287 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Blind channel estimation and signal retrieving for MIMO relay systems

    Get PDF
    In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop multiple-input multiple-output (MIMO) relay systems. This new algorithm integrates two blind source separation (BSS) methods to estimate the individual channel state information (CSI) of the source-relay and relay-destination links. In particular, a first-order Z-domain precoding technique is developed for the blind estimation of the relay-destination channel matrix, where the signals received at the relay node are pre-processed by a set of precoders before being transmitted to the destination node. With the estimated signals at the relay node, we propose an algorithm based on the constant modulus and signal mutual information properties to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, the proposed algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm

    Channel estimation, synchronisation and contention resolution in wireless communication networks

    Get PDF
    In the past decade, the number of wireless communications users is increasing at an unprecedented rate. However, limited radio resources must accommodate the increasing number of users. Hence, the efficient use of radio spectrum is a critical issue that needs to be addressed. In order to improve the spectral efficiency for the wireless communication networks, we investigate two promising technologies, the relaying and the multiple access schemes. In the physical (PHY) layer of the open systems interconnect (OSI) model, the relaying schemes are capable to improve the transmission reliability and expand transmission coverage via cooperative communications by using relay nodes. Hence, the two-way relay network (TWRN), a cooperative communications network, is investigated in the first part of the thesis. In the media access control (MAC) layer of the OSI model, the multiple access schemes are able to schedule multiple transmissions by efficiently allocating limited radio resources. As a result, the contention-based multiple access schemes for contention resolution are explored in the second part of the thesis. In the first part of the thesis, the channel estimation for the two-way relay networks (TWRNs) is investigated. Firstly, the channel estimation issue is considered under the assumption of the perfect synchronisation. Then, the channel estimation is conducted, by relaxing the assumption of perfect synchronisation. Another challenge facing the wireless communication systems is the contention and interference due to multiple transmissions from multiple nodes, sharing the common communication medium. To improve the spectral efficiency in the media access control layer, a self-adaptive backoff (SAB) algorithm is proposed to resolve contention in the contention-based multiple access networks

    Channel estimation, synchronisation and contention resolution in wireless communication networks

    Get PDF
    In the past decade, the number of wireless communications users is increasing at an unprecedented rate. However, limited radio resources must accommodate the increasing number of users. Hence, the efficient use of radio spectrum is a critical issue that needs to be addressed. In order to improve the spectral efficiency for the wireless communication networks, we investigate two promising technologies, the relaying and the multiple access schemes. In the physical (PHY) layer of the open systems interconnect (OSI) model, the relaying schemes are capable to improve the transmission reliability and expand transmission coverage via cooperative communications by using relay nodes. Hence, the two-way relay network (TWRN), a cooperative communications network, is investigated in the first part of the thesis. In the media access control (MAC) layer of the OSI model, the multiple access schemes are able to schedule multiple transmissions by efficiently allocating limited radio resources. As a result, the contention-based multiple access schemes for contention resolution are explored in the second part of the thesis. In the first part of the thesis, the channel estimation for the two-way relay networks (TWRNs) is investigated. Firstly, the channel estimation issue is considered under the assumption of the perfect synchronisation. Then, the channel estimation is conducted, by relaxing the assumption of perfect synchronisation. Another challenge facing the wireless communication systems is the contention and interference due to multiple transmissions from multiple nodes, sharing the common communication medium. To improve the spectral efficiency in the media access control layer, a self-adaptive backoff (SAB) algorithm is proposed to resolve contention in the contention-based multiple access networks

    Adaptive relay techniques for OFDM-based cooperative communication systems

    Get PDF
    Cooperative communication has been considered as a cost-effective manner to exploit the spatial diversity, improve the quality-of-service and extend transmission coverage. However, there are many challenges faced by cooperative systems which use relays to forward signals to the destination, such as the accumulation of multipath channels, complex resource allocation with the bidirectional asymmetric traffic and reduction of transmission efficiency caused by additional relay overhead. In this thesis, we aim to address the above challenges of cooperative communications, and design the efficient relay systems. Starting with the channel accumulation problem in the amplify-and-forward relay system, we proposed two adaptive schemes for single/multiple-relay networks respectively. These schemes exploit an adaptive guard interval (GI) technique to cover the accumulated delay spread and enhance the transmission efficiency by limiting the overhead. The proposed GI scheme can be implemented without any extra control signal. Extending the adaptive GI scheme to multiple-relay systems, we propose a relay selection strategy which achieves the trade-off between the transmission reliability and overhead by considering both the channel gain and the accumulated delay spread. We then consider resource allocation problem in the two-way decode-and-forward relay system with asymmetric traffic loads. Two allocation algorithms are respectively investigated for time-division and frequency-division relay systems to maximize the end-to-end capacity of the two-way system under a capacity ratio constraint. For the frequency-division systems, a balanced end-to-end capacity is defined as the objective function which combines the requirements of maximizing the end-to-end capacity and achieving the capacity ratio. A suboptimal algorithm is proposed for the frequency-division systems which separates subcarrier allocation and time/power allocation. It can achieve the similar performance with the optimal one with reduced complexity. In order to further enhance the transmission reliability and maintaining low processing delay, we propose an equalize-and-forward (EF) relay scheme. The EF relay equalizes the channel between source and relay to eliminate the channel accumulation without signal regeneration. To reduce the processing time, an efficient parallel structure is applied in the EF relay. Numerical results show that the EF relay exhibits low outage probability at the same data rate as compared to AF and DF schemes
    • …
    corecore