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Blind Channel Estimation and Signal Retrieving for
MIMO Relay Systems
Choo W. R. Chiong, Yue Rong, and Yong Xiang

Abstract

In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop multiple-input multiple-output
(MIMO) relay systems. This new algorithm integrates two blind source separation (BSS) methods to estimate the individual channel
state information (CSI) of the source-relay and relay-destination links. In particular, a first-order Z-domain precoding technique
is developed for the blind estimation of the relay-destination channel matrix, where the signals received at the relay node are
pre-processed by a set of precoders before being transmitted to the destination node. With the estimated signals at the relay node,
we propose an algorithm based on the constant modulus and signal mutual information properties to estimate the source-relay
channel matrix. Compared with training-based MIMO relay channel estimation approaches, the proposed algorithm has a better
bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate
the performance of the proposed algorithm.

Index Terms

Blind channel estimation, MIMO relay, Z-domain, constant modulus, mutual information.

I. INTRODUCTION

In an effort to provide reliable and high rate wireless communications, multiple-input multiple-output (MIMO) relay
communication systems have attracted great research interests in the last decade [1]-[3]. For the MIMO relay systems in
[1]-[3], the knowledge of the instantaneous channel state information (CSI) is necessary for the retrieval of the source signals
at the destination node. The individual instantaneous CSI for both the source-relay and relay-destination links is also important
for the optimization of MIMO relay systems through precoding matrices design and power allocation [1]-[5]. However, the
instantaneous CSI is unknown in real wireless communication systems, and thus, has to be estimated at the destination node.

One of the possible solutions is by transmitting known training sequences to assist the estimation of the instantaneous
CSI [6]-[13]. In [6], a channel estimation algorithm based on the least-squares (LS) fitting is proposed for MIMO relay
systems. The performance of the algorithm in [6] is further analyzed and improved by using the weighted least-squares (WLS)
fitting in [7]. A tensor-based channel estimation algorithm is developed in [8] for a two-way MIMO relay system. Since the
algorithm in [8] exploits the channel reciprocity in a two-way relay system, its application in one-way MIMO relay systems is
not straightforward. A superimposed training based channel estimation algorithm has been developed recently for orthogonal
frequency-division multiplexing (OFDM) modulated relay systems in [9]. A two-stage linear minimum mean-squared error
(LMMSE)-based channel training algorithm was proposed in [10]. The source-relay link CSI estimation in [10] was improved
in [11] by taking into account the mismatch between the estimated and true CSI of the relay-destination link. In [12], a
superimposed channel training algorithm for two-way MIMO relay systems was proposed, where the channel estimation is
done in one stage through superimposing a training sequence at the relay node. A parallel factor (PARAFAC) analysis based
MIMO relay channel estimation algorithm was developed in [13].

The main drawback of the training-based channel estimation algorithms is the high cost involved in sending the training
sequences, considering the limited bandwidth available for wireless communication. Moreover, in some applications such
as asynchronous wireless network and message interception, training-based algorithms are unrealistic and not suitable for
implementation [14], [15]. In these applications, blind channel estimation techniques, which do not require training sequences,
become important. Recursive least squares (RLS) and least mean squares (LMS) subspace-based adaptive algorithms were
proposed in [16] for blind channel estimation in code-division multiple access (CDMA) systems. A subspace-based blind channel
estimation algorithm with reduced time averaging was proposed in [17] for MIMO-OFDM systems. However, the algorithms
in [16] and [17] were developed for point-to-point (single-hop) communication systems, and the extension to MIMO relay
systems is not straightforward. A blind channel estimation algorithm based on the deterministic maximum likelihood (DML)
approach was developed in [18] for two-way relay networks with constant-modulus (CM) signaling. In [19], non-redundant
linear precoders are applied at the source nodes to blindly estimate the channels for two-way relay networks operating under
OFDM modulation.
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In this paper, we develop a blind channel estimation algorithm for two-hop MIMO relay communication systems by exploiting
the link between blind source separation (BSS) and channel estimation. BSS techniques are able to separate a mixture of signals
into individual source signals, without the knowledge (or little knowledge) of the source signals or the channel between the
source and receiver. The proposed algorithm integrates two BSS methods to estimate the instantaneous CSI for the individual
source-relay and relay-destination links. We would like to note that channel matrices of both the first-hop and second-hop are
estimated at the destination node. The advantage of directly estimating both channel matrices at the destination node is to
avoid sending the CSI from the relay node to the destination node [12], [13]. As the blind channel estimation algorithm we
propose uses the communication data for channel estimation, unlike [10], there is no need for sending training signals from
the relay node to the destination node.

In particular, we develop a first-order Z-domain precoding technique for the blind estimation of the relay-destination channel
matrix using signals received at the destination node. In this algorithm, the signals received at the relay node are filtered
by properly designed precoders before being transmitted to the destination node. By utilizing the Z-domain properties of the
precoded signals, an estimation criterion is derived to recover the relay-destination channel matrix and signals received at the
relay node. Note that in this algorithm, the order of the precoders is fixed to one, while a second-order Z-domain precoding
algorithm was developed in [20] for blind separation of spatially correlated signals. Obviously, the computational complexity
of the first-order precoder is smaller than that of the second-order precoder.

