241 research outputs found

    A pricing proposal for a QoS enabled UMTS network

    Get PDF
    ArticleThird generation networks e.g. the Universal Mobile Telecommunications System (UMTS) provide higher data transfer rates which enables the transport of real-time multimedia traffic e.g. streaming video. The cost of Internet access over mobile networks remains high yet user demand for mobile services is increasing rapidly. In order for mobile computing to become viable, the deployment of charging schemes that would see the cost of communication reflect the utilization of resources on the network is necessary. A dynamic charging scheme is an attractive solution. When prices change, users need to indicate their willingness to continue using the service especially when a price increase is beyond the level they anticipated. In this paper we propose a charging scheme that relies on the congestion at the RNC of the UMTS to calculate pricing coefficients, which are in turn used in determining the charge incurred for using the network. The use of user profiles and network agents in the management of the charging scheme is also explored.Third generation networks e.g. the Universal Mobile Telecommunications System (UMTS) provide higher data transfer rates which enables the transport of real-time multimedia traffic e.g. streaming video. The cost of Internet access over mobile networks remains high yet user demand for mobile services is increasing rapidly. In order for mobile computing to become viable, the deployment of charging schemes that would see the cost of communication reflect the utilization of resources on the network is necessary. A dynamic charging scheme is an attractive solution. When prices change, users need to indicate their willingness to continue using the service especially when a price increase is beyond the level they anticipated. In this paper we propose a charging scheme that relies on the congestion at the RNC of the UMTS to calculate pricing coefficients, which are in turn used in determining the charge incurred for using the network. The use of user profiles and network agents in the management of the charging scheme is also explored

    Network Neutrality and the Evolution of the Internet

    Get PDF
    In order to create incentives for Internet traffic providers not to discriminate with respect to certain applications on the basis of network capacity requirements, the concept of market driven network neutrality is introduced. Its basic characteristics are that all applications are bearing the opportunity costs of the required traffic capacities. An economic framework for market driven network neutrality in broadband Internet is provided, consisting of congestion pricing and quality of service differentiation. However, network neutrality regulation with its reference point of the traditional TCP would result in regulatory micromanagement of traffic network management. --Broadband Internet,network neutrality,quality of service differentiation,congestion pricing,interclass externality pricing,interconnection agreements

    Network neutrality and the evolution of the internet

    Get PDF
    In order to create incentives for Internet traffic providers not to discriminate with respect to certain applications on the basis of network capacity require-ments, the concept of market driven network neutrality is introduced. Its basic characteristics are that all applications are bearing the opportunity costs of the required traffic capacities. An economic framework for market driven network neutrality in broadband Internet is provided, consisting of congestion pricing and quality of service differentiation. However, network neutrality regulation with its reference point of the traditional TCP would result in regulatory micro-management of traffic network management. --

    End to End Quality of Service in UMTS Systems

    Get PDF

    IP-based virtual private networks and proportional quality of service differentiation

    Get PDF
    IP-based virtual private networks (VPNs) have the potential of delivering cost-effective, secure, and private network-like services. Having surveyed current enabling techniques, an overall picture of IP VPN implementations is presented. In order to provision the equivalent quality of service (QoS) of legacy connection-oriented layer 2 VPNs (e.g., Frame Relay and ATM), IP VPNs have to overcome the intrinsically best effort characteristics of the Internet. Subsequently, a hierarchical QoS guarantee framework for IP VPNs is proposed, stitching together development progresses from recent research and engineering work. To differentiate IP VPN QoS, the proportional QoS differentiation model, whose QoS specification granularity compromises that of IntServ and Diffserv, emerges as a potential solution. The investigation of its claimed capability of providing the predictable and controllable QoS differentiation is then conducted. With respect to the loss rate differentiation, the packet shortage phenomenon shown in two classical proportional loss rate (PLR) dropping schemes is studied. On the pursuit of a feasible solution, the potential of compromising the system resource, that is, the buffer, is ruled out; instead, an enhanced debt-aware mechanism is suggested to relieve the negative effects of packet shortage. Simulation results show that debt-aware partially curbs the biased loss rate ratios, and improves the queueing delay performance as well. With respect to the delay differentiation, the dynamic behavior of the average delay difference between successive classes is first analyzed, aiming to gain insights of system dynamics. Then, two classical delay differentiation mechanisms, that is,proportional average delay (PAD) and waiting time priority (WTP), are simulated and discussed. Based on observations on their differentiation performances over both short and long time periods, a combined delay differentiation (CDD) scheme is introduced. Simulations are utilized to validate this method. Both loss and delay differentiations are based on a series of differentiation parameters. Though previous work on the selection of delay differentiation parameters has been presented, that of loss differentiation parameters mostly relied on network operators\u27 experience. A quantitative guideline, based on the principles of queueing and optimization, is then proposed to compute loss differentiation parameters. Aside from analysis, the new approach is substantiated by numerical results

    Providing proportional TCP performance by fixed-point approximations over bandwidth on demand satellite networks

    Get PDF
    In this paper we focus on the provision of propor- tional class-based service differentiation to transmission control protocol (TCP) flows in the context of bandwidth on demand(BoD) split-TCP geostationary (GEO) satellite networks. Our approach involves the joint configuration of TCP-Performance Enhancing Proxy (TCP-PEP) agents at the transport layer and the scheduling algorithm controlling the resource allocation at the Medium Access Control (MAC) layer. We show that the two differentiation mechanisms exhibit complementary behavior in achieving the desired differentiation throughout the traffic load space: the TCP-PEPs control differentiation at low and medium system utilization, whereas the MAC scheduler becomes the dominant differentiation factor under high traffic load. The main challenge for the satellite operator is to appropriately configure those two mechanisms to achieve a specific differentiation target for the different classes of TCP flows. To this end, we propose a fixed-point framework to analytically approximate the achieved differentiated TCP performance. We validate the predictive capacity of our analytical method via simulations and show that our approximations closely match the performance of different classes of TCP flows under various scenarios for the network traffic load and configuration of the MAC scheduler and TCP-PEP agent. Satellite network operators could use our approximations as an analytical tool to tune their network

    Provide quality of service for differentiated services networks by policy-based networking

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Intelligent adaptive bandwidth provisioning for quality of service in umts core networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Transaction Management for Sender/Receiver-Payment Schemes in Charging and Accounting Systems for Interconnected Networks

    Get PDF
    In this paper, we present an Internet transaction management system for sender/receiver payment schemes. This system allows an arbitrary split of transaction charges between two communication partners. Using this kind of system, new business models can be implemented on the Internet. The new system provides more flexibility than existing charging schemes. Under these new business models, service providers can pick up a share of the cost for the transaction with any of their customers; offer collect-call type of services; or provide services as the 900 services on the telephone network. This paper describes in detail the transaction management protocol (TMP), its implementation, and the transaction management service platform (TMS). The TMP specifies the protocol state diagram as well as the process of how the costs for resource usage can be allocated to communicating end-users. The TMS platform defines the architecture and the modules, simplifying the implementation of the TMP on the Internet. The TMS provides a module-based transaction management environment, carrying transaction signals such as message schema, accounting policy information, communication reference information, and end-user agreement information. In addition to this, an application of the TMS in the framework of bandwidth broker interconnection networ
    corecore