )],

with

EGt |gt , f [log p(Gt| f )]
c
=

N∑
n=1

et
n( f ) fn log( fn)− fn

∑
m∈St

amn, and

et
n( f ) =

∑
m∈St

amngm∑N
l=1 aml fl

. (2.4)

Each iteration of the OSEM algorithm consists of two steps:
E step. For a given subset index tk, compute the expectation

EGtk |gtk , f [log p(Gtk | f )]; (2.5)

M step. Maximise the expectation by

f k+1 = argmax
f �0

EGtk |gtk , f [log p(Gtk | f )] =

⎛⎝ f k
n etk

n ( f k)/
∑

m∈Stk

amn

⎞⎠N

n=1

. (2.6)

When Ns > 1, the above algorithm is referred to as OSEM. The standard EM algorithm
uses Ns = 1 subset and obeys the update rule

f k+1 =

(
f k

nen( f k)/
M∑

m=1

amn

)N

n=1

, with en( f ) =
M∑

m=1

amngm∑N
l=1aml fl

.
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Like before, the term gm∑N
l=1aml f l

is set to 0 whenever the denominator is zero. Clearly, EM

and OSEM preserve nonnegativity of the updates.
The above framework falls under the umbrella of function substitution-type methods [30],

which at each step replace the original objective function with a surrogate. Recall that a function
Φ̂ is said to be a surrogate of a concave objective Φ if it satisfies

Φ( f ) − Φ( f k) � Φ̂( f ; f k) − Φ̂( f k; f k) and ∇Φ( f )| f= f k = ∇Φ̂( f ; f k)| f= f k .

These defining properties ensure that maximising the surrogate Φ̂ monotonically increases the
value of the objective Φ, thereby guaranteeing the convergence of the objective value. It can
be shown that EGt |gt , f [log p(Gt| f )] is a surrogate for Lt( f ) [11, 29, 30, 38].

2.3. Stochastic expectation maximisation

The EM algorithm represents a powerful and versatile approach for inference and estimation
involving distributions whose complete data likelihood belongs to the exponential family

p(G| f ) = cG exp(ζ( f )�s(G) − U( f )),

U( f ) =
M∑

m=1

a�
m f , ζ( f ) = (log( fn))N

n=1, s(G) =

(
M∑

m=1

gmn

)N

n=1

.

We can then rewrite MLEM as

f k+1 = argmax
f �0

ζ( f )�s( f k) − U( f ), (2.7)

where

s( f k) = EG|g, f k [log s(G)] = f � (∇L( f k) + A�1)

is the full sufficient statistic. Physically, s(G) ∈ R
N represents the unknown emission quanti-

ties: the nth entry of the full sufficient statistics s(G) is
∑M

m=1 gmn, the total number of emissions
from the nth voxel. We can then interpret the E step in (2.5) as computing either the full
expected statistic or its subset variant. A direct way to randomise OSEM is through a ran-
dom sampling of the subset. This can be achieved by resampling the subset at each iteration,
or choosing only the subset index at random (for a fixed partition S). We employ the latter
strategy since in practice it shows superior performance [42].

There have been several recent proposals [5, 9, 27, 45] that randomise the classical EM
algorithm [16] differently and show excellent performance on a range of problems, e.g. Gaus-
sian mixtures, natural language processing and hidden Markov models. One notable class of
these algorithms start from the expression (2.7) and instead of computing the full expected
statistic s( f k), or the corresponding subset statistics τtk ( f k) defined below, at each iteration use
an exponentially running approximation ŝk of s( f k). In the M-step we then compute

f̂ k = argmax
f �0

ζ( f )�ŝk − U( f ). (2.8)

6
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To compute the estimate ŝk of s( f k), the common practice is to view the full statistic as an
average of Ns subset statistics

s( f ) =
1
Ns

Ns∑
t=1

τt( f ),

where t is a subset index, and with subset statistics τ t given by

τt( f ) = Ns f � (∇Lt( f ) + A�
t 1), t ∈ [Ns].

Both s(G) and τ t are of the size of f . Then at each iteration, we (randomly) select an index t
to update the estimate ŝk of the full statistic s( f k).

This idea was first proposed to derive an online EM algorithm [5, 31] for handling streaming
data, in order to approximate the conditional statistics by exponentially moving averages as the
data streams in. The resulting updates are akin to subset gradient updates. Specifically, for an
initial guess ŝ0 and a subobjective index tk, it can be written as

ŝk+1 = (1 − αk )̂sk + αkτtk ( f̂ k
sem), (2.9)

where {αk}k is a decaying stepsize schedule, and the index tk is drawn uniformly at ran-
dom. Using the estimator in (2.9), we can compute the corresponding iterates, denoted by
f̂ k

sem, by maximising the objective in (2.8). This algorithm is termed as stochastic expecta-
tion maximisation (SEM) below. The convergence of the resulting sequence of iterates f̂ k

sem
is highly dependent on the variance of the estimated statistics τtk ( f k) (compared with s( f k) of
the standard MLEM algorithm). Thus, the convergence guarantee requires a decaying stepsize
schedule.