With the estimated received signals at the relay node, we then develop a blind channel estimation algorithm based on the
constant modulus and signal mutual information (MI) properties to estimate the source-relay channel matrix. The constant
modulus property of many modulated communication signals such as phase-shift keying (PSK) is exploited in this blind
estimation algorithm. However, using the constant modulus property of signals alone does not guarantee the complete separation
of the source signals and the channel matrix, as the constant modulus algorithm might capture the same signal even though
there are multiple signal streams. To overcome this difficulty, we minimize a cost function which includes the MI of the
estimated signals in addition to the constant modulus property, to ensure that all estimated signals are distinct. This algorithm
does not have the problem of estimation error propagation as in [21] and [22]. A similar method was adopted in [15] for
the extraction of unknown source signals, essentially in single-hop (point-to-point) MIMO wireless networks. However, in this
paper, we apply this algorithm for channel estimation in dual-hop MIMO relay communication systems.

Comparing the proposed blind channel estimation algorithm with the training-based channel estimation techniques, the
former one has a better bandwidth efficiency as all the bandwidth is used for the transmission of the communication signals.
Simulation results show that the proposed blind channel estimation algorithm yields a better system bit-error-rate (BER) than
that of the training-based algorithm at low signal-to-noise ratio (SNR) due to a better utilization of the power available at the
source and relay nodes for channel estimation. We would like to note that the proposed algorithm can be applied in dual-hop
MIMO relay systems with multiple distributed source nodes and multiple distributed relay nodes.

The rest of this paper is organized as follows. The system model of a three-node two-hop MIMO relay system is presented
in Section II. In Section III, the first-order Z-domain precoding technique is developed to estimate the relay-destination channel
matrix, while the signal MI modified constant modulus algorithm is proposed in Section IV to estimate the source-relay channel
matrix. Section V shows numerical simulations to demonstrate the performance of the proposed algorithm. Finally, conclusions
are drawn in Section VI.

II. SYSTEM MODEL

Let us consider a three-node two-hop MIMO communication system where the source node transmits information to the
destination node through a relay node as shown in Fig. 1. The source, relay, and destination nodes are equipped with nS , nR,
and nD antennas, respectively. In this paper, we assume that the direct link between the source node and the destination node
is sufficiently weak and thus can be ignored. This scenario occurs when the direct link is blocked by obstacles, such as tall
buildings or mountains.

The communication process is completed in two time slots. In the first time slot, the source signal vector s(n) = [s1(n), s2(n), · · · , snS
(n)]T

is transmitted from the source node, where (·)T denotes the vector (matrix) transpose. The signal vector received at the relay
node can be expressed as

yr(n) = H1s(n) + v(n) (1)

where yr(n) is the nR × 1 received signal vector, H1 is the nR ×nS MIMO channel matrix between the source node and the
relay node, and v(n) is the nR × 1 noise vector at the relay node.

In the second time slot, each received signal stream in yr(n) is preprocessed separately by a first-order precoder pi(z) as

pi(z) = 1− riz
−1, i = 1, · · · , nR (2)

where ri is the zero of the precoder pi(z). Note that all zeros are distinct and satisfy 0 < |ri| < 1, for i = 1, · · · , nR, and
are known at the destination node. Here | · | denotes the modulus of a scalar and the determinant of a matrix. From (2), the
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ith precoded signal at the relay node can be written as

xi(n) = pi(z)yr,i(n)

= yr,i(n)− riyr,i(n− 1), i = 1, · · · , nR (3)

where yr,i(n) is the ith element of yr(n). It is worth noting that the precoding operation (3) can be readily implemented at
physically distributed relay nodes, as there is no need for cooperation among different signal streams. The first-order precoding
operation in (3) serves for the blind estimation of the relay-destination channel matrix, where the estimation criterion will be
derived by exploiting the Z-domain properties of the precoders as shown in Section III.

The precoded signal vector x(n) = [x1(n), x2(n), · · · , xnR(n)]
T is transmitted to the destination node, and the received

signal vector at the destination node can be expressed as

y(n) = H2x(n) +w(n) (4)

where H2 is the nD×nR channel matrix between the relay node and the destination node and w(n) = [w1(n), w2(n), · · · , wnD
(n)]T

is the noise vector at the destination node. We assume that:
1) All noises are independent and identically distributed (i.i.d.) additive white Gaussian noise (AWGN).
2) The source signals in s(n) are temporally white, have constant modulus, and linearly independent with each other.
3) The noises are independent of the source signals.
4) The number of antennas at the receiving sides is equal or greater than that of the transmitting sides, i.e., nD ≥ nR ≥ nS .
We would like to mention that the algorithm developed in this paper can be easily extended to MIMO relay systems with

multiple source and relay nodes. With M source nodes and N relay nodes, each equipped with nSi and nRj antennas,
respectively, i = 1, · · · ,M , j = 1, · · · , N , the received signal at the relay node can be rewritten as

yr,j(n) =

M∑
i=1

Hj,isi(n) + vj(n), j = 1, · · · , N (5)

where yr,j(n) is the nRj × 1 received signal vector, Hj,i is the nRj ×nSi MIMO channel matrix between the ith source node
and the jth relay node, and vj(n) is the nRj × 1 noise vector at the jth relay node. We can rewrite (5) as

yr(n) = H1s(n) + v(n) (6)

where yr(n),
[
yT
r,1(n),y

T
r,2(n), · · · ,yT

r,N (n)
]T , s(n),

[
sT1 (n), s

T
2 (n), · · · , sTM (n)

]T , v(n),
[
vT
1 (n),v

T
2 (n), · · · ,vT

N (n)
]T ,

and

H1 ,

H1,1 · · · H1,M

...
. . .

...
HN,1 · · · HN,M

 .

