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Abstract— We have implemented a convergent subsetized (CS)
list-mode reconstruction algorithm, based on previous work [1]–
[3] on complete-data OS-EM reconstruction. The first step of the
convergent algorithm is exactly equivalent (unlike the histogram-
mode case) to the regular subsetized list-mode EM algorithm,
while the second and final step takes the form of additive updates
in image space. A hybrid algorithm based on the ordinary and the
convergent algorithms is also proposed, and is shown to combine
the advantages of the two algorithms: it is able to reach a higher
image quality in fewer iterations while maintaining the convergent
behavior, making the hybrid approach a good alternative to
the ordinary subsetized list-mode EM algorithm. Reconstructions
using various LOR-driven projection techniques (Siddon method,
trilinear and bilinear interpolation) were considered and it was
demonstrated that in terms of FWHM, the Siddon technique is
inferior to the other two algorithms, with the bilinear interpolation
technique performing nearly similarly as the trilinear while being
considerably faster.

I. INTRODUCTION

Since the introduction of the ordered subset (OS) EM algo-
rithm for histogram-mode emission tomography by Hudson et
al. [4], there has been considerable interest in accelerated image
reconstruction techniques. The OS principle (using a subset of
the measurement data for each update instead of the total data
set) has subsequently been used to yield other reconstruction
algorithms, such as the rescaled block-iterative (RBI) EMML
algorithm [5], [6], the OS separable paraboloidal surrogates
(OS-SPS) method [7], and list-mode EM reconstruction [8],
[9].

Such OS algorithms, however, are not convergent in general,
and instead result in limit cycles. There has been interest
by different research groups in deriving provably convergent
versions of the fast OS methods. In [10], an alternate algorithm
termed row-action maximum likelihood algorithm (RAMLA)
was proposed along with a convergence proof. The authors have
also introduced the block sequential regularized EM (BSREM)
algorithm, which extends the RAMLA approach to the case
of maximum a posteriori (MAP) reconstruction [11]. Two
types of globally convergent relaxed ordered subsets algorithms
were also presented in [12]: one by modifying the BSREM
algorithm to yield an algorithm convergent under more real-
istic assumptions, and the other by relaxing the OS separable
paraboloidal surrogates (OS-SPS) method. In [1], [2], Hsiao

et al. derived a new convergent complete data ordered subsets
algorithm for histogram-mode EM reconstruction (C-OSEM).
They have shown that the proposed algorithm monotonically
decreases the complete data objective function, and furthermore
demonstrated that the solution converges to the maximum of
the log-likelihood objective function. This algorithm has the
advantage that it does not involve any relaxation schedule.
Furthermore, it can be extended to list-mode reconstruction
(Sec. II) which we have explored and investigated in this work.
Meanwhile, we have also investigated effects of various interpo-
lation techniques (as used in the forward- and back-projection
operations) on reconstructed image qualities (Sec. III).

II. ACCELERATED EM RECONSTRUCTION

A. Ordinary Subsetized List-Mode EM Algorithm

The list-mode EM algorithm can be accelerated by sub-
dividing the list-mode data into segments that span a fraction
of the total duration of the data. Dividing the data space into L
subsets, we use Sl to denote the lth list-mode subset (l=1...L).
We use λm,l

j to denote the image estimate at voxel j at the mth
iteration and lth subset. The subsetized list-mode expectation
maximization algorithm (which we shall refer to as the S-
LMEM algorithm) is then given by [13]:

λm,l
j =

λm,l−1
j∑I
i=1 pij

∑
k∈Sl

pikj
1∑J

b=1 pikbλ
m,l−1
b

(1)

where ik refers to the LOR along which the kth event is
detected, and pij is the probability of an emission from voxel
j being detected along LOR i.

Starting from first principles and using the complete data
approach as in [1], [2], Khurd and Gindi [3] have been able
to derive a convergent subsetized list-mode EM reconstruction
algorithm. The authors have subsequently tested the conver-
gence and speed-up achieved by the algorithm using simulated
SPECT data. In what follows, we show in detail a derivation
of the same algorithm using an approach based on re-visiting
the histogram-mode technique. We go on to present an intuitive
picture of how the algorithm proceeds using additive updates
in image space.
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B. Convergent Histogram-mode OS-EM Reconstruction

In histogram-mode reconstruction, dividing the data space
into L LOR-based subsets, Sl is used to denote the lth
histogram-mode subset (l=1...L). The C-OSEM can then be
written in the form [1], [2]:

Cm,l
ij = ni

pijλ
m,l−1
j∑J

b=1 pibλ
m,l−1
b

,∀i ∈ Sl (2)

λm,l
j =

1∑I
i=1 pij

[
l∑

s=1

∑
i∈Ss

Cm,s
ij +

L∑
s=l+1

∑
i∈Ss

Cm−1,s
ij

]
(3)

where one sets λm,0
j =λm−1,L

j at the beginning of each iteration,
while using some initialization for C0,s

ij values. In place of
the update Eq. (3), the ordinary OSEM algorithm performs the
following

λm,l
j =

1∑
i∈Sl

pij

∑
i∈Sl

Cm,l
ij (4)

Thus, we see that the C-OSEM algorithm is different from the
ordinary OSEM in that calculation of image updates at every
subset (numerator of Eq. 3) is not limited to Cij values for
LORs in that subset only: this explains why the sensitivity cor-
rection factors (denominator of Eq. 3) include back-projection
from all the LORs. Meanwhile, at any subset l, values of Cij

are updated only for LORs i ∈ Sl: this explains why the update
image at each subset can be computed nearly as fast as that of
regular OSEM.

C. Convergent Subsetized List-mode EM Algorithm

Similar issues, as in the OSEM algorithm, are present in
subsetized list-mode reconstruction, and the proposed S-LMEM
algorithm results in non-converging (e.g. limit cycles) behavior,
as reported in Sec. V. Using transformations as in [8], one
may extend the histogram-mode formulation presented in II-
B into list-mode reconstruction. By defining list-mode subsets
as event-based subsets, as compared to LOR-based subsets in
histogram-mode reconstruction, and replacing the summations
over the LORs by summations over the events, while replacing
ni in Eq. (2) by the numeral 1, it can be shown that one arrives
at the following list-mode reconstruction update equations:

λ̃m,l
j =

λm,l−1
j∑I
i=1 pij

∑
k∈Sl

pikj
1∑J

b=1 pikbλ
m,l−1
b

(5)

λm,l
j =

l∑
s=1

λ̃m,s
j +

L∑
s=l+1

λ̃m−1,s
j (6)

where λ̃m,l
j is an intermediate image vector produced by the

first update Eq. (5), subsequently used by Eq. (6) to arrive at the
overall image estimate λm,l

j . The initialization λ̃0,s
j =1 will be

imposed for all s, while setting λm,0
j =λm−1,L

j at the beginning
of each iteration.

As shown in Eq. (6), the algorithm takes the form of additive
updates in image-space, in that upon arriving at any subset l,

the intermediate image updates which have been previously
calculated for other subsets {∀s|s �= l} are added to the update
λ̃m,l

j calculated for the current subset l. We shall refer to
this approach as the convergent subsetized list-mode EM (CS-
LMEM) algorithm. We also note that it is easy to show that:

λm,l
j = λm,l−1

j + λ̃m,l
j − λ̃m−1,l

j (7)

From this observation, it follows that by keeping track of
the values of λm,l−1

j and the values of λ̃m,l
j for all subsets

Sl,l=1...L, values of λm,l−1
j can be recursively updated ac-

cording to the above relation. This makes the calculation of
image updates using the CS-LMEM algorithm nearly as fast as
the regular S-LMEM algorithm.

D. Hybrid S/CS List-mode EM Algorithm

We have found it very useful to investigate the possibility
of combining the advantages of the S-LMEM and CS-LMEM
algorithms into a hybrid algorithm. Namely, one typically
notices, as also shown in Sec. V, that the regular S-LMEM
algorithm, in the first few subsets, is able to produce images
of higher quality relative to the CS-LMEM algorithm, whereas
the latter is able to exhibit convergent resolution and contrast
behavior as the iterations proceed. The hybrid approach we have
taken uses S-LMEM for the entire or part of the first iteration,
followed by CS-LMEM in the rest of the calculation.

III. LIST-MODE PROJECTION TECHNIQUES

In general, forward- and back-projection schemes can be
performed using two main approaches: voxel-driven and LOR-
driven. It has been suggested [14]–[16] that best results may
be obtained when the back- and forward-projection operations
are output driven: i.e. if back-projecting, the process should
be voxel-driven and if forward-projecting, the process should
be LOR-driven. This has been explained by Wallis and Miller
[15]. One simple way to see this is to note that if a projection is
output driven, the operation would be a “many to one” operation
rather than a “one to many” value operation. For instance, when
back-projecting, an LOR-driven approach measures how each
LOR contributes to all the voxels (“one to many”), whereas
in the voxel-driven approach, one would be measuring the
contributions of all the LORs to a given voxel at a time (“many
to one”).