To reduce the variance of the gradient estimate (for stochastic optimisation) and to allow a
constant stepsize, several variance reduction techniques have been developed in the machine
learning community, e.g., SAG [35], SAGA [15], and SVRG [26]; see [20] for an overview.
These techniques reduce the variance of the gradient estimate by including an estimator of
the full gradient in the search direction, which is updated either according to a predefined
update schedule, or per-iteration. For Online-EM, they can be used to reduce the variance of
the sufficient statistics estimate. A variant of Online-EM, inspired by SVRG, was developed
in [9], which uses an anchor point f anc and a full but infrequently updated estimate sanc of s( f )
at f anc:

ŝk+1 = (1 − α)̂sk + α(τtk ( f̂ k
svrem) − τtk ( f̂ anc) + sanc) (2.10)

If k mod ηNs = 0, set f anc = f k
svrem and update sanc = s( f anc).

Then in analogy to SEM, we use (2.10) to compute the corresponding iterates f̂ k
svrem by max-

imising (2.8). The resulting algorithm is referred to as SVREM. The full anchored expectation
sanc and the anchor image estimate f anc, are updated once every η ∈ N epochs, where one
epoch refers to every Ns iterations. It is worth noting that for both Online-EM and its variance
reduced variants, the resulting updates still follow the EM paradigm, where the M-step uses
the computed running estimate ŝ( f k) of the sufficient statistic s( f k).

7
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Remark 2.1. Naturally, other variance reduction techniques can also be applied to improve
SEM. For example, an algorithm based on SAGA reads [27]

ŝk+1 = (1 − α)̂sk + α

(
τtk ( f k) − sk

tk
+

1
Ns

Ns∑
t=1

sk
t

)
draw t̃k ∈[Ns] and set sk+1

t̃k
= τ̃tk ( f k), and for t 	= t̃k keep sk+1

t = sk
t .

We shall not examine these variants, and focus only on SVREM.

The above methodology naturally extends to the ordered subset setting for the PET problem
(2.2). Indeed, in the presence of background events, we have

τt( f ) = EGt |gt , f k [log s(Gt)] = Ns

∑
m∈St

(
gmamn f n∑N

�=1 am� f � + rm

)N

n=1

= Ns f � A�
t (gt � (At f + rt)).

For any estimator ŝk of the full statistic s( f k), for the PET ML problem (2.3), the maximisation
step in (2.8) still admits a unique solution and can be computed as (2.6).

Now we briefly comment on the convergence of SVREM (2.10). The convergence result in
[9] requires the subset statistics τ t( f ) to be Lipschitz continuous, which holds only for nonzero
backgrounds rt. This condition arises also for standard MLEM [1]. However, any realistic PET
scan indeed has nonzero background. Regardless, there are two common remedies, a practical
and a theoretical one. The former is to set the pixel value to 0 whenever the denominator in
(2.4) or (2.6) is equal to zero. The latter is to modify the likelihood term, using a quadratic
approximation near the origin [1]. Specifically, let ϕm(�) = gm log(�) − �, and define

ϕ̂m(�) =

⎧⎨⎩
ϕ′′

m(ε)
2

(�− ε)2 + ϕ′
m(ε)(�− ε) + ϕm(ε), if � � ε and rm = 0

ϕm(�), otherwise,

(2.11)

with a constant ε > 0. If ε is sufficiently small, then the solution set does not change [1].

3. Stochastic variance reduced EM (SVREM) for penalised PET reconstruction

To address the inherent ill-posed nature of the ML problem (2.3), one popular approach is
variational regularisation, which introduces a convex penalty R( f ) [25]. This can often be
interpreted as a MAP estimation and the corresponding estimator fmap is given by

fmap = argmax
f �0

{Φ( f ) :=L( f ) − βR( f )}. (3.1)

A common type of penalties used in PET reconstruction take the form

R( f ) =
1
2

N∑
n=1

∑
j∈Nn

wn j ρ
(

fn − f j

)
,

where wn j � 0 are weights, Nn is the neighbourhood of the nth voxel, and ρ is a potential func-
tion. The penaltyR( f ) is used to promote the desired image structure, which are often meant to

8
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Table 1. Commonly used penalty terms.