Equation (6) is equivalent to (1), and the same analysis can be applied to MIMO relay systems with multiple source and relay
nodes. Note that the first-order precoder pi(z) is redefined as

pi(z) = 1− riz
−1, i = 1, · · · , nR

where nR =
∑N

j=1 nRj for the later case. All precoders are distinct and are known at the destination node. We would like
to note that a narrow-band frequency-flat channel model is used in (1) and (4). For broadband orthogonal frequency-division
multiplexing (OFDM) based communication systems such as 4G LTE, the proposed algorithms in this paper can be applied
to each subcarrier of the OFDM system, where the channel fading is frequency-flat.

The model in (4) has a similar structure to the classical BSS problem. In BSS techniques, signal separation is usually
achieved by exploiting the statistical properties of the source signals, either based on the higher-order statistics (HOS) or
second-order statistics (SOS). Independent component analysis (ICA) is one example of the HOS-based BSS methods, and
is generally applied for non-Gaussian source signals. One of the drawbacks of the HOS-based methods is the large number
of data samples required for a satisfactory result. On the contrary, the number of data samples required by the SOS-based
BSS methods is generally much smaller than the HOS-based BSS techniques. However, the SOS-based BSS methods usually
require the source signals to be mutually uncorrelated. This limits the application of the SOS-based BSS methods in MIMO
relay communication systems as the signals received at the relay node (yr in (1)) are mutually correlated.

The algorithms in [18] and [19] only estimate the cascaded source-relay-destination channel in a single-input single-output
(SISO) relay system, and does not provide the estimation of the individual second-hop channel in MIMO relay systems. The
extension of these algorithms to MIMO relay case is not straightforward. Note that the information on the individual second-
hop channel is important for the optimization of the receiver design at the destination node. For example, the MMSE receiver
[3], [4] requires the second-hop channel information.
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A second-order precoding-based BSS algorithm has been developed in [20] to separate mutually correlated sources. However,
this algorithm might not be applicable to MIMO relay systems. This is because the algorithm in [20] does not allow any source
signal to be linear combination of the other source signals (see [20], the paragraph after Assumptions A1)-A4)), while in a
MIMO relay system, the signal component at the relay node (i.e. H1s(n)) is a linear combination of the source signals s(n).
Thus, when the noise at the relay node is sufficiently small, the signal at the relay node (1) does not satisfy the requirement
of the second-order precoding method. This motivates us to develop the first-order precoding technique for blind channel
estimation in MIMO relay systems as presented in the next section.

III. FIRST-ORDER Z-DOMAIN PRECODING BASED CHANNEL ESTIMATION

In this section, we develop a first-order Z-domain precoding algorithm for the blind estimation of the relay-destination
channel matrix H2. The main idea of this approach is to preprocess the received signals at the relay node with the first-order
Z-domain precoders before retransmitting them to the destination node. Then, by utilizing the Z-domain properties of the
precoders, this blind channel estimation algorithm aims to find a separation matrix B1 to separate x(n) and H2 in (4) with
only the observable output at the destination node y(n). Compared with [20], the first-order precoding technique requires less
transmission time at the relay node and simplifies the implementation of the precoders at the relay node in practical MIMO
relay systems.

Let B1 = [b1,1,b1,2, · · · ,b1,nR
] be an nD × nR matrix, the desired outcome of the blind channel estimation algorithm is

given by
x̂(n) = BH

1 y(n) = Λx(n) +BH
1 w(n) (7)

where x̂(n) is an estimation of the precoded signal vector, (·)H denotes complex conjugate transpose, and Λ , BH
1 H2 is a

diagonal matrix of scaling ambiguity inherited in the blind estimation algorithm. Note that the permutation ambiguity usually
associated with BSS methods does not exist in (7) as proved in Theorem 1 later on. Intuitively, this is due to the filtering
operation (3) at the relay node before retransmitting the signals, as each signal stream in yr(n) is preprocessed by a distinct
precoder. The scaling ambiguity can be resolved and will be discussed later. Once the separation matrix B1 is obtained, H2

and yr(n) can be efficiently estimated as shown later on. In the following subsection, we will first propose an estimation
criterion by exploiting the Z-domain properties of the precoders and find the separation matrix B1 based on this criterion.

A. Estimation Criterion

Let us define the autocorrelation matrix of yr(n) at time lag k as

Cyryr (k) = E
[
yr(n)yr(n− k)H

]
=H1Css(k)H

H
1 +Cvv(k) (8)

where Css(k) = E
[
s(n)s(n − k)H

]
and Cvv(k) = E

[
v(n)v(n − k)H

]
are the autocorrelation matrices of s(n) and v(n),

respectively, and E[·] stands for the statistical expectation. Note that Cvv(k) = 0 for k ̸= 0 as the noises are temporally
independent. Based on (8), the power spectral matrix of yr(n) is defined as

Qyryr (z) =
∞∑

k=−∞

Cyryr (k)z
−k. (9)

When the noise covariance matrix at the relay node Cvv(0) is of full rank, it is easy to see that matrix Qyryr
(z) is of full rank

at z = ri, i = 1, · · · , nR. For the case where the noise at the relay node is arbitrarily small, i.e., Cvv(0) is a rank-deficient
matrix, we assume that the number of antennas at the source and relay nodes are the same, i.e., nS = nR. With this assumption,
the matrices H1 and HH

1 are of full rank. Since any source signal s(n) is not a linear combination of the other source signals,
the following proposition is established.

