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Abstract. Several algorithms are available in the literature for finding the

entire set of Pareto-optimal solutions in MultiObjective Linear Programming
(MOLP). However, it has not been proposed so far an interior point algo-

rithm that finds all Pareto-optimal solutions of MOLP. We present an explicit

construction, based on a transformation of any MOLP into a finite sequence
of SemiDefinite Programs (SDP), the solutions of which give the entire set

of Pareto-optimal extreme points solutions of MOLP. These SDP problems

are solved by interior point methods; thus our approach provides a pseudo-
polynomial interior point methodology to find the set of Pareto-optimal solu-

tions of MOLP.

1. Introduction

Although already more than 60 years old, Linear Programming is still nowa-
days one of the most important areas of research and application in Mathematical
Programming/Operations Research. There are many different algorithms for its
resolution but essentially all of them can be classified in four main branches: pri-
mal simplex, dual simplex, primal-dual simplex and interior point methods.

Although not as the same level as standard linear programming, it is also com-
monly accepted that Multiobjective Linear programming (MOLP) is another very
important area of activity within the optimization field. Multiobjective optimiza-
tion is motivated by the need to consider multiple, conflicting, objectives in real
world decision making problems. Multiple objective linear programming has been
a subject of research since the 1960s for its relevance in practice, as a mathematical
topic in its own right. Its development has come in parallel to the scalar counterpart
and its theory and algorithms have been developed mainly in the last two decades
with some remarkable exceptions. Solving a MOLP means to obtain the entire set
of Pareto-optimal solutions. By analogy with the scalar case, one can find in the
specialized literature several algorithms to find the entire Pareto-optimal set. In
the multiobjective case there are primal simplex-like type algorithms (Steuer [26],
Yu and Zeleny [29] and the references therein), primal-dual simplex-like algorithms
(Ehrgott, Puerto and Rodriguez-Chia [9]) and dual simplex-like algorithms (Benson
[2], Ehrgott, Lohne and Shao [8]). Moreover, there are some partial approaches that
use interior point methods to approximate or to find some Pareto-optimal points
(see e.g. Fliege [11, 12]) but no interior point algorithm that finds all Pareto-optimal
solutions has been proposed so far. Quoting [8]: “Interior point algorithms either
require interaction with a decision maker to find a preferred efficient solution or
find at most an efficient face. No interior point algorithm that finds all efficient
solutions has been proposed”.

Due to the natural parallelism between these two areas, namely scalar and mul-
tiobjective linear programming, different authors wondered whether there would
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exist a fully based interior point approach to generate the complete Pareto-optimal
set of a MOLP. This paper gives an affirmative answer to this question.

The goal of this paper is to develop an interior point method that generates the
entire Pareto-optimal set of MOLP. The interest of this research is two-fold: 1)
It strengthens the parallelism between these two areas of Mathematical Program-
ming, namely Linear Programming and Multiobjective Linear Programming; 2) It
is theoretically appealing because shows how to adapt some tools available nowa-
days in the field of polynomial optimization ([16, 17]) to be applied in a completely
different field as is Multiobjective Linear Programming.

From the results in this paper, we show that it is theoretically possible to find the
entire set of Pareto-optimal solutions using interior point algorithms. Indeed, we
will explicitly describe an algorithm to perform that task. Our approach consists of
constructing a finite sequence (its cardinality m is the number of constraints in the
MOLP) Semidefinite programs based on the original MOLP, the solution of which
can be used to generate the entire Pareto-optimal set using the moment matrix
algorithm by Lasserre [16]. Nevertheless, this program size is not polynomial in
the input size of our original MOLP. There is no surprise in this fact because it
is well-known that finding the entire Pareto-optimal set is NP-hard since it may
be equivalent to enumerate the vertices of its feasible region Khachygan et al [5].
Thus if our construction were polynomial in the input size, interior point algorithms
would prove polynomiality of the problem. Needless to say that even though our
construction is explicit, we do not claim that this approach is computationally
competitive with other approaches available nowadays, as for instance the variant
of the outer algorithm of Benson developed recently in [8]. Nevertheless, it is of
theoretical interest because proposes the first interior point based algorithm for
obtaining the entire Pareto-optimal set, it suggests a completely different scheme
to address this problem and proposes another pseudo-polynomial algorithm to deal
with that computation. It is worth mentioning a different framework where a
similar approach is applicable: multiobjective polynomial integer programming.
We point out that the use of algebraic tools for solving multiobjective is not new.
The interested reader is referred to [3, 4] for further details.