ρ( f ) ρ′( f ) γρ( f ) Comments

Quadratic f 2

2 f 1 Not edge preserving

Huber

⎧⎪⎪⎨
⎪⎪⎩

f 2

2
, | f | � δ

δ| f | − δ2

2
, | f | � δ

⎧⎨
⎩

f , | f | � δ

δ, | f | � δ

⎧⎪⎨
⎪⎩

1, | f | � δ

δ

| f | , | f | � δ Not strictly convex nor C2

log cosh δ2 log cosh( f /δ) δ tanh( f /δ) δ tanh( f/δ)
f

Hyperbola δ
(√

1 + ( f /δ)2 − 1
)

f√
1+( f/δ)2

1√
1+( f/δ)2

Approximates TV

be locally smooth but still preserve edge phenomena. Thus, ρ should be smooth within a given
tissue or organ, while retaining sharp boundaries between different tissues. Most potentials are
thus monotonic, nondecreasing functions of the difference | fn − f j| that are roughly quadratic
near the origin and linear away from the origin, and satisfy the following assumption.

Assumption 3.1. The potential ρ( f ) is symmetric, continuously differentiable, with ρ′( f )
nondecreasing (so that ρ( f ) is convex). The curvature function γρ( f ) = ρ′( f )

f is assumed to be
nonincreasing for f � 0, and such that lim f ↘0γρ( f ) is finite and nonzero.

A list of commonly used penalty terms satisfying these properties is given in table 1. Note
that this does not cover the relative difference penalty [32]. For the Huber, log cosh and hyper-
bola penalties, the parameter δ > 0 controls the transition between the quadratic (smooth) and
linear (edge-preserving) regimes of the given penalty term.

The general principle for solving the corresponding MAP problem (3.1) by EM does not
change. That is, for MLEM, OSEM, SVREM, and SEM, instead of (2.8), we compute

f̂ k = argmax
f �0

ζ( f )�ŝk − U( f ) − βR( f ). (3.2)

If the penalty R( f ) is separable (i.e., no coupling between the entries, which for example is
the case for the quadratic prior), the objective function in (3.2) is separable and the M-step
has a closed-form solution. However, this is not the case for many penalties of interest in PET
reconstruction and computing the maximiser requires solving a coupled system of equations.
Thus, (3.2) is often maximised iteratively [34].

To explicitly solve the M-step, we employ a separable surrogate of the penalty R( f ). Sur-
rogates have been widely used in penalised PET reconstruction [12, 13, 18, 19]. The idea is
to construct a surrogate for the potential ρ, either to facilitate the computation of the prior or
to improve conditioning (and convergence). We employ the parabolic surrogate [8]. Namely,
consider the surrogate for the potential ρ given by

ρ̂k( fn; fj) = ρ( f k
n − f k

j) + ρ′( f k
n − f k

j)
(

fn − f j − ( f k
n − f k

j)
)

+ γρ( f k
n − f k

j)
(
( fn − f k

n)2 + ( f j − f k
j)

2
)

c
= γρ( f k

n − f k
j)

((
fn −

f k
n + f k

j

2

)2

+

(
f j −

f k
n + f k

j

2

)2
)

,

9
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and define the surrogate penalty by

R̂( f ; f k) =
1
2

N∑
n=1

∑
j∈Nn

wn j ρ̂
k( fn; f j).

Then for n 	= j the nth and the jth entry are decoupled since the partial derivatives ∂ρ̂k( fn; fj)
∂ fn

are
given by

∂ρ̂k( fn; f j)
∂ fn

= γρ( f k
n − f k

j)(2 fn − f k
n − f k

j).

The nth partial derivative for the surrogate objective ζ( f )�ŝk − U( f ) − βR̂( f ; f k) is given by

1
fn

ŝk
n − 2β fn

∑
j∈Nn

dn j +

⎛⎝β f k
n

∑
j∈Nn

dn j + β
∑
j∈Nn

dn j f
k
j −

M∑
m=1

amn

⎞⎠ , (3.3)

where ŝk is an estimator of the expected statistic, and dn j :=wn jγρ( f k
n − f k

j). Equating (3.3)
with zero gives a scalar equation of the form

a f −1 − 2b f + c = 0,

with

a = ŝk
n, b = β

∑
j∈Nn

dn j, c = β f k
n

∑
j∈Nn

dn j + β
∑
j∈Nn

dn j f
k
j −

M∑
m=1

amn.

(3.4)

Thus, we arrive at a quadratic equation, with a unique nonnegative solution which can be easily
evaluated at each iteration. Provided that b > 0 it is given as

f = (4b)−1(c +
√

c2 + 8ab), (3.5)

where we note that the discriminant is nonnegative under assumption 3.1, and when b = 0, i.e.
when there is no prior, (3.3) is linear, and the unique solution is given as f = −c/a. SEM and
SVREM for penalised PET reconstruction then proceed as follows. At each iteration k ∈ N,
we first select the subset index tk. We then update the estimator of the conditional statistic
according to (2.9) and (2.10), respectively. Coefficients in (3.4) are then evaluated and we
compute the corresponding iterates through (3.5).