PROPOSITION 1: The power spectral matrix Qyryr (z) is of full rank at z = ri for i = 1, · · · , nR.
Let us denote the autocorrelation matrices of y(n) and w(n) as Cyy(k) and Cww(k), respectively. It follows from (4) that

Cyy(k) = E
[
y(n)y(n− k)H

]
=H2Cxx(k)H

H
2 +Cww(k) (10)

where Cxx(k) = E
[
x(n)x(n−k)H

]
is the autocorrelation matrix of x(n) and Cww(k) = E

[
w(n)w(n−k)H

]
= 0 for k ̸= 0

as the noises are temporally independent. Similarly, the power spectral matrix of y(n) can be derived based on (3), (9), and
(10) as

Qyy(z) =

∞∑
k=−∞

Cyy(k)z
−k

=H2Qxx(z)H
H
2 +Qww(z)

=H2P(z)Qyryr (z)P(z−1)HHH
2 +Qww(z) (11)
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where Qxx(z) =
∑∞

k=−∞ Cxx(k)z
−k and Qww(z) =

∑∞
k=−∞ Cww(k)z−k are the power spectral matrices of x(n) and

w(n), respectively, and P(z) = diag(p1(z), p2(z), · · · , pnR(z)) is a diagonal matrix.
Let us introduce

Ti(z) = Pi(z)Qyryr (z)P(z−1)H , i = 1, · · · , nR

where Pi(z) is the matrix P(z) with the ith diagonal entry replaced by zero, i.e.,

Pi(z) = diag(p1(z), · · · , pi−1(z), 0, pi+1(z), · · · , pnR(z)). (12)

LEMMA 1: The rank of Ti(ri) is nR − 1, for i = 1, · · · , nR, and all rows of Ti(ri) except for the ith row are linearly
independent.

PROOF: It can be shown that for any ri,
rank(Pi(ri)) = nR − 1

while the matrix P(r−1
i )H is of full rank, since r−1

i is not a zero of any precoder. It can be shown using (12) that all elements
in the ith row of Ti(ri) are zero. Using these results and Proposition 1, we obtain the rank of Ti(ri) as nR − 1. We can
further deduce that all rows of Ti(ri) except for the ith row are linearly independent. �

Let H2,i be equal to H2 with the ith column replaced by a zero vector, i.e.,

H2,i = [h2,1, · · · ,h2,i−1,0,h2,i+1, · · · ,h2,nR ]. (13)

We can rewrite (11) as

Qyy(ri) =H2P(ri)Qyryr
(ri)P(r−1

i )HHH
2 +Qww(ri)

=H2,iPi(ri)Qyryr (ri)P(r−1
i )HHH

2 +Cww(0)

=H2,iTi(ri)H
H
2 +Cww(0). (14)

Assuming that Cww(0) can be estimated, which will be shown later, and removed from (14), we have

Q̄yy(ri) = H2,iTi(ri)H
H
2 . (15)

The following theorem establishes the estimation criterion for our blind channel estimation algorithm.
THEOREM 1: For i = 1, · · · , nR, b1,i is an nD × 1 separation vector ensuring

bH
1,iH2 = [0, · · · , 0, ci, 0, · · · , 0], ci ̸= 0 (16)

if and only if {
bH
1,iQ̄yy(ri) = 0 (17)

bH
1,iCyy(1)b1,i ̸= 0. (18)

PROOF: See Appendix A. �
Theorem 1 holds when the autocorrelation matrix of y(n) has a time lag of τ = 1, i.e., Cyy(1). Interestingly, it is shown

in the following corollary that Theorem 1 is not valid for Cyy(τ) with other time lag values.
COROLLARY 1: Theorem 1 does not hold for Cyy(τ), τ ̸= 1.
PROOF: See Appendix B. �
It can be seen that the proposed first-order precoding algorithm has different requirements on the selection of parameters

compared with the second-order precoding algorithm in [20]. For example, τ can be 1 or 2 in the second-order precoding
method but can only be 1 in the proposed first-order precoding algorithm. The implementation of the first-order Z-domain
precoding based blind channel estimation algorithm is shown in the following subsection.

B. Algorithm Implementation

The following blind channel estimation procedures are applied to obtain the relay-destination channel matrix H2.
1) Compute the estimated autocorrelation matrix of y(n) as

Ĉyy(k) ≈
1

L

L−1∑
n=0

y(n)y(n− k)H (19)

where L ≥ nD is the number of samples of the received signal.
2) Compute the estimated power spectral matrix of y(n) as

Q̂yy(ri) ≈
∑
k

Cyy(k)r
−k
i , i = 1, · · · , nR (20)

where k is a finite integer.
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3) Estimate the noise covariance matrix Cww(0). It follows from (10) that

Cyy(0) = H2Cxx(0)H
H
2 +Cww(0). (21)

Since the noises are assumed to be i.i.d. white Gaussian, we have

Cww(0) = σ2
wInD

(22)

where σ2
w is the noise variance and In is an n×n identity matrix. Let us introduce the eigenvalue decomposition (EVD)

of
Cyy(0) = UY ΛY U

H
Y (23)

where UY is the unitary eigenvector matrix and ΛY is the diagonal eigenvalue matrix with descending diagonal elements.
Obviously, from (21) there is

ΛY = ΛX + σ2
wInD

(24)

where ΛX is the eigenvalue matrix of H2Cxx(0)H
H
2 with descending diagonal elements.

