1,556 research outputs found

    The Multiobjective Average Network Flow Problem: Formulations, Algorithms, Heuristics, and Complexity

    Get PDF
    Integrating value focused thinking with the shortest path problem results in a unique formulation called the multiobjective average shortest path problem. We prove this is NP-complete for general graphs. For directed acyclic graphs, an efficient algorithm and even faster heuristic are proposed. While the worst case error of the heuristic is proven unbounded, its average performance on random graphs is within 3% of the optimal solution. Additionally, a special case of the more general biobjective average shortest path problem is given, allowing tradeoffs between decreases in arc set cardinality and increases in multiobjective value; the algorithm to solve the average shortest path problem provides all the information needed to solve this more difficult biobjective problem. These concepts are then extended to the minimum cost flow problem creating a new formulation we name the multiobjective average minimum cost flow. This problem is proven NP-complete as well. For directed acyclic graphs, two efficient heuristics are developed, and although we prove the error of any successive average shortest path heuristic is in theory unbounded, they both perform very well on random graphs. Furthermore, we define a general biobjective average minimum cost flow problem. The information from the heuristics can be used to estimate the efficient frontier in a special case of this problem trading off total flow and multiobjective value. Finally, several variants of these two problems are discussed. Proofs are conjectured showing the conditions under which the problems are solvable in polynomial time and when they remain NP-complete

    A semidefinite programming approach for solving multiobjective linear programming

    Get PDF
    Several algorithms are available in the literature for finding the entire set of Pareto-optimal solutions in MultiObjective Linear Programming (MOLP). However, it has not been proposed so far an interior point algorithm that finds all Pareto-optimal solutions of MOLP. We present an explicit construction, based on a transformation of any MOLP into a finite sequence of SemiDefinite Programs (SDP), the solutions of which give the entire set of Pareto-optimal extreme points solutions of MOLP. These SDP problems are solved by interior point methods; thus our approach provides a pseudopolynomial interior point methodology to find the set of Pareto-optimal solutions of MOLP.Junta de AndalucíaFondo Europeo de Desarrollo RegionalMinisterio de Ciencia e Innovació

    An application of integer programming to the decomposition of numerical semigroups

    Get PDF
    This paper addresses the problem of decomposing a numerical semigroup into mirreducible numerical semigroups. The problem originally stated in algebraic terms is translated, introducing the so-called Kunz-coordinates, to resolve a series of several discrete optimization problems. First, we prove that finding a minimal m-irreducible decomposition is equivalent to solve a multiobjective linear integer problem. Then, we restate that problem as the problem of finding all the optimal solutions of a finite number of single objective integer linear problems plus a set covering problem. Finally, we prove that there is a suitable transformation that reduces the original problem to find an optimal solution of a compact integer linear problem. This result ensures a polynomial time algorithm for each given multiplicity m. We have implemented the different algorithms and have performed some computational experiments to show the efficiency of our methodology.Ministerio de Educación y CienciaJunta de AndalucíaFondo Europeo de Desarrollo Regiona
    corecore