4. Stochastic EM algorithm based on gradient ascent

In this section, we describe a second class of algorithms for problem (3.1). It is inspired by the
following additive formulation of the EM update (2.6) [28]:

f k+1
osem = f k

osem + ( f k
osem � A�

tk
1) �∇Ltk ( f k

osem), with ∇Lt( f ) = A�
t (gt � At f − 1).

(4.1)

10
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This can be interpreted as a preconditioned gradient ascent. It is then natural to replace the
gradient ∇L( f ) of the likelihood L( f ) with that of Φ( f ). This strategy is directly amenable
to stochastic gradients, which are very appealing due to their low cost per iteration, flexibility
with the penalty (i.e., there is no need for constructing surrogates but only the gradient of the
penalty). Specifically, SGA like methods can be written as

f k+1 = f k + αkhk( f k, ξk),

where ξk is the random subset index, and hk( f k, ξk) is the search direction, i.e., a preconditioned
form of ∇L( f k). OSEM in the additive formulation (4.1) with the search direction hk( f k, tk) is
then given by

hk( f k, tk) = ( f k � A�
tk

1) �∇Ltk ( f k).

This can viewed as a diagonally preconditioned gradient ascent with respect to the subobjective
Ltk . These discussions naturally motivate the following algorithmic developments for the PET
MAP problem (3.1). For a given subset index t, we denote

Φt( f ) :=Lt( f ) − βN−1
s R( f ).

Then the extension of the additive formulation to problem (3.1) leads to SGA updates

f k+1
sga = f k

sga + αkdt( f k
sga) � (∇Ltk ( f k

sga) − βN−1
s ∇R( f k

sga)), (4.2)

where the index tk is selected uniformly over [Ns], αk = 1, and dt( f ) is given by

dt( f ) := f � A�
t 1.

An update of this type is a standard extension of OSEM algorithms to the MAP problem. How-
ever, it is not necessarily maximising the given objective at each step. Note that by including
a penalty, the nonnegativity of the updates is generally not preserved, and a projection step by
P�0 is applied at each iteration. According to the theory for SGA, the iteration (4.2) generally
does not converge to the MAP solution, unless a decaying step-size schedule is employed [13].
This is attributed to the stochasticity of the gradient estimate, and the variance of the estimated
ascent direction can significantly slow down the convergence of the algorithm when the iterates
approach the maximiser.

One idea to reduce the variance of the gradient estimate in SGA is variance reduction. For
the constrained MAP problem, we use proximal versions of SAGA and SVRG [44] to enforce
the iterate feasiblity by the projection operator P�0. Both SAG and SAGA keep a running table
of computed gradients of the subobjectives, and then efficiently estimate the full gradient. By
rescaling the full gradient, SAGA employs unbiased estimates, whereas the SAG estimate is
biased. SAGA estimates of the full gradient are given by

qk+1
tk

= ∇Φtk ( f k
saga), and for t 	= tk keep qk+1

t = qk
t ;

f k+1
saga = f k

saga + αdtk ( f k
saga) �

(
qk+1

tk
− qk

tk
+

1
Ns

Ns∑
t=1

qk
t

)
.

(4.3)

SVRG enjoys the convergence rate performance of SAG and SAGA, but does not require
maintaining a running list of gradients. Setting f anc = f 0, and q̃ = 1

Ns
∇L( f anc) − β

Ns
∇R( f anc)

11
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the algorithm follows

f k+1
svrg = f k

svrg + αdtk ( f k
svrg) � (∇Φtk ( f k

svrg) −∇Φtk ( f anc) + q̃).

If k mod ηNs = 0 set the anchor estimate f anc = f k
svrg and update

q̃ = N−1
s ∇Φ( f anc).

(4.4)

A value of the full gradient update frequency η between 2 and 5 is recommended [26].
Several remarks are in order. First, note that the methods described in sections 2 and 3 aim

at explicitly computing the maximiser at each step. However, update equations (4.3) and (4.4)
are derived by analogy with the additive formulation (4.1), and thus mathematically less prin-
cipled. Second, provided that the subobjectives Φt are L-Lipschitz, SAG and SAGA converge
(sub-linearly in expectation) to the minimiser for the fixed stepsize α = (16L)−1 [35]. This
result does not apply to the PET problem (3.1) since the subobjectivesLt are not Lipschitz in a
neighbourhood of 0, and since the algorithms use iteration-dependent preconditioners. Third,
as observed in [1], preconditioned gradient ascent based algorithms (also known as diagonally-
scaled incremental gradient methods) do not always converge to the MAP solution when using
iteration-dependentpreconditioners. Indeed, assuming f k → f �, that∇Φ( f ) is continuous, and
that preconditioner functions dt( f ) � 0 are continuous such that ‖dt( f )‖ 	= 0 for f 	= 0, the
issue seems to persist for the proposed stochastic algorithms. The latter assumption is satisfied
by the EM preconditioner. Assuming limk→∞αk = 0 and

∑∞
k=1 αk = ∞, then the convergence

of the SGA algorithm implies

Ns∑
t=1

dt( f �) �∇Φt( f �) = 0.