Nevertheless, due to the intrinsically LOR-based nature of
list-mode reconstruction, only the LOR-driven projection op-
erations may be utilized. This is one limitation of list-mode
reconstruction, and is in a sense acquired due to the fact
that one does not need to access the entire projection-space
in list-mode reconstruction (which is one important potential
advantage of the technique in the first place, especially for
low-statistic frames in high resolution PET). Nevertheless, in
our reconstructions, as shown later, we have not observed a
degradation in image quality when switching from voxel-driven
back-projection (used in histogram-mode) to LOR-driven back-
projection.
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(a) (b) (c)
Fig. 1. Projection algorithms employing (a) the Siddon method, (b) trilinear,
and (c) bilinear interpolation techniques are drawn, as elaborated in text.

Three LOR-driven projection techniques were explored for
use in list-mode reconstruction:

1) The Siddon method: Following work of Siddon [17], this
technique is based on calculating the path length of intersection
of a given LOR along each voxel, as depicted in Fig. (1a).

2) Trilinear interpolation: To understand this technique, let
us consider an image grid with voxels of unit length in all
directions. Trilinear interpolation works by stepping through a
given LOR with increments of unit length, as shown in Fig. (1b)
for the 2D case. For back-projection then, one distributes the
LOR value between the nearest voxels (four in 2D, eight in 3D).
In forward projection similarly, the LOR value is obtained from
the nearest eight (four) voxels in 3D (2D).

3) Bilinear interpolation: In bilinear interpolation, the length
of increments on a given LOR is chosen so as to ensure that
the sampled points lie along the centers of the voxels in one
direction, in order to eliminate interpolation in that direction. In
our case, the dimension along which interpolation is eliminated
is the transaxial (X or Y) direction along which the given
LOR increases faster; e.g. Y direction for the LOR shown
in Fig. (1c). This method is potentially less accurate (which
we have not observed to be the case, as shown later) than
the trilinear counter-part since it makes the lengths of the
increments LOR-dependent. However, the technique is faster
since: (i) interpolation along one direction is eliminated; i.e. for
each point on the LOR, an interpolation is performed over only
four (two) nearest voxels in 3D (2D), and (ii) for oblique LORs,
less number of samples per LOR are considered.

IV. METHODS

Tomograph: Data were acquired on the second generation of
the high resolution research tomographs (HRRT). This HRRT
scanner has an octagonal design, with the detector heads
consisting of a double 10 mm layer of LSO/LYSO for a total
of 119,808 detector crystals (crystal size 2.1 x 2.1 x 10 mm3).
The total number of possible LORs is 4.486x109.

Phantoms used and measurements performed: Using a tech-
nique [18] which allows printing of radioactive patterns using
a modified standard ink-jet printer, we imaged radioactive
(18F) point sources of size 0.7 mm placed at X=0,1,2,3,4,5
and 6 cm radially away from the center of the FOV. The
sample also included a 1x7 cm rectangular area of uniform
activity created for the purpose of monitoring noise behavior.
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(a)
Fig. 2. (a) A sample reconstruction of the radioactive paper source (3 iterations
of the S-LMEM algorithm). The lower row of points sources as well as the
rectangular box were utilized for analysis of resolution and noise properties. (b)
Plots of FWHM using various projection techniques: the bilinear and trilinear
methods work noticeably better than the Siddon method.

For better visualization, a sample reconstructed image of the
radioactive paper source is shown in Fig. (2a). The middle row
of point sources (which were printed over a background were
not utilized for analysis in this work.

The overall FWHM for any given point was measured by
calculation of the root mean squared value of the measured
point widths in the transaxial (X,Y) and axial (Z) directions.
The percentage noise (standard deviation/mean) for a given
reconstructed image was calculated in two ways:
1) Voxel noise: in which percentage variation of the individual
voxels along the entire rectangle was measured.
2) ROI noise: in which the activity rectangle was sub-divided
into eight small rectangular ROIs, and the percentage variation
of the sum of counts in the ROIs was measured.