If nD > nR, i.e., H2 is a tall matrix, from (24), we have

λy,i = λx,i + σ2
w, i = 1, · · · , nR

λy,i = σ2
w, i = nR + 1, · · · , nD (25)

where λy,i, i = 1, · · · , nD, and λx,j , j = 1, · · · , nR, are the diagonal elements of ΛY and ΛX , respectively. From (25),
we can estimate σ2

w as

σ̂2
w =

1

nD − nR

nD∑
i=nR+1

λ̂y,i (26)

where λ̂y,i is estimated λy,i obtained from the EVD of Ĉyy(0). The estimated noise covariance matrix is given by

Ĉww(0) = σ̂2
wInD

. (27)

If nD = nR, i.e., H2 is a square matrix, the noise covariance matrix can be estimated prior to the transmission of data,
i.e., when y(n) = w(n), n = 1, · · · , J , we have

Ĉww(0) ≈ 1

J

J−1∑
n=0

y(n)y(n)H .

4) Estimate Q̄yy(ri) as
Q̄yy(ri) , Q̂yy(ri)− Ĉww(0), i = 1, · · · , nR. (28)

5) Obtain separation matrix B1 as follows. From Lemma 1, it can be seen that Q̄yy(ri) has a rank of nR−1. Since Q̄yy(ri)
is an nD × nD matrix, there are nD − nR + 1 zero singular values. As we assume nD ≥ nR, there exists at least one
zero singular value. Let Vi be an nD × (nD − nR + 1) matrix whose columns consist of the nD − nR + 1 left singular
vectors corresponding to the zero singular values of Q̄yy(ri), and column vector ui be the eigenvector corresponding
to any nonzero eigenvalue λ of VH

i Ĉyy(1)Vi. It can be proven that

uH
i VH

i Q̄yy(ri) = 0

and
uH
i VH

i Ĉyy(1)Viui = λuH
i ui ̸= 0.

Then, the separation vector b1,i can be selected as bH
1,i = uH

i VH
i . The operations in this step are carried out for

i = 1, · · · , nR.
6) The precoded signals can be estimated by

x̂(n) = BH
1 y(n), n = 1, · · · , L. (29)

7) The relay-destination channel matrix is estimated as

Ĥ2 = YX̂† (30)

where Y = [y(1),y(2), · · · ,y(L)] and X̂ = [x̂(1), x̂(2), · · · , x̂(L)]. Note that since L ≥ nR, we have the right inverse
of X̂ as

X̂† = X̂T (X̂X̂T )−1 (31)

where (·)−1 stands for matrix inversion.
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IV. CHANNEL ESTIMATION BASED ON SIGNAL MI MODIFIED CONSTANT MODULUS ALGORITHM

In this section, we develop a signal MI modified constant modulus algorithm to estimate the first-hop channel matrix H1.
Based on the estimated precoded signals x̂i(n), i = 1, · · · , nR, the signals received at the relay node can be estimated by

ŷr,i(n) = x̂i(n) + riŷr,i(n− 1), i = 1, · · · , nR. (32)

Let us introduce an nR × nS separation matrix B2 and let

ŝ(n) = BH
2 ŷr(n) = Cs(n) +BH

2 v(n) (33)

where ŝ(n) is the estimated source signal vector and C , BH
2 H1. This blind channel estimation algorithm aims to obtain the

separation matrix B2 in order to recover the first-hop channel H1, only from the estimated relay channel output signals ŷr(n).
Obviously, the estimation of H1 is affected by the accuracy of the estimation of yr(n). As the source signals are unknown at
the destination, there are inherent scaling and permutation ambiguities in this algorithm, i.e.,

C = BH
2 H1 = P∆

where P is a permutation matrix and ∆ is a diagonal matrix.

A. Development of the Algorithm

The general cost function for the constant modulus algorithm is given by
nS∑
i=1

E
[
(|ŝi(n)|2 − γ)2

]
where ŝi(n) is the ith element of ŝ(n) and γ is a constant. As mentioned earlier, the constant modulus algorithm is capable
of retrieving one source signal at a time. However, it does not guarantee the extraction of all source signals as the constant
modulus algorithm might extract the same signal.

Similar to [15], we propose to exploit the MI property of the estimated signals, along with the constant modulus algorithm,
to ensure that the channel matrix and source signals are completely separated. In particular, the following cost function with
the addition of the MI term is minimized

J(B2) =

nS∑
i=1

E
[
(|ŝi(n)|2 − γ)2

]
+ β

[
nS∑
i=1

log(rii)− log|Rŝŝ|

]
(34)

where β is a positive real number that balances the constant modulus term and the MI term, rii is the ith diagonal element of
Rŝŝ, and Rŝŝ , E

[
ŝ(n)ŝ(n)H

]
is the covariance matrix of ŝ(n). From [15], we have the following proposition.

PROPOSITION 2: The MI term is zero when Rŝŝ is a diagonal matrix, i.e., when the elements of ŝ(n) are uncorrelated.
Proposition 2 is important to ensure that all source signals are separated from the channel matrix H1 at the destination node.

The cost function (34) can be rewritten as

J(B2) = E

[
nS∑
i=1

(
eTi B

H
2 ŷr(n)ŷr(n)

HB2ei − γ
)2]

+ β

[
nS∑
i=1

log
(
eTi B

H
2 Rŷrŷr

B2ei
)
− log

∣∣BH
2 Rŷrŷr

B2

∣∣]
where Rŷrŷr

, E
[
ŷr(n)ŷr(n)

H
]

is the covariance matrix of ŷr(n) and ei is an nS × 1 column vector whose elements are
zero except for the ith element which is one. The gradient of J(B2) is given by

∇J(B2) =
∂J(B2)

∂B∗
2

= 2

nS∑
i=1

E
[(
|ŝi(n)|2 − γ

)
ŷr(n)e

T
i

(
ŷr(n)

HB2ei
)]

+ βRŷrŷr
B2

[
(diag(Rŝŝ))

−1 −R−1
ŝŝ

]
. (35)

B. Algorithm Implementation

The procedure of applying the signal MI modified constant modulus algorithm to estimate the source-relay channel matrix
H1 is listed below.

