266 research outputs found

    Distribution-Based Categorization of Classifier Transfer Learning

    Get PDF
    Transfer Learning (TL) aims to transfer knowledge acquired in one problem, the source problem, onto another problem, the target problem, dispensing with the bottom-up construction of the target model. Due to its relevance, TL has gained significant interest in the Machine Learning community since it paves the way to devise intelligent learning models that can easily be tailored to many different applications. As it is natural in a fast evolving area, a wide variety of TL methods, settings and nomenclature have been proposed so far. However, a wide range of works have been reporting different names for the same concepts. This concept and terminology mixture contribute however to obscure the TL field, hindering its proper consideration. In this paper we present a review of the literature on the majority of classification TL methods, and also a distribution-based categorization of TL with a common nomenclature suitable to classification problems. Under this perspective three main TL categories are presented, discussed and illustrated with examples

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Feedforward deep architectures for classification and synthesis

    Full text link
    Cette thèse par article présente plusieurs contributions au domaine de l'apprentissage de représentations profondes, avec des applications aux problèmes de classification et de synthèse d'images naturelles. Plus spécifiquement, cette thèse présente plusieurs nouvelles techniques pour la construction et l'entraînment de réseaux neuronaux profonds, ainsi q'une étude empirique de la technique de «dropout», une des approches de régularisation les plus populaires des dernières années. Le premier article présente une nouvelle fonction d'activation linéaire par morceau, appellée «maxout», qui permet à chaque unité cachée d'un réseau de neurones d'apprendre sa propre fonction d'activation convexe. Nous démontrons une performance améliorée sur plusieurs tâches d'évaluation du domaine de reconnaissance d'objets, et nous examinons empiriquement les sources de cette amélioration, y compris une meilleure synergie avec la méthode de régularisation «dropout» récemment proposée. Le second article poursuit l'examen de la technique «dropout». Nous nous concentrons sur les réseaux avec fonctions d'activation rectifiées linéaires (ReLU) et répondons empiriquement à plusieurs questions concernant l'efficacité remarquable de «dropout» en tant que régularisateur, incluant les questions portant sur la méthode rapide de rééchelonnement au temps de l´évaluation et la moyenne géometrique que cette méthode approxime, l'interprétation d'ensemble comparée aux ensembles traditionnels, et l'importance d'employer des critères similaires au «bagging» pour l'optimisation. Le troisième article s'intéresse à un problème pratique de l'application à l'échelle industrielle de réseaux neuronaux profonds au problème de reconnaissance d'objets avec plusieurs etiquettes, nommément l'amélioration de la capacité d'un modèle à discriminer entre des étiquettes fréquemment confondues. Nous résolvons le problème en employant la prédiction du réseau des sous-composantes dédiées à chaque sous-ensemble de la partition. Finalement, le quatrième article s'attaque au problème de l'entraînment de modèles génératifs adversariaux (GAN) récemment proposé. Nous présentons une procédure d'entraînment améliorée employant un auto-encodeur débruitant, entraîné dans un espace caractéristiques abstrait appris par le discriminateur, pour guider le générateur à apprendre un encodage qui s'aligne de plus près aux données. Nous évaluons le modèle avec le score «Inception» récemment proposé.This thesis by articles makes several contributions to the field of deep learning, with applications to both classification and synthesis of natural images. Specifically, we introduce several new techniques for the construction and training of deep feedforward networks, and present an empirical investigation into dropout, one of the most popular regularization strategies of the last several years. In the first article, we present a novel piece-wise linear parameterization of neural networks, maxout, which allows each hidden unit of a neural network to effectively learn its own convex activation function. We demonstrate improvements on several object recognition benchmarks, and empirically investigate the source of these improvements, including an improved synergy with the recently proposed dropout regularization method. In the second article, we further interrogate the dropout algorithm in particular. Focusing on networks of the popular rectified linear units (ReLU), we empirically examine several questions regarding dropout’s remarkable effectiveness as a regularizer, including questions surrounding the fast test-time rescaling trick and the geometric mean it approximates, interpretations as an ensemble as compared with traditional ensembles, and the importance of using a bagging-like criterion for optimization. In the third article, we address a practical problem in industrial-scale application of deep networks for multi-label object recognition, namely improving an existing model’s ability to discriminate between frequently confused classes. We accomplish this by using the network’s own predictions to inform a partitioning of the label space, and augment the network with dedicated discriminative capacity addressing each of the partitions. Finally, in the fourth article, we tackle the problem of fitting implicit generative models of open domain collections of natural images using the recently introduced Generative Adversarial Networks (GAN) paradigm. We introduce an augmented training procedure which employs a denoising autoencoder, trained in a high-level feature space learned by the discriminator, to guide the generator towards feature encodings which more closely resemble the data. We quantitatively evaluate our findings using the recently proposed Inception score
    • …
    corecore