3 research outputs found

    Improving the predictive skills of hydrological models using a combinatorial optimization algorithm and artificial neural networks

    Get PDF
    [Abstract:] Ensemble modelling is a numerical technique used to combine the results of a number of different individual models in order to obtain more robust, better-fitting predictions. The main drawback of ensemble modeling is the identification of the individual models that can be efficiently combined. The present study proposes a strategy based on the Random-Restart Hill-Climbing algorithm to efficiently build ANN-based hydrological ensemble models. The proposed technique is applied in a case study, using three different criteria for identifying the model combinations, different number of individual models to build the ensemble, and two different ANN training algorithms. The results show that model combinations based on the Pearson coefficient produce the best ensembles, outperforming the best individual model in 100% of the cases, and reaching NSE values up to 0.91 in the validation period. Furthermore, the Levenberg-Marquardt training algorithm showed a much lower computational cost than the Bayesian regularisation algorithm, with no significant differences in terms of accuracy.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study is financed by the Galician government (Xunta de Galicia) as part of its pre-doctoral fellowship program (Axudas de apoio á etapa predoutoral 2019) Register No ED481A-2019/014.Xunta de Galicia; ED481A-2019/01

    INTEGRATED APPROACH OF SCHEDULING A FLEXIBLE JOB SHOP USING ENHANCED FIREFLY AND HYBRID FLOWER POLLINATION ALGORITHMS

    Get PDF
    Manufacturing industries are undergoing tremendous transformation due to Industry 4.0. Flexibility, consumer demands, product customization, high product quality, and reduced delivery times are mandatory for the survival of a manufacturing plant, for which scheduling plays a major role. A job shop problem modified with flexibility is called flexible job shop scheduling. It is an integral part of smart manufacturing. This study aims to optimize scheduling using an integrated approach, where assigning machines and their routing are concurrently performed. Two hybrid methods have been proposed: 1) The Hybrid Adaptive Firefly Algorithm (HAdFA) and 2) Hybrid Flower Pollination Algorithm (HFPA). To address the premature convergence problem inherent in the classic firefly algorithm, the proposed HAdFA employs two novel adaptive strategies: employing an adaptive randomization parameter (α), which dynamically modifies at each step, and Gray relational analysis updates firefly at each step, thereby maintaining a balance between diversification and intensification. HFPA is inspired by the pollination strategy of flowers. Additionally, both HAdFA and HFPA are incorporated with a local search technique of enhanced simulated annealing to accelerate the algorithm and prevent local optima entrapment. Tests on standard benchmark cases have been performed to demonstrate the proposed algorithm’s efficacy. The proposed HAdFA surpasses the performance of the HFPA and other metaheuristics found in the literature. A case study was conducted to further authenticate the efficiency of our algorithm. Our algorithm significantly improves convergence speed and enables the exploration of a large number of rich optimal solutions.
    corecore