The rest of the paper is organized as follows. Section 2 describes the general mul-
tiobjective optimization problem, together with the considered concept of solution
and it recalls the main results that are needed for the rest of the paper. Section 3
presents the theoretical results that lead to obtain the entire set of Pareto-optimal
solutions of MOLP using interior point algorithms. Here, we explicitly describe a
system of polynomial equations that encodes the entire set of Pareto-optimal ex-
treme points which is the basis of our next results. Section 4 reduces the problem
of finding the entire set of Pareto-optimal extreme points to solving m explicit SDP
problems. They are feasibility problems since their objective functions are constant.
In addition, we also show how to extract all its, finitely many, feasible solutions by
applying the moment matrix algorithm [16]. This construction is illustrated with
an example taken from the literature [8]. In the final section of the paper we draw
some conclusions.

2. Multiobjective linear programming

In this section we recall the main theoretical results for the development in this
paper. We begin by describing the general framework to cast the problem to be
handled. A multiobjective optimization problem (MOP) consists of:

v −min (f1(x), . . . , fk(x))(MOP)

s.t. x ∈ S
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where fi : Rn → R for i = 1, . . . , k are the objective functions and S ⊆ Rn is
the feasible region. The symbol v − min means that we want to minimize all the
objective functions simultaneously. If there is no conflict between the objective
functions, then, a solution can be found where every objective function attains its
optimum. In such a case, no special methods are needed. Otherwise, first we need
to state what we understand by a solution of the above problem. It is commonly
agreed that the solution concept is related with the notion of Pareto-optimal points.
The definition of Pareto-optimal solution is due to Edgeworth [7]. However, that
name was first used by Koopmans in [15] after the developments by Pareto in
[21, 22].

Definition 1. A decision vector x∗ ∈ S is a Pareto-optimal solution for (MOP)
if it does not exist another decision vector x ∈ S such that fi(x) ≤ fi(x

∗) for all
i = 1, . . . , k and fj(x) < fj(x

∗) for at least one index j.
The set of Pareto-optimal solutions is called the Pareto-optimal set. (PO set,

for short.)
If x∗ is a Pareto-optimal solution f(x∗) is said an efficient solution of (MOP).

It is commonly agreed that solving a (MOP) consists of finding the entire set of
Pareto-optimal solutions. There are some other solution concepts for multiobjective
optimization problems as local, weak, proper or strong Pareto optimality (see [20]).
In this paper we will restrict ourselves to the standard definition of Pareto-optimal
solutions, although similar approaches, to the one adopted in this paper, would be
also valid for the rest of the solution concepts in multiobjective optimization.

One of the main methods for describing the Pareto-optimal set of a multiobjective
optimization problem is by scalarization, that is, transforming the multiobjective
problem into a single or a family of single-objective problems with a real-valued ob-
jective function, depending on some parameters. This enables the use of the theory
and methods of scalar optimization to be applicable to get the solutions of MOP.
The importance of these methods rests on the fact that Pareto-optimal solutions
of MOP can be characterized, in most cases, as solutions of certain single objective
optimization problems. There are several of these scalarization methods for solving
MOP (see [20]). Among them, we consider the weighting method. The idea of this
method is to associate each objective function with a weighting coefficient so as to
minimize the weighted sum of the objective functions. The weighting method can
be used so that the decision maker specifies a weighting vector representing his pref-
erence information. However, this method can also be used to generate iteratively
several solutions of (MOP) by modifying adequately the weighting coefficients. The
success of this approach is based on the following result by Gass and Saaty [13] or
Zadeh [30].

Lemma 2. Let fi be convex for all i = 1, . . . , k and S be a convex set. Then,
if x∗ ∈ S is a Pareto-optimal solution of (MOP), there exists a weighting vector

λ ∈ Rk+\{0},
∑k
i=1 λi = 1 such that x∗ is a solution of the following scalar problem:

min

k∑
i=1

λifi(x)(SP)

s.t. x ∈ S

Note that from the above result, in particular if fi is linear for all i = 1, . . . , k
and S is a convex polyhedron, all the Pareto optimal solutions of (MOP) can be
found by the weighting method.