Thus, unless all the preconditioners dt are the same, this identity generally differs from the
true optimality condition ∇Φ( f �) = 0 (for unconstrained optimisation). Note that an analo-
gous analysis holds for stochastic estimators in expectation, provided the corresponding search
direction hk( f k, ξk) is unbiased and consistent. One simple remedy is to freeze the precon-
ditioner dt( f k) = d, with d = d( f 0). In practice, gradient-based variance reduction methods,
with either iteration dependent or constant preconditioners, perform well for the PET problem
[41, 42].

The convergence of non-preconditioned SAGA and SVRG has mostly been studied for
strongly convex objectives. Namely, SAGA enjoys linear convergence for strongly con-
vex problems [15], and O(1/k) convergence of the average iterate for convex problems
[14, theorem 4.8], whereas the SVRG anchor point converges linearly for strongly convex
problems [26]. These assumptions are not satisfied by the PET problem, neither for stan-
dard nor modified likelihood (2.11), which is only strictly convex. Nonetheless, combining the
arguments in [1, 33] allows establishing almost sure convergence of both SAGA and SVRG
for a modified likelihood term and a constant preconditioner. In practice, this holds since the
background events are nonzero, for which there is no need to modify the likelihood.

Theorem 4.1. Let Φ̃( f ) = L̃( f ) − βR( f ) where L̃( f ) =
∑M

i=1 ϕi(a�
i f ) uses the modified

likelihood (2.11). Moreover, let all entries of d ∈ R
N be positive, denote by L = maxt∈Ns Lt

the largest of the Lipschitz constant of sub-objective gradients Φ̃t( f ) and by dmax = ‖d‖∞ the
largest entry of d, and assume argmaxf�0Φ(f) 	= ∅.

12
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Then taking α = 1

3Ld
1/2
max

and dt( f k
saga) = d in the SAGA algorithm (4.3) we have Φ̃( f k

saga) →
Φ( f �) and f k

saga → f � almost surely. Taking α � 1

4Ld
1/2
max(ηNs+2)

and dt( f k
svrg) = d in the svrg

algorithm (4.4) we have f k
svrg → f � almost surely and E[Φ( f �) − Φ̃( f kηNs

svrg )] = O(1/k).

Note that theorem 4.1 provides conditions for convergence but does not quantify the speed
of convergence. This is typical for non-strongly concave problems for most variance reduction
techniques. Note that for strongly-concave problems, the convergence rate depends on the ratio
between the Lipschitz constant and the stepsize. In case of preconditioned SVRG and SAGA,
the effective stepsize is determined not only by α but also by the preconditioner d, as indicated
by the bounds on the stepsize in theorem 4.1.

5. Numerical experiments and discussions

In this section, we present numerical results for the two classes of stochastic methods for the
MAP problem (3.1) with the log cosh penalty, which is often employed for PET reconstruc-
tion. We present two examples: a brain phantom, and a torso XCAT. We examine the per-
formance of SVREM with SVRG and SAGA, both with a constant preconditioner d = d(f 0),
which provides consistently better performance than the iteration-dependent counterpart d( f k).
The results for SAG and SARAH were nearly identical with those for SAGA and SVRG,
respectively, and thus are not included.

5.1. Brain phantom

In this experiment, we take one slice (of size 114 × 114) from a BrainWeb phantom [10], avail-
able at https://bic.mni.mcgill.ca/brainweb/. The forward map is taken to be the Radon trans-
form using 180 projection angles with a 1 angle separation. The sinogram data is binned into
subsets using geometric projections of the scanner. We consider Ns = 15, 30, and 45 subsets
and accordingly, each subset consists of 12, 6, and 4 views, respectively. In the reconstruction,
we use the log cosh penalty with δ = 0.01 and a regularisation parameter β = 60, which are
determined in a trial-and-error manner, and conduct the experiments in MATLAB R2019b.
The accuracy of a reconstruction f is measured by the relative error Δ( f ) = ‖f − f �‖/‖f �‖,
where f � is the reference solution, computed using LBFGS-B (available at https://mathworks.
com/matlabcentral/fileexchange/35104-lbfgsb-l-bfgs-b-mex-wrapper, retrieved on April 11,
2021). All algorithms are initialised with one epoch of OSEM. Following [41], for SAGA
and SVRG, we employ a constant stepsize α = 2, and update SVRG with the full gradient
every η = 2 epochs, whereas for SVREM, we choose α = 0.7 and η = 1. We consider three
OSEM type methods without variance reduction, i.e., SGA, BSREM, and SEM, which are rep-
resentative within PET reconstruction, as baselines. More precisely, by SGA we refer to the
preconditioned method given in (4.2), which for the full objective Φ reads

f k+1
sga = f k

sga + α( f k
sga � A�

tk
1) �∇Φtk ( f k

sga).