1) Initialize B
(0)
2 and R

(0)
ŷrŷr

; Set i = 1.
2) Update R

(i)
ŷrŷr

through
R

(i)
ŷrŷr

= (1− κ)R
(i−1)
ŷrŷr

+ κŷr(i)ŷr(i)
H (36)

where 0 < κ < 1 is a small positive real number.

3) Estimate ŝ(i) =
(
B

(i−1)
2

)H
ŷr(i).



8

4) Calculate R
(i)
ŝŝ =

(
B

(i−1)
2

)H
R

(i)
ŷrŷr

B
(i−1)
2 .

5) From Steps 1–4, an estimation of (35) is obtained by removing the expectation operator E in the equation. Let us denote
this estimation as ∇̂J(B2).

6) Update the separation matrix B2 as

B
(i)
2 = B

(i−1)
2 − µ∇̂J(B2)|B2=B

(i−1)
2

. (37)

7) Repeat Steps 2–6 for i = 2, 3, · · · , L to obtain B2 = B
(L)
2 .

8) The source signals are estimated as
ŝ(n) = BH

2 ŷr(n), n = 1, · · · , L (38)

9) Estimate the source-relay channel matrix as
Ĥ1 = ŶrŜ

† (39)

where Ŷr = [ŷr(1), ŷr(2), · · · , ŷr(L)] and Ŝ = [ŝ(1), ŝ(2), · · · , ŝ(L)]. Note that since L ≥ nS , we have the right
inverse of Ŝ as

Ŝ† = ŜT (ŜŜT )−1. (40)

We would like to note that the algorithm proposed in [15] was developed for blind signal separation in one-hop systems,
whereas in this paper we apply this algorithm for channel estimation in dual-hop MIMO relay communication systems.

V. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed blind MIMO relay channel estimation algorithm through numerical
simulations. We consider a three-node two-hop MIMO relay system with nS , nR, and nD antennas equipped at the source,
relay, and destination nodes, respectively. For the proposed first-order Z-domain precoding based channel estimation algorithm,
the zeros of the precoders in (2) are chosen as

ri = ηie
jπ(2i−1)

2nR , i = 1, · · · , nR (41)

where j =
√
−1 and 0 < ηi < 1, i = 1, · · · , nR. This model ensures that all zeros are distinct and satisfy 0 < |ri| < 1, i =

1, · · · , nR, and the angles of zeros are equally spaced on the Z-plane. For the signal MI modified constant modulus based channel
estimation algorithm, unless explicitly mentioned, the matrices B(n)

2 and R
(n)
ŷrŷr

are initialized as B(0)
2 =

[
InS ,0nS×(nR−nS)

]H
and R

(0)
ŷrŷr

= InR
, respectively, where 0m×n is an m× n zero matrix. We choose µ = 0.0005, κ = 0.05, β = 1, and γ = 1

based on the following reasons. The step size of the gradient descent algorithm µ is chosen to be small enough to ensure
the convergence of the algorithm, while γ is chosen to be 1 as the absolute value of the source signals has a constant unit
value. We apply the quadrature phase-shift keying (QPSK) modulation scheme in all our simulations. We assume that the
channel matrices H1 and H2 are complex Gaussian distributed with zero mean and unit variance, and channels do not change
within L symbols of transmission. All simulation results are averaged over 1000 random channel realizations. The SNR of the
source-relay and relay-destination link is denoted as SNRs−r and SNRr−d, respectively.

In the first example, we evaluate the performance of the proposed blind channel estimation algorithm at various number
of samples L of the received signal. Fig. 2 shows the BER of the proposed algorithm versus L for various nS and nR

with nD = 4 and SNRs−r and SNRr−d fixed at 20dB. It can be seen from Fig. 2 that the BER performance of the proposed
algorithm improves when L increases. This is because in the proposed first-order Z-domain precoding based channel estimation
algorithm, the accuracy of estimating the autocorrelation matrix Cyy(k) is affected by L, i.e., the estimated Cyy(k) approaches
its theoretical value at a large L. Moreover, the performance of the signal MI modified constant modulus algorithm improves
when a larger L is used as more iterations are involved in finding the separation matrix. In the following simulation examples,
the number of samples is chosen as L = 5000 to achieve a good tradeoff between the performance and the computational
complexity. For indoor wireless relay channels, channel fading is often relatively slow whenever the mobility of the nodes is
relatively low, and for static nodes, the CSI can be almost constant [23], [24]. In this case, the required number of samples can
be collected within the channel coherent time. Therefore, our algorithm can be applied to wireless systems with static nodes
such as indoor machine-to-machine (M2M) communication.

In the second example, we study the performance of the proposed blind channel estimation algorithm in finding the separation
matrix. For each channel realization, the mean interference rejection level (MIRL) for the first-order Z-domain precoding
algorithm is calculated as

MIRLH2 = 10log10

(
1

nR(nR − 1)

nR∑
i=1

nR∑
j=1,j ̸=i

|(BH
1 H2)ij |2

|(BH
1 H2)ii|2

)
(42)
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while the MIRL of the signal MI modified constant modulus algorithm is given by

MIRLH1 = 10log10

(
1

nS(nS − 1)

nS∑
i=1

nS∑
j=1

|(C)ij |2 −max
j

(|(C)ij |2)

max
j

(|(C)ij |2)

)
. (43)