In this paper we are interested in solving a special class of multiobjective op-
timization problems where all the objective functions are linear and the feasible



4 VÍCTOR BLANCO, JUSTO PUERTO, AND SAFAE BEN-ALI

region is described by a set of linear inequalities, that is:

v −min Cx := (c1x, . . . , ckx)(MOLP)

s.t. Ax ≥ b
x ≥ 0

with ci the i-the row of C ∈ Rk×n, i = 1, . . . , k, A ∈ Rm×n and b ∈ Rm. We assume
w.l.o.g. that the system Ax ≥ b, x ≥ 0, has not redundant inequalities and that
0 6∈ cone(c1, . . . , ck) since otherwise all the feasible region is Pareto-optimal and
the problem is trivial. Under our assumption, the Pareto-optimal set is included in
the boundary of the feasible region and it is well-known that it is edge connected
but not necessarily convex, see e.g. [26]. With this settings we say that a Pareto-
optimal solution for (MOLP) is an extreme point if it is a vertex of the polyhedron
defining the feasible region of (MOLP).

In addition and in order to simplify our presentation, we will assume w.l.o.g. that
the feasible region is a polytope and that we are given redundant upper bounds on
the values of the x variables, namely we are given ubPj such that xj ≤ ubPj , i =
1, . . . , n. Note that by the fact that the feasible region is a polytope these bounds
can always be obtained for sufficiently large ubP values and they are redundant.

Lemma 2 ensures that to solve (MOLP) it suffices to apply the above weighting
method. In doing that, this problem is transformed to a family of parametric linear
programming problems. For this reason, we recall here some results about linear
programming that will be useful in the next sections.

Consider the following pair of dual linear programming problems:

min ctx

s.t. Ax ≥ b(LP)

x ≥ 0

max btu

s.t. Atu ≤ c(DLP)

u ≥ 0

with A ∈ Rm×n, b ∈ Rm and c ∈ Rn.
By our assumption on the feasible region of the primal problem (LP), we observe

that the dual problem can be also assumed to be bounded and that we can assume
that we are also given redundant upper bounds on the feasible values of (DLP).
Namely, we know ubDi such that ui ≤ ubDi for all i = 1, . . . ,m.

The following classical result, whose proof can be found in [28], gives the rela-
tionship between the optimal solutions of the above problems:

Lemma 3 (Strong Duality Theorem). Let x∗ be a feasible solution of (LP) and
let u∗ be a feasible solution of (DLP) such that cx∗ = btu∗, then x∗ is an optimal
solution for (LP) and u∗ is an optimal solution for (DLP).

An important consequence of the Strong Duality Theorem is the following result,
usually called Complementary Slackness Theorem. It is useful in order to detect
whether a feasible solution of (LP) and a feasible solution of (DLP) are optimal
of their respective problems. Its proof, that can be found in [24], is easily deduced
from Lemma 3.

Lemma 4 (Complementary Slackness Property). Let x∗ be a feasible solution of
(LP) and let u∗ be a feasible solution of (DLP). Then, the following statements
are equivalent:

(1) x∗ is an optimal solution of (LP) and u∗ is an optimal solution of (DLP).
(2) x∗ and u∗ satisfy u∗t(b−Ax) = 0 and (utA− ct)x∗ = 0.

In the next section we will show how the entire set of Pareto-optimal solutions of a
multiobjective linear problem (MOLP) can be obtained by solving m-SDP problems
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being m the number of non-redundant inequalities of the original problem. This
shows that interior point methodologies can be also used to determine the Pareto-
optimal set of (MOLP).

3. A polynomal system of inequalities encoding the Pareto-optimal
set of MOLP

Note that by Lemma 2, solving (MOLP) is equivalent to solve the following
parametric family of single objective problems:

min

k∑
`=1

λ`c
`x(LPλ)

s.t. Ax ≥ b
x ≥ 0

for all λ ∈ Λ := {λ ∈ Rk+ :
∑k
` λ` = 1}.