BSREM [1] is an iterative scheme based on OSEM using a decaying stepsize schedule

f k+1
bsrem = f k

bsrem + αk( f k
bsrem � A�1) �∇Φtk ( f k

bsrem).

Note that standard BSREM uses a subset-independent preconditioner. We use its subset-
dependent variant, replacing A�1 with A�

tk
1 since it exhibits a faster, yet steady, convergence

for the example. In the experiments, both SEM (cf (2.9)) and BSREM use the stepsize sched-
ule αk = (0.001k + 1)−1, which is sufficient to ensure their convergence. Since SVRG and
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Figure 1. The error decay behaviour for the brain phantom: (a) SAGA, SVRG, and
SVREM, and (b) SGA, BSREM, and SEM.

Figure 2. The pixel wise errors of SAGA, SVRG, and SVREM for the brain phantom
with respect to the reference solution computed by LBFGS-B.

SVREM require computing the full gradient once every η epochs, to make a fair comparison
of overall computational cost, we count epochs in terms of the number of subsets that are used
at each iteration. Thus, every ηNs updates of SVRG and SVREM are counted as η + 1 epochs,
and η epochs of SAGA.

In figure 1, we show the comparative results for all methods on Ns = 30 subsets of the data.
It is clearly observed that SVREM exhibits the fastest convergence among all the methods,
which is also corroborated by the pixel-wise errors in figure 2: the SVREM reconstruction
agrees nearly perfectly with the reference solution, whereas the pixelwise errors of SAGA and
SVRG reconstructions still clearly exhibit structures, especially edges. Moreover, SAGA is
slightly slower than SVRG (in terms of the running time), and both algorithms would benefit
from a larger stepsize, though setting it too large impairs the overall convergence. We will
explore the stepsize issue for SAGA and SVRG in section 5.2. Just as expected, all variance
reduction methods outperform SGA, BSREM, and SEM, and are orders of magnitude faster,
especially for high-accuracy solutions, showing clearly the benefit of variance reduction for
accelerating OSEM type algorithms. Although not presented, one can observe similar behavior
for other subset numbers.
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Figure 3. The error decay behaviour for SVREM on the brain phantom with respect to
the stepsize α, the update frequency η the number Ns of subsets. In panels (a) and (b)
we use 30 subsets of the data.

Table 2. Comparison of average running times (in seconds) for experiments in
section 5.1.

Method\N s 15 30 45

SGA 15.31 25.80 36.64
BSREM 15.28 25.86 36.77
SEM 16.15 27.26 38.42
SAGA 16.66 28.25 40.14
SVRG 17.20 29.06 40.49
SVREM 20.13 33.34 47.01

Figure 3 studies the convergence behavior of SVREM with respect to three important algo-
rithmic parameters, i.e., update frequency η (of full gradient updates), the stepsize α, and num-
ber of subsets Ns. Generally, all these parameters greatly impact the performance of SVREM,
and they should be tuned together to achieve optimal convergence behavior. It is observed that
increasing the frequency η provides some acceleration in initial epochs but a too large η can
impair the asymptotic convergence, even with a tuned stepsize α. The stepsize α has a similar
influence as the frequency η: a larger stepsize α gives faster initial acceleration, but too large
a value may prevent the algorithm from converging to the MAP maximiser. Lastly, a larger
number Ns of subsets (with suitably tuned stepsizes) tends to provide faster initial convergence.
These observations show clearly the importance of proper partition of the subsets.

In table 2 we show the runtime, averaged over 10 independent runs, for running 10 epochs
of the algorithms. Note that the implementations have not been optimised, e.g., computation
of the coefficients in (3.4), and thus the numbers should be interpreted indicatively only. It is
observed that all the methods have comparable runtime, and that methods that require storing
an estimator of the full gradient are a bit slower than the methods for which this is not required,
e.g., SEM versus SVREM, or BSREM versus SVRG. This observation holds when the number
Ns of subsets is fixed. In theory the runtime per epoch should be independent of the number
of subsets ignoring the computation of the penalty; the results in table 2 actually show an
increase with increasing Ns which we attribute to the extra overhead in multiple function calls
as opposed to an ideally vectorised implementation.
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Figure 4. Performance comparison of SAGA, SVRG, and SVREM for 20, 40, and 70
subsets over 200 epochs.