Note that a smaller value of MIRL indicates a better performance of the blind channel estimation algorithm.
Fig. 3 shows the MIRL for the proposed blind channel estimation algorithm versus SNRr−d with nS = nR = 3, nD = 4,

and SNRs−r = 20dB. It can be seen from Fig. 3 that the MIRL performance of the proposed blind channel estimation algorithm
improves with the increase of SNRr−d. Interestingly, the first-order Z-domain precoding technique performs better than the
signal MI modified constant modulus algorithm, as the latter algorithm is affected by the accuracy of the estimation of yr(n).
Note that for the first-order Z-domain precoding technique, theoretically the derivation of the separation matrix is not affected
by the noise at the destination node, thus only a small improvement is observed when SNRr−d increases. A plot of the MIRL
of the proposed blind channel estimation algorithm versus SNRr−d for SNRs−r = 20dB, nD = 4, and various nS and nR is
shown in Fig. 4. It can be seen from Fig. 4 that when the number of antennas at the source node and relay node increases,
the MIRL also increases.

In the third example, we demonstrate the performance of the proposed blind channel estimation algorithm in terms of the
normalized mean-squared error (NMSE). For the relay-destination channel, the NMSE is calculated as

NMSEH2 =
∥H2 − Ĥ2∥2F

nRnD
(44)

where ∥ · ∥F denotes the matrix Frobenius norm. Similarly, the NMSE for the estimation of the source-relay channel matrix
is given by

NMSEH1 =
∥H1 − Ĥ1∥2F

nSnR
. (45)

Similar to [20], the scaling ambiguity in estimating H2 is removed by minimizing the MSE between x(n) and x̂(n). The
scaling and permutation ambiguity in the estimation of H1 is removed by minimizing the MSE between s(n) and ŝ(n).

Fig. 5 shows the NMSE of the proposed blind estimation algorithm versus SNRr−d for various nS and nR with SNRs−r

fixed at 20dB and nD = 4. It can be seen from Fig. 5 that the NMSE of estimating H1 and H2 decreases when the number
of antennas at the source and relay nodes decreases. Note that only small improvement is observed in the estimation of H2 at
high SNRr−d due to the error floor introduced in the estimation of the scaling ambiguity. We also investigate the performance
of signal MI modified constant modulus channel estimation scheme when this algorithm is initialized with random matrices. It
can be seen from Fig. 5 that the NMSE of the first-hop channel estimation with random matrices initialization is very similar
to the NMSE when the scheme is initialized with identity matrix.

In the fourth example, we compare the proposed blind MIMO relay channel estimation algorithm with the training-based
MIMO relay channel estimation algorithm developed in [10], where the training sequences are optimized with proper adjustment
of the power available at the source and relay nodes for a fair comparison1. The channel correlation matrices used in the
training-based algorithm [10] are set to identity matrices to have the same statistical distribution as the channel model used
in the proposed blind channel estimation algorithm. Fig. 6 shows the NMSE performance of estimating H2 and H1 versus
SNRr−d with SNRs−r = 20dB, nS = nR = 2, and nD = 4. The NMSE performance of two algorithms versus SNRr−d with
SNRs−r = 20dB, nS = nR = 3, and nD = 4 is demonstrated in Fig. 7. It can be seen from Figs. 6 and 7 that at low SNR,
the performance of the proposed algorithm is comparable to that of the training-based algorithm in estimating H1. Note that
the proposed algorithm performs better than the training-based algorithm in the estimation of H2 at low SNR. This is because
in the training-based approach, a large portion of the transmission power is allocated to broadcast information, while only a
small part of the transmission power is used for channel estimation. In contrast, our proposed algorithm utilizes the transmitted
information to estimate the channels, thus, all the power available for transmission is used for channel estimation. However,
at high SNR, the training-based algorithm outperforms the proposed algorithm at the expense of bandwidth efficiency. The
MSE error floors of the proposed algorithm at high SNRr−d are mainly due to the error introduced in the estimation of the
ambiguities. For a fair comparison, both the proposed blind channel estimation algorithm and the training-based algorithm
are adjusted to have the same transmission power. This limits the performance of the training-based algorithm as the power
available for transmission is essentially fixed. Thus, error floors appear in the simulation results of the training-based algorithm.

Fig. 8 illustrates the BER performance of two algorithms versus SNRr−d when nS = nR = 2, nD = 4, and SNRs−r is
fixed at 20dB. As a benchmark, we also show the BER performance of the MIMO relay system where the channel matrices
are perfectly known. It can be seen from Fig. 8 that the BER performance of the proposed blind channel estimation algorithm
is close to the performance of the training-based algorithm. Due to the error floors, further increment of SNR would not result
in a better BER performance.

1From (3), the transmission power consumed by the relay node for the proposed blind channel estimation algorithm is higher than the one in [10] by a
factor of (1 + |ri|2), due to the precoder applied at the relay node.
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Finally, we compare the computational complexity of the proposed blind channel estimation algorithm and the training-based
channel estimation technique [10]. The complexity of the first-order Z-domain precoding based channel estimation algorithm
is governed by the EVD and the singular value decomposition (SVD) operations required in deriving the separation matrix,
while the complexity of the signal MI modified constant modulus algorithm is governed by the matrix inversion operation in
the gradient descent method. Thus, the computational complexity of the proposed blind channel estimation algorithm can be
estimated as O(n3

D+Ln3
S), where the first term represents the complexity of the first-order Z-domain precoding based channel

estimation algorithm, and the second term is the complexity of the signal MI modified constant modulus algorithm.
The complexity of the training-based channel estimation technique [10] can be estimated as O(dνdcn

2
R + dadµ1dλF

nS +
dadµ2dµ3dλSnD), where dν , dµ1 , dµ2 , and dµ3 stand for the number of iterations required to obtain the optimal Lagrangian
multipliers associated with the optimization problem in [10], dc and dλS

represent the number of bisection operations required
to obtain the optimal training sequences, dλF is the number of bisection operations required to derive the optimal relay
amplification matrix, and da stands for the number of iterations required to find the local optimal solution to the problem.