For each λ ∈ Λ, the dual of (LPλ) is:

max

m∑
j=1

ujbj(DLPλ)

s.t. utA ≤
k∑
i=1

λic
i

u ≥ 0

Hence, by Lemma 4, a solution of (MOLP) must be a solution of the following
system of polynomial equations/inequalities:

ut(b−Ax) = 0

(

k∑
i=1

λic
i − utA)x = 0

Ax ≥ b(Sys1)

utA ≤
k∑
i=1

λic
i

u, x ≥ 0, λ ∈ Λ

Solutions of this system are triplets (x, u, λ) such that x is a Pareto-optimal solution
of (MOLP), and optimal solution of (PLλ); and u is optimal solution of (DLPλ).
We will call such a triplet a ‘valid triplet’. However, we observe that the above
system may have an infinite number of solutions because there may be a continuum
number of solutions in x and u since the Pareto-optimal set is a connected union
of faces of the polyhedron Ax ≥ b, x ≥ 0. Nevertheless by the edge-connectedness
of the Pareto-optinal set, it suffices to know the Pareto-optimal points that are
extreme points in the feasible region to reconstruct the entire set (see for instance
[1, 6]). Therefore, our goal is to reduce the solutions of the above system to a finite
number of the original ones (extreme points) that are enough to reconstruct the
entire set of Pareto-optimal solutions. Hence, we shall transform System (Sys1) so
as to characterize only extreme points of the original feasible region.

It is worth mentioning that a similar approach could be applied to general mul-
tiojective convex optimization. Indeed, in that case we have to replace the use
of System (Sys1) by using Kuhn-Tucker optimality conditions on the paramet-
ric family of weighted problems. The only inconvenient is that in that case the
system may have a continuum of solutions and in general, one cannot build the



6 VÍCTOR BLANCO, JUSTO PUERTO, AND SAFAE BEN-ALI

entire Pareto-optimal set with a finite set of representatives, as we do in the linear
case. This implies that finiteness results cannot be obtained. Another different
framework where a similar approach is applicable is in multiobjective polynomial
combinatorial optimization. The interested reader is referred to [3, 4] for further
details.

As it is usual, let B denote a basis of A, i.e. a full rank submatrix of A. In
addition and when there is no possible confusion, we will also use B as the set of
the indices of its columns. Analogously, N denotes the set of columns of A not
in B and c`B are the coefficients of the `-th objective function that corresponds
to variables in the basis B. Finally, with xB and xN , we refer to the variables
corresponding to the columns in B and N , respectively.

Let us denote by (U-Sys-B-i) for B a full rank submatrix of A and i = 1, . . . ,m,
the system:

k∑
`=1

λ`c
` − ut−iA−i ≥ Ai·(U-Sys-B-i)

k∑
`=1

λ`c
`
BB
−1A.j −

k∑
`=1

λ`c
`
j ≤ 0,∀j ∈ N

k∑
`=1

λ` = 1

where u−i, A−i stand, respectively, for the vector of variables u without ui and the
matrix A where we have removed the i-th row. In the same way, Ai· is the i-th
row, A·j is the j-th column and Aij is the (i, j) element of A, respectively.

Finally, let M be the least common multiple of all the determinants of full rank
submatrices of A and Mi be the least common multiple of all the determinants of
full rank submatrices of (U-Sys-B-i), for all i = 1, . . . ,m and B.

Theorem 5. If x is a Pareto-optimal solution, extreme point of the feasible region
of (MOLP) then Mx is the projection onto the first n-components of a solution of
at least one of the systems (Sys− i), for some i = 1, . . . ,m:

h0
0(λ) :=

k∑
`=1

λ` −Mi = 0(1)

h0
1(x, u) := ut(Mb−Ax) = 0

hi2(x, u) := (

k∑
`=1

λ`c
` − ut−iA−i −MiAi·)x = 0

g0
s(x) := As·x−Mbs ≥ 0, s = 1, . . . ,m,(2)

gij(u, λ) :=

k∑
`=1

λ`c
`
j − ut−i(A−i)·j −MiAij ≥ 0, j = 1, . . . , n,(3)

pj(x) :=

ubPj M∏
`=0

(xj − `) = 0, j = 1, . . . , n,

qis(u) :=

ubDs Mi∏
`=0

(us − `) = 0, s = 1, . . . ,m, s 6= i,

tir(λ) :=

Mi∏
`=0

(λr − `) = 0, r = 1, . . . , k.



(Sys− i)



A SEMIDEFINITE PROGRAMMING APPROACH FOR SOLVINGMULTIOBJECTIVE LINEAR PROGRAMMING7

Conversely, any of the finitely many solutions of the systems (Sys− i) for all
i = 1, . . . ,m induces a Pareto-optimal solution of (MOLP) and all the Pareto-
optimal extreme points are included among them.