5.2. Torso phantom

To evaluate the algorithms in a more realistic PET setting, in this experiment we use a PET
scan of a torso, obtained as an XCAT simulated phantom [36] with 2 rings and 280 projection
angles. The sinogram data consists of 280 views, and is binned into 20, 40, and 70 subsets using
geometric projections of the scanner, with each subset having 14, 7, and 4 views, respectively.
In the experiment, SVRG and SVREM update the full gradient and full expected statistic, once
every η = 5 and η = 3 epochs, respectively, and all algorithms are initialised with one epoch of
OSEM. The reconstruction was carried out using the Software for Tomographic Image Recon-
struction [39], via a python environment, available at https://github.com/UCL/STIR. We use
the log cosh penalty with δ = 1 and fix β = 0.0001. Since a reference solution is unavailable,
we evaluate the accuracy by the objective value.

The results for 200 epochs of SAGA, SVRG and SVREM are shown in figure 4. Unlike the
brain phantom, the behaviour with respect to η is more stable, and choosing a larger η provides
a better per-epoch comparison with SAGA. One interesting observation is about the feasible
stepsize regime for SVREM. The work [9] suggests α ∈ (0, 1), with an upper bound depending
on the Lipschitz constant of subset statistics (and also the number of subsets). This behaviour
was also observed in figure 3(a). In contrast, for the torso phantom, the admissible stepsize
seem to be (0, 2], which corresponds to over-relaxation, a well-known practice in iterative
linear solvers [43] (see [40] for an application in EM algorithm). In figure 4, we use α = 2.0
for 20 and 40 subsets, andα = 1.4 for 70 subsets. In this challenging setting, SAGA, SVRG and
SVREM show comparable overall performance, cf figure 4. Nonetheless, SVREM consistently
outperforms SVRG and SAGA, especially when the number Ns of subsets is small. Moreover,
SAGA occasionally exhibits an undesirable stochastic behaviour during initial iterations (most
notably for 70 subsets), before stabilising after roughly 70 epochs. The latter can be remedied
by choosing a smaller stepsize α, which of course can adversely affect the overall convergence
behavior. These results suggest that SVREM provides a greater benefit for a smaller number
Ns of subsets, and as the number Ns of subsets increases the algorithms become comparable.

In figure 5 we study the convergence behaviour over a longer epoch horizon, using 40
subsets and 1000 epochs, and examine how do SAGA, SVRG, and SVREM depend on the
stepsize α. The numerical results show that SVREM with α = 1.0 (and also for smaller val-
ues) can eventually outperform both SVRG and SAGA, and catches up to SVREM with a
larger stepsize, confirming the asymptotic convergence. Meanwhile the results for SVRG, and
particularly SAGA, suggest that a smaller stepsize α is needed to ensure their convergence,
since otherwise the iterations enter a limit cycle. Thus, reducing the stepsize has a conflicting
effect: it slows down the speed of convergence during initial iterations, but it provides better
asymptotic behaviour. For a more effective profile of the overall convergence, a dynamically
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Figure 5. The influence of the stepsize α on SAGA, SVRG, and SVREM for the XCAT
torso with 40 subsets and over 1000 epochs.

Figure 6. (a) SVREM reconstruction after 1000, and (b) and (c) pixel-wise differences
of SVREM reconstructions after 200 and 50 epochs.

variable stepsize schedule emerges as a natural choice. To gain further insights, in figure 6 we
show pixel-wise differences for SVREM with 40 subsets. The results show that the background
and the smooth parts of the image are mostly resolved after 50 epochs, whereas the edges are
more challenging to resolve and are still improving after 50 epochs.

6. Conclusions

In this work we revisited two classes of stochastic EM algorithms based on variance reduc-
tion from the machine learning community for the penalised PET reconstruction, one from
the perspective of EM algorithms and the other from the perspective of preconditioned SGA.
Both classes of algorithms are straightforward to implement, and are applicable to a wide
range of penalty terms. The numerical results indicate that these algorithms can effectively
and efficiently accelerate the convergence of classical OSEM type algorithms, and hold sig-
nificant potentials for the MAP problem in PET reconstructions. This is particularly true for
SVREM, which enjoys steady convergence towards the maximising solution, sometimes even
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with over-relaxation. These promising empirical results naturally motivate further experimen-
tal evaluations on patient data and a theoretical analysis, to investigate the interplay between
the number of subsets and the stepsize schedule (and also the ‘full-gradient’ update frequency
for SVRG), the role of over-relaxation in SVREM, and to precisely characterise their influence
on the convergence speed.
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Appendix A. Proof of theorem 4.1

Note that the constrained maximisation problem

argmax
f �0

Φ( f ), with Φ( f ) :=L( f ) − βR( f ),

can be written as a minimisation problem

arg min
f

− Φ( f ) + χ�0( f ),

where χ�0(f) is the indicator function of vectors with nonnegative entries. It is proper, convex
and lower semi-continuous and its proximal operator is the projection P�0. The conditions of
the theorem imply

(a) The preconditioners d( f k) = d are constant, diagonal and positive.
(b) Φ : Rn → R is continuously differentiable with a Lipschitz gradient, and Φt are contin-

uously differentiable with an Lt-Lipschitz gradient for each t ∈ [Ns]. This may require
bounding the projection operator to a finite box, whose bounds can be explicitly computed
[1] and which in practice affects neither the convergence nor the iterations.