The implementation of channel coding and decoding will benefit both the proposed algorithm and the training-based
algorithm. However, channel coding and decoding are not included in this paper as the focus of this paper is on the channel
estimation of MIMO relay networks.

VI. CONCLUSIONS

We have developed a new blind channel estimation algorithm for two-hop MIMO relay systems. The proposed algorithm is
able to estimate the individual source-relay and relay-destination CSI at the destination node, which is necessary for retrieving
the source signals at the destination node. In particular, a novel first-order Z-domain precoding technique has been developed
for the blind estimation of the relay-destination channel matrix. The proposed algorithm has a similar BER performance
to the training-based channel estimation algorithm, and better bandwidth efficiency as all the bandwidth is used for sending
communication signals. The proposed algorithm can be extended to other MIMO relay communication systems such as multiuser
MIMO relay systems with multiple relay nodes.

APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 through verifying the necessity and sufficiency conditions. Assuming that (16) is satisfied, we prove
the necessity of (17) as follow

bH
1,iQ̄yy(ri) = bH

1,iH2,iTi(ri)H
H
2 = 0. (46)

Since we assumed the source signals to be temporally white, from (3), (10), and (16), we prove the necessity condition for
(18) as

bH
1,iCyy(1)b1,i = bH

1,iH2Cxx(1)H
H
2 b1,i

= cic
∗
iE
[
xi(n)xi(n− 1)∗

]
= |ci|2E

[(
yr,i(n)− riyr,i(n− 1)

)(
yr,i(n− 1)− riyr,i(n− 2)

)∗]
= |ci|2E

[
− riyr,i(n− 1)yr,i(n− 1)∗

]
= −|ci|2riσ2

i

̸= 0

where σ2
i , E[yr,i(n− 1)yr,i(n− 1)∗].

Now we prove the sufficiency of (17) and (18). Since bH
1,iQ̄yy(ri) = 0, from (15) we have

bH
1,iH2,iTi(ri)H

H
2 = 0. (47)

The matrix HH
2 is of full row rank, and thus implying that

bH
1,iH2,iTi(ri) = 0. (48)

From Lemma 1, all the rows of the matrix Ti(ri) excluding the ith row are linearly independent, and therefore we obtain that

bH
1,ih2,j = 0, j = 1, · · · , nR, j ̸= i. (49)

Subsequently, from (13) and (49), we have

bH
1,iH2 =

[
0, · · · , 0,bH

1,ih2,i, 0, · · · , 0
]
. (50)

Next, we consider bH
1,iCyy(1)b1,i ̸= 0. From (10), we have

bH
1,iH2Cxx(1)H

H
2 b1,i ̸= 0 (51)
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which implies that bH
1,iH2 ̸= 0, and from (50), we can infer that

bH
1,iH2 = [0, · · · , 0, ci, 0, · · · , 0] (52)

where ci = bH
1,ih2,i ̸= 0. �

APPENDIX B
PROOF OF COROLLARY 1

A. For τ = 0

For the case of nD > nR, the channel matrix H2 has a row-rank deficiency, i.e., the rows of H2 are linearly dependent.
Subsequently, an nD × 1 non-zero vector bi exists such that

bH
i H2 = 0. (53)

From (15) and (53), we have
bH
i Q̄yy(ri) = bH

i H2,iTi(ri)H
H
2 = 0. (54)

Based on (10) and (53), there is

bH
i Cyy(0)bi = bH

i H2Cxx(0)H
H
2 bi + bH

i Cww(0)bi

= bH
i Cww(0)bi

= σ2
wb

H
i bi

̸= 0. (55)

It can be observed from (53)-(55) that bH
i Q̄yy(ri) = 0 and bH

i Cyy(0)bi ̸= 0 do not guarantee (16).

B. For τ ≥ 2

Assuming (16) is satisfied, we have

bH
i Cyy(τ)bi = bH

i H2Cxx(τ)H
H
2 bi

= cic
∗
iE
[
xi(n)xi(n− τ)∗

]
= |ci|2E

[(
yr,i(n)− riyr,i(n− 1)

)(
yr,i(n− τ)− riyr,i(n− τ − 1)

)∗]
= 0.

This indicates that no separation vector bi can satisfy the condition bH
i Cyy(τ)bi ̸= 0 for time lag τ ≥ 2. �
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Fig. 1. Block diagram of a general two-hop MIMO relay communication system.
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Fig. 2. Example 1: BER versus number of samples for various nS and nR with SNRr−d = SNRs−r = 20dB and nD = 4.
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5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR
r−d

(dB)

N
M

S
E

 

 

H
1
 −  Proposed Blind Algorithm

H
2
 −  Proposed Blind Algorithm

H
1
 − Training−Based Algorithm

H
2
 − Training−Based Algorithm

Fig. 7. Example 4: Normalized MSE versus SNRr−d for nS = nR = 3 and nD = 4 with SNRs−r = 20dB.



16

5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR
r−d

(dB)

B
E

R

 

 
Proposed Blind Algorithm
Training−Based Algorithm with estimated channels
MMSE Receiver with perfect channels

Fig. 8. Example 4: BER versus SNRr−d for nS = nR = 2 and nD = 4 with SNRs−r = 20dB.