Proof. Let x be a Pareto-optimal extreme point solution of (MOLP). Being an
extreme point of the feasible region Ax ≥ b, x ≥ 0 means that there exists a

basis B which defines x such that x =

(
xB
0

)
and xB = B−1b ≥ 0. Next,

clearly Mx =

(
MxB

0

)
, has integer coordinates in the range [0, ubPM ]. Besides,

by Lemma 2, x must be optimal for the problem (PLλ(x)) for some λ(x) (Note
that this weighting coefficient may depend on x). The optimality condition of x
translates into the following necessary and sufficient condition for any valid λ(x):

k∑
`=1

λ`c
`
BB
−1A·j −

k∑
`=1

λ`c
`
j ≤ 0; ∀ j ∈ N,(4)

k∑
`=1

λ` = 1,(5)

where as usual N denotes the set of columns of A not in B and c`B are the coefficients
of the `-th objective function that correspond to variables in the basis B.

Moreover, by Lemma 4, each pair (x, λ(x)), where λ(x) is defined by (4)-(5), has
associated an optimal extreme solution of (DLPλ(x)) such that (x, u(x), λ(x)) is a
valid triplet, i.e. it satisfies System (Sys1). By the fact that u(x) is an extreme
solution of (DLPλ(x)) it must satisfy:

(6) utA−
k∑
`=1

λ`c
` ≤ 0

Assume w.l.o.g. that for some valid triplets (x, u(x), λ(x)) the i-th component of
u(x) is positive, i.e. u(x)i > 0, then there is always one of these valid triplets for
x so that (u(x), λ(x)) is an extreme solution of the system of linear inequalities
defined by (4), (5) and (6). This system written in matrix form is:

Li

[
u−i
λ

]
:=

 Θ CBB
−1N − CN

At−i C
0 1

[ u−i
λ

] ≤
≤
=

 0
Ati·
1

 .
Next, any extreme solution of this system must be associated with a basis of the
matrix Li. Therefore if Mi is the least common multiple of the determinants of all
full rank submatrices of Li, then (Mi(u−i, 1),Miλ) has integer coordinates in the
range [0, ubDMi] for u and [0,Mi] for λ.

Finally, it is clear by our construction that (Mx,Miu(x),Miλ(x)) is a solution
of Sys− i.

Conversely, by Lemma 4, any solution (x, u(x), λ(x)) of Sys− i for some i =
1, . . . ,m defines a Pareto-optimal triplet (x/M, u(x)/Mi, λ(x)/Mi) of (MOLP). In
addition, we have proved above that all Pareto-optimal extreme point solutions of
(MOLP) are among the solutions of the systems (Sys− i) for i = 1, . . . ,m which
concludes the proof. �

The above transformation makes use of big upper bounds to ensure that extreme
points of all systems of rational inequalities that come from feasibility and optimal-
ity of valid triplets are integer. In most cases, those bounds can be strengthened
taking advantage of the particular structure of the problems given rise to sharper
bounds. In particular if the primal, the dual or both are integer polytopes one can
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take M = 1, Mi = 1, for all i = 1, . . . ,m or both M = Mi = 1 for all i = 1, . . . ,m;
respectively. Eventually, we will need only to transform the range of the lambda
variables to make them integer.

To finish this section, we briefly remark the meaning of Theorem 6. We have
proved that the entire set of Pareto-optimal extreme points is encoded in the set of
solutions of m system of polynomial inequalities, projecting the first n components
of their solutions. (Observe that this set may include some extra Pareto-optimal
solutions not being extreme points.) The finiteness of the solution sets of these
systems is crucial to develop an exact method to get the entire Pareto-optimal set,
as we will show in the next section.

4. Semidefinite programming versus Multiobjetive Linear
programming

In this section we describe how to obtain the Pareto-optimal set of any MOLP
by applying tools borrowed from the theory of moments and SDP. We use standard
notation in the field (see e.g. [16]).

We denote by R[x, u, λ] the ring of real polynomials in the variables x = (x1, . . . , xn), u =
(u1, . . . , um), λ = (λ1, . . . , λk); and by R[x, u, λ]d ⊂ R[x, u, λ] the space of poly-
nomials of degree at most d ∈ N (here N denotes the set of nonnegative inte-
gers). We also denote by B = {xαuβλγ : (α, β, γ) ∈ Nn×m×k} a canonical basis of

monomials for R[x, u, λ], where xαuβλγ = xα1
1 · · ·xαn

n uβ1

1 · · ·uβm
m λγ11 · · ·λ

γk
k , for any

(α, β, γ) ∈ Nn×m×k.
For any sequence indexed in the canonical monomial basis B, y = (yαβγ) ⊂ R, let

Ly : R[x, u, λ]→ R be the linear functional defined, for any f =
∑
αβγ∈Nn×m×k fαβγ x

αuβλγ ∈
R[x, u, λ], as Ly(f) :=

∑
αβγ∈Nn×m×k fαβγ yαβγ .