(c) The set of maximisers is nonempty, i.e., argmax f �0Φ( f ) 	= ∅.

Then assumption (b) holds for the modified objective Φ̃( f ) :=L( f ) − βR( f ), and the
parameter ε > 0 in (2.11) can be chosen to be sufficiently small so that [1] argmax f �0Φ( f ) =

argmax f �0Φ̃( f ) and max f �0Φ( f ) = max f �0Φ̃( f ). Below we use Φ̃ and identify Φ̃ = Φ.
Motivated by [1, appendix C], we rewrite SAGA as

f̃ k
saga = P�0

(
f̃ k−1

saga + α

(
q̃k

tk
− q̃k−1

tk
+

1
Ns

Ns∑
t=1

q̃k−1
t

))
,

with

f̃ k = d−1/2 � f k, q̃k
t = ∇Ψt( f̃ k), for Ψt( f̃ ) = Φt(d

1/2 � f̃ ).
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Now let L = maxt∈[Ns]Lt. Since Φt are L-Lipschitz and d has non-negative entries, Ψt are
also Lipschitz, with a Lipschitz constant L‖d1/2‖∞ = Ld1/2

max. Then with α = (3Ld1/2
max)−1,

by [33, theorem 2.1] (by changing maximisation to minimisation), there exists an f̃ � ∈
argmax f̃ �0Ψ( f̃ ) such that Ψ( f̃ k

saga) →Ψ( f̃ �) and f̃ k
saga → f̃ � almost surely.

Similarly for SVRG, we have

f̃ k
svrg = P�0( f̃ k−1

svrg + α(∇Ψtk ( f̃ k−1
svrg) −∇Ψtk ( f̃ anc) + G̃)),

where G̃ = 1
Ns
∇Ψ( f̃ anc). Then by [33, theorem 2.2.(i)], with α � (4Ld1/2

max(ηNs + 2))−1,

there exists an f̃ � ∈ argmax f̃ �0Ψ( f̃ ) such that f̃ k
svrg → f̃ � almost surely. Moreover, at the

point when the full gradient is updated, i.e. if k mod ηNs = 0, we have E[Ψ( f̃ �) −Ψ( f̃ k
svrg)] =

O(k−1). By definition, Ψ( f̃ ) = Φ( f ), we have Φ( f k
saga) → Φ( f �) and f k

saga → f �, and f k
svrg →

f � almost surely. Moreover, we have E[Φ( f �) − Φ ( f (kηNs)
svrg ] = O(k−1).

Appendix B. The differences between SVREM and SVRG for ML problems

It is tempting to think that SVRG and SVREM are equivalent in a certain context. We compare
the two algorithms for the simplest case, i.e., the ML problem. Assume that both algorithms
employ the same anchored estimate f anc, the full gradient, and the subset index t. For SVREM,
we first update the estimator ŝk of the full statistic by

ŝk+1 = (1 − α)̂sk + α
(
τtk ( f̂ k

svrem) − τtk ( f̂ anc) + ŝ( f anc)
)

,

and then update the maximising solution f k
svrem by

f k+1
svrem =

(
ŝk+1∑M
m=1 amn

)N

n=1

= f k
svrem + αhk,

where the search direction hk+1 is given by

N−1
s hk+1 = d( f k) �∇Lt( f k) − d( f anc) �∇Lt( f anc)

+ N−1
s d( f anc) �∇L( f anc)

+ ( f k − f anc) � (A�
t 1 � A�1 − N−1

s ).

Meanwhile, for SVRG updates with variable preconditioner, we have

f k+1
svrg = f k

svrg + αd( f k
svrg) � (∇Ltk ( f k

svrg) −∇Ltk ( f anc) + N−1
s ∇L( f anc)).

Thus, the two algorithms differ greatly even if SVRG uses a iteration dependent preconditioner
d( f k

svrg) = f k
svrg � A�1 (or a subset dependent preconditioner). There are two notable differ-

ences. First, SVREM uses different preconditioners for each term, i.e., the gradient terms con-
taining f anc are preconditioned with d( f anc), and d( f k), for SVREM and SVRG, respectively.
Second, the search direction for SVREM involves a term akin to momentum.
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