In all the reconstructions, 16 subsets were used for the
accelerated algorithms. The hybrid S/CS-LMEM algorithm
consisted of having the first 8 subsets being iterated using
the S-LMEM approach and subsequently switching to the CS-
LMEM counterpart. The following experiments and analyses
were performed:

i) Comparison of Projection Techniques: Three LOR-driven
projection methods were implemented in list-mode EM recon-
struction: (a) the Siddon method as well as (b) trilinear and (c)
bilinear interpolation techniques. Histogram-mode EM recon-
struction was also applied to the data for comparison purposes
(d) wherein output driven bilinear interpolation (i.e. voxel-
driven back-projection and LOR-driven forward-projection)
was employed, as recommended by previous investigators (see
discussion in Sec. III). Three iterations of the S-LMEM al-
gorithm (cases (a),(b), and (c)) and the OSEM algorithm (case
(d)) were performed. Subsequently, the resolution (FWHM) and
noise properties of the reconstructed images were compared.

ii) Convergent List-mode Reconstruction: We next studied
convergent list-mode reconstruction algorithms. We performed
the following comparisons (for cases when (i) Siddon and (ii)
bilinear interpolation techniques were used):
(a) plots of measured FWHM vs. iteration (for two selected
point sources 1 and 5 cm away from the center of the FOV)
were calculated and shown for three iterations of the 3D-
OSEM, S-LMEM, CS-LMEM and and hybrid S/CS-LMEM
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(a) Voxel noise
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(b) ROI noise
Fig. 3. Plots of noise vs. iteration for various projection techniques.

reconstruction schemes.
(b) Plots of measured FWHM vs. radial position were also de-
picted for these four schemes to compare the final reconstructed
FWHM values across the FOV.
(c) Plots of noise vs. iteration were also calculated for the 3D-
OSEM, S-LMEM, CS-LMEM and and hybrid S/CS-LMEM
reconstruction schemes.

V. RESULTS AND DISCUSSION

i) Comparison of Projection Techniques:
Fig. (2b) shows measured resolution values for the various

points across the FOV, upon application of three iterations of
the S-LMEM algorithm to the data. For comparison, results
of application of histogram-mode EM reconstruction are also
shown, wherein voxel-driven back-projection and LOR-driven
forward-projection (referred to as output-driven projection)
were used.

Note that one is also able to observe space-variance of
the point spread function. This effect occurs due to a higher
probability of inter-crystal penetration with higher angles of
radiation incident on crystal fronts. Depth-of-Interaction (DOI)
encoding has improved this problem, but has not reached com-
plete space-invariance. In [19], we have presented a practical
ad hoc approach to model the space-variance and anisotropicity
of the point-spread function into the system matrix of the EM
algorithm for the HRRT.

Similarly, noise vs. iteration plots are shown in Fig. (3)
for the aforementioned reconstruction algorithms, wherein (a)
voxel-noise and (b) ROI-noise were considered, as described
in the methods section. Three main observations can be made
with respect to these figures:
1) Clearly, the Siddon technique performs noticeably poorly
compared to the other reconstruction algorithms (especially in
terms of resolution).
2) Trilinear and bilinear interpolation techniques perform nearly
similarly.
3) Histogram-mode reconstruction with output-driven projec-
tions does not perform better than list-mode reconstruction with
LOR-driven projections.

The current implementation of the trilinear interpolation
technique is >3-4 times slower than the Siddon method, while
Bilinear interpolation is comparable to the latter (only around
20% slower). This has therefore given us sufficient motivation
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(a) Bilinear: X = 1 cm
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(b) Bilinear: X = 5 cm
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(c) Siddon: X = 1 cm
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(d) Siddon: X = 5 cm
Fig. 4. Plots of reconstructed FWHM vs. iteration are shown for the 3D-
OSEM, S-LMEM, and the CS-LMEM and hybrid algorithms for the point
source located at 1 cm and 5 cm from center of the FOV.

to perform our reconstructions using projection algorithms
which employ bilinear interpolation.

ii) Convergent List-mode Reconstruction: Figs. (4a,b) show
plots of reconstructed FWHM width vs. iteration for point
sources located at X=1 cm and 5 cm from center of FOV,
with the data reconstructed using the 3D-OSEM, S-LMEM,
CS-LMEM and and hybrid S/CS-LMEM algorithms. Bilinear
interpolation was used in the projection algorithms.

The values of FWHM resolution are seen to change in a
cyclical manner for the 3D-OSEM and S-LMEM algorithms. In
Fig. (4a), for instance, the FWHM width reconstructed using the
S-LMEM approach is seen to oscillate between a low of 3.17
and a high of 3.23mm. Nevertheless, one clearly observes that
in the CS-LMEM approach, due to its converging behavior, the
FWHM widths improve with further iterations in a systematic
and predictable manner.

One is also able to observe that the hybrid approach results
in a faster decrease in reconstructed FWHM width with less
iterations while maintaining the non-cyclical behavior. For
comparison purposes, similar plots are shown when using
the Siddon method, as seen in Figs. (4c,d). Clearly, bilinear
interpolation is seen to result in superior image qualities.