The moment matrix Md(y) of order d associated with y, has its rows and columns

indexed by (xαuβλγ) and Md(y)(αβγ, α′β′γ′) := Ly(x(α+α′)u(β+β′)λ(γ+γ′)) =
y(α+α′)(β+β′)(γ+γ′), for |αβγ|, |α′β′γ′| ≤ d.

For g :=
∑
δ∈Nn×m×k gδ(xuλ)δ ∈ R[x, u, λ], the localizing matrix Md(g,y) of or-

der d associated with y and g, has its rows and columns indexed by ((xuλ)δ) and

Md(g,y)(αβγ, α′β′γ′) := Ly(x(α+α′)u(β+β′)λ(γ+γ′)g(xuλ)) =
∑

δ∈Nn×m×k

gδyδ+(α+α′)(β+β′)(γ+γ′),

for |αβγ|, |α′β′γ′| ≤ d.
Depending on their parity, let 2ζj or 2ζj−1 be the degree of pj , j = 1, . . . , n; 2ηis

or 2ηis − 1 be the degree of qis, s = 1, . . . ,m, i = 1, . . . ,m, s 6= i and 2νir or 2ν1
r − 1

be the degree of tir, r = 1, . . . , k, i = 1, . . . ,m. Recall that these functions were
defined associated with some of the constraints that appear in (Sys− i). Finally,
for any symmetric matrix P by P � 0 we refer to P being positive semidefinite.

With this notation, we are in position to present our next result:

Theorem 6. The entire set of Pareto-optimal extreme point solutions of (MOLP)
can be obtained by solving m semidefinite programs (SDP i −N∗) i = 1, . . . ,m, for
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some N∗ ∈ N.

min y0 := 1(SDP i −N∗)
s.t. MN∗(x, u, λ) � 0,

MN∗−1(h0
0(λ)) = 0,

MN∗−1(h0
1(x, u)) = 0,

MN∗−1(hi2(x, u, λ)) = 0,

MN∗−1(g0
s(x)) � 0, s = 1, . . . ,m,

MN∗−1(gij(u, λ)) � 0, j = 1, . . . , n,

MN∗−ζj (pj(x)) = 0, j = 1, . . . , n,(7)

MN∗−ηis(qis(u)) = 0, s = 1, . . . , n, s 6= i(8)

MN∗−νi
r
(tir(u)) = 0, r = 1, . . . , k.(9)

Proof. Theorem 5 proves that the entire set of Pareto-optimal extreme point so-
lutions of (MOLP) can be obtained as the projection of the solutions of systems
(Sys− i), i = 1, . . . ,m. Each of these systems is defined by a closed, compact semi-
algebraic set with finitely many feasible solutions that by compacity, clearly satisfy
Putinar’s condition (see [16]). Hence, we can apply [16, Theorem 6.1] to conclude
that there exists N∗ < +∞ so that all the solutions of System (Sys− i) can be ob-
tained by solving the feasibility SDP problem (SDP i −N∗) for all i = 1, . . . ,m. �

We note in passing that the finiteness of N∗ is explicit and it can be bounded
above by some known constants which depend on the input data. The interested
reader is referred to [23] and [25].

As a direct consequence of the equivalence between MOLP and solving a finite
series of m-SDP (Theorem 6); and the fact that SDP can be solved by interior
points algorithms we conclude the following corollary.

Corollary 7. All Pareto-optimal extreme solutions of (MOLP) can be obtained
using interior point algorithms.

It is well-known that solving SDP problems is polynomially doable. Therefore,
one may conclude from the above reformulation that obtaining the entire Pareto-
optimal set of (MOLP) is polynomial. However, we cannot conclude this result
from Theorem 6. The reason being that the dimension of the m-SDP problems that
need to be solved are not polynomial in the size of the original problem because N∗

is finite but its size may be exponential in n,m, k. Therefore, the above approach
only gives a pseudo-polynomial approach to obtain the Pareto-optimal set of MOLP
programs.

Finally, we want to describe, based on the above results, an explicit methodology
to enumerate the real solutions of the above closed semi-algebraic sets (Sys− i),
i = 1, . . . ,m. (Note that this is equivalent to enumerate all the optimal solutions of
a polynomial optimization problem where the objective is a constant; see Theorem
6.)

In order to do that, first we transform w.l.o.g. (Sys− i) into an algebraic set,
in the standard manner, by simply adding non-positive slack variables w ∈ Rm− ,
z ∈ Rn− to the constraints (2) and (3), respectively. Thus, from now on we assume

that all the constraints in the SDP relaxations (SDP i −N∗) are in equation form.
For any i = 1, . . . ,m, consider J i = 〈h0

0, h
0
1, h

i
2, g

0
1 , . . . , g

0
m, g

i
1, . . . , g

i
n, p1, . . . , pn, q

i
1, . . . , q

i
m, t

i
1, . . . , t

i
k〉

the zero-dimensional ideal in R[x, u, λ], generated by the polynomials defining the
System (Sys− i). Note that the ideal J i to be zero dimensional is equivalent to
suppose that there is a finite number of solutions of the set of polynomial equations
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defining the system. This set of solutions is denoted by V (J i) and it is usually
called the variety of J i. The goal is then to compute the points in V (J i).

In order to do this we resort to the moment approach (see Lasserre et al. [18],
Lasserre [16]). It is clear that among all the finite probability measures defined on
the support of our feasible set V (J i), those assigning positive probability to all the
solutions of V (J i) give maximal range to the moment matrix MN∗(x, u, λ), and for
sufficiently large N∗ rank(MN∗(x, u, λ)) = |V (J i)|. Moreover, since V (J i) is finite,
by Theorem 6, there is an index N∗ such that all the SDP relaxations SDP i −N∗,
i = 1, . . . ,m, are exact and their solutions are moment sequences of probability
measures with support on V (J i). Hence, the idea is to translate that condition, i.e.
that we look for measures which give positive probability to all points in V (J i),
on the moment variables of our SDP relaxations (SDP i −N∗), i = 1, . . . ,m. In
this way we will get the points in V (J i) as solutions of the relaxations. This
underlying approach was theoretically justified by Lasserre et al. [18] and Lasserre
[16, Theorem 6.6] and can be effectively implemented by using the moment matrix
algorithm as described in [16, Algorithm 6.1]. The reader is referred to [18, 19] for
further details.

Let us consider the quotient space R[x, u, λ]/J i whose elements are the cosets
[f ] = {f + q : q ∈ J} for any f ∈ R[x, u, λ]. Since J i is zero-dimensional,
R[x, u, λ]/J i is a finite dimensional R-vector space with the usual addition and
scalar product. Furthermore, R[x, u, λ]/J i is an algebra with multiplication [f ][g] =
[fg]. If BJi is a basis of R[x, u, λ]/J i, then the multiplication matrix Mh associated
with the multiplication operator mh : R[x, u, λ]/J i → R[x, u, λ]/J i, mh([f ]) = [fh]
for h ∈ R[x, u, λ], plays and important role for obtaining the points in V (J i).

Let d = max{maxj=1...n ζj ,max s = 1...m,
i = 1...n

ηis} the maximum half degree of the

polynomials defining System (Sys− i), i = 1, . . . ,m. Finally, let us denote by
R(SDP i −N∗) the feasible region of Problem (SDP i −N∗), i = 1, . . . ,m.

The above discussion allows us to apply to the variety V (J i), theorems 6.2 and
6.5 in [16] and Proposition 4.6 in [18] which leads us to state our final result.

Theorem 8. For N∗ large enough, there exists d ≤ t ≤ N∗ such that:

rank Mt(x, u, λ) = rank Mt−d(x, u, λ) = |V (J i)|, ∀(x, u, λ) ∈ R(SDP i −N∗), ∀i = 1, . . . , n.

Moreover, one can obtain the coordinates of all (x, u, λ) ∈ V (J i), ∀i = 1, . . . , n, as
the eigenvalues of multiplication matrices.

The following example, that appears in [8], illustrates the methodology proposed
in this paper.

Example 9. Consider problem (MOLP) with the data:

C =

(
1 0
0 1

)
, A =


2 1
1 1
1 2
−1 0
0 −1

 , b =


4
3
4
−5
−5


Observe that the last two constraints refer to the upper bound constraints x1 ≤ 5
and x2 ≤ 5, so they are not considered as rows of the matrix A but as the sets of
upper bounds in the polynomial constraints pj(x) in Theorem 5.