Fig. (5) shows plots of measured FWHM values after three
iterations for all the seven points located at X=0,1,2,3,4,5 and
6 cm from the center of FOV. We note from the plots that the
histogram-mode and list-mode algorithms are able to achieve
nearly similar FWHM values for a given point. Results when
applying the (a) bilinear and (b) Siddon methods are shown.
The bilinear interpolation method is seen to outperform the
Siddon technique for all the point sources. Furthermore, we
note that the convergent and hybrid techniques perform at least
as well as (if not better than) the regularly subsetized list-mode
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(a) Bilinear
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Fig. 5. Plots of reconstructed FWHM vs. radial position are shown for the 3D-
OSEM, S-LMEM, and the CS-LMEM and hybrid algorithms. Three iterations
were used.

and histogram-mode EM algorithms.
Noise vs. iteration plots are shown in Fig. (6) for the

aforementioned reconstruction algorithms (using the bilinear
technique), wherein (a) voxel-noise and (b) ROI-noise were
considered. The convergent CS-LMEM algorithm lowers noise
levels more slowly, compared to the other algorithms, and after
the first iteration still exhibits higher values. On the other hand,
the hybrid algorithm is seen to be suitable for reconstructions
where early termination is used (for time-cost considerations)
as it reaches noise levels comparable to (and possibly, voxel-
wise, better than) other non-convergent algorithms.

VI. CONCLUSION

Three LOR-driven projection techniques were considered: (a)
the Siddon method as well as (b) trilinear and (c) bilinear inter-
polation methods. We were able to demonstrate that the Siddon
approach performs poorly compared to the other two algorithms
(especially in terms of FWHM). Our method of choice was
therefore the bilinear approach as it was considerably faster than
the trilinear interpolation technique and produced comparable
image qualities.

Using regular subsetized list-mode reconstruction, we were
able to observe limit cycles: oscillatory alternations in image
quality parameters with further subsets and iterations into the
data. To address this issue, we implemented a convergent
list-mode EM reconstruction algorithm, based on previous
work [1]–[3], and investigated its properties using experimental
PET data. It was demonstrated that the algorithm is robust and
does not result in limit cycles.

A hybrid algorithm was also proposed, and was shown to
combine the advantages of the the ordinary and the convergent
list-mode algorithms (i.e. it was able to reach a higher image
quality in less number of iterations while maintaining a con-
vergent behavior), making it a good alternative to the ordinary
subsetized list-mode EM algorithm.

REFERENCES

[1] I. T. Hsiao, A. Rangarajan, and G. Gindi, “A provably convergent OS-EM
like reconstruction algorithm for emission tomography”, Conf. Rec. SPIE
Med. Imaging, vol. 4684, pp. 10-19, 2002.

[2] I. T. Hsiao, A. Rangarajan, and G. Gindi, “A new convergent MAP
reconstruction algorithm for emission tomography using ordered subsets
and separable surrogates”, Conf. Rec. IEEE Int. Symp. Biomed. Imaging,
pp. 409-412, 2002.

0 0.5 1 1.5 2 2.5 3
3

4

5

6

7

8

P
er

ce
nt

ag
e 

N
oi

se

Iteration

3D−OSEM
S−LMEM
CS−LMEM
Hybrid

(a) Voxel noise

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

P
er

ce
nt

ag
e 

N
oi

se

Iteration

3D−OSEM
S−LMEM
CS−LMEM
Hybrid

(a) ROI noise
Fig. 6. Plots of noise vs. iteration are shown for the 3D-OSEM, S-LMEM,
and the CS-LMEM and hybrid algorithms. Three iterations were used.

[3] P. K. Khurd and G. R. Gindi, “A Globally Convergent Ordered-Subset
Algorithm for List-Mode Reconstruction”, IEEE NSS & MIC 2003 conf.
rec., Portland, OR, Oct 2003.

[4] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using
ordered subsets of projection data”, IEEE Trans. Med. Imag., vol. 13, no.
4, pp. 601-609, 1994.

[5] C. Byrne, “Accelerating the EMML Algorithm and Related Iterative
Algorithms by Rescaled Block-Iterative Methods”, IEEE Trans. Imag.
Process., vol. 7, pp. 100-109, 1998.

[6] C. Byrne, “Likelihood Maximization for List-Mode Emission Tomo-
graphic Image Reconstruction”, IEEE Trans. Med. Imag., vol. 20, pp.
1084-1092, 2001.
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