We use Gloptipoly 3 [14] to formulate the semidefinite problems of Theorem 6
and SEDUMI 1.3 [27] as the SDP solver. Since in this problem m = 3, according
to Theorem 6, three semidefinite problems must be solved for each relaxation order
N∗. The original primal region has integer extreme points. Thus, M = 1 and
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we use their original bounds for the range of values in problems (SDP i −N∗).
Therefore, we must only adapt the range of λ. For i = 1, 2, 3 we get that for
M1 = M2 = M3 = 6 and N∗ = 4, the rank condition of Theorem 8 is satisfied, i.e.
rank M4(x, u, λ) = rank M1(x, µ, λ) = 2, and we extract the following solutions of
(SDP i −N∗) (2 for i = 1, 2 for i = 2 and 2 for i = 3):

i = 1 i = 2 i = 3
x u λ x u λ x u λ

Sol. #1 (1, 2) (2, 0, 0) (4, 2) (1, 2) (0, 3, 0) (3, 3) (2, 1) (0, 0, 3) (3, 3)
Sol. #2 (0, 4) (2, 0, 0) (4, 2) (2, 1) (0, 3, 0) (3, 3) (4, 0) (0, 0, 2) (2, 4)

Note that the number of moments involved in the SDP problems that had to be solved
was 1716 (923 after preprocessing/moments substitution). The moment matrix
MN∗(x, u, λ) has size 210 × 210, there are 6 localizing matrices with size 84 × 84
and 4208 linear inequalities.

Thus, projecting the set of extracted solutions onto the x-coordinates, we get the
set of Pareto-optimal extreme solutions of the problem, XE = {(4, 0), (1, 2), (2, 1), (0, 4)}.
These Pareto-optimal solutions and the complete Pareto-optimal set are shown in
Fig. 1 (black dots and black segments, respectively).

Figure 1. Pareto-optimal set of Example 9.

5. Conclusions

Due to the similarities between standard linear programming and multiobjective
linear programming several authors wondered whether it would exist an interior
point method valid to find the entire set of Pareto-optimal solutions of MOLP. This
paper answers positively this question presenting an interior point based methodol-
ogy to find that set. Our approach is constructive and we give an explicit sequence
of m SDP problems the solutions of which are the entire set of Pareto-optimal ex-
treme points of MOLP. Moreover, we show how all these points can be obtained by
applying the so called moment matrix algorithm (see [16, 19]). However, although
our construction is explicit, we do not claim that it is computationally competitive
with other currently available methods. The main drawback is the size of the SDP
problems to be considered which is not polynomial in the input size of MOLP. The
interest of our results is mainly theoretical because they show, as expected, the close
relationship between scalar and multiobjective linear programming with regards to
the solutions techniques. In addition, our results also show the powerfulness of



12 VÍCTOR BLANCO, JUSTO PUERTO, AND SAFAE BEN-ALI

some techniques developed in the field of polynomial optimization ([16, 17]) to be
applied in apparently different areas as multiobjetive optimization.
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Complexity 20, 529-543.
[26] R.E. Steuer (1985), Multiple Criteria Optimization: Theory, Computation and Application.

Wiley, New York (1985).

[27] J.F. Sturm (1999), Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, Optimization Methods and Software 11-12, 625–653.

[28] R.J. Vanderbei (2001), Linear Programming: Foundations and Extensions. Kluwer Academic

Publishers, 2nd edition.



A SEMIDEFINITE PROGRAMMING APPROACH FOR SOLVINGMULTIOBJECTIVE LINEAR PROGRAMMING13

[29] P.L. Yu and M. Zeleny (1975). The set of all nondominated solutions in linear cases and a

multicriteria simplex method. Journal of Mathematical Analysis and Applications, 49:430-

468.
[30] L.A. Zadeh (1963), Optimality and non-scalar valued performance criteria, IEEE Trans. Aut.

Control AC-8, pp. 59–60

Dep. of Quantitative Methods for Economics & Business, Universidad de Granada.
E-mail address: vblanco@ugr.es

IMUS, Universidad de Sevilla.
E-mail address: puerto@us.es,anasafae@gmail.com


	1. Introduction
	2. Multiobjective linear programming
	3. A polynomal system of inequalities encoding the Pareto-optimal set of MOLP
	4. Semidefinite programming versus Multiobjetive Linear programming
	5. Conclusions
	References

