3,246 research outputs found

    Categorical data analysis using a skewed Weibull regression model

    Full text link
    In this paper, we present a Weibull link (skewed) model for categorical response data arising from binomial as well as multinomial model. We show that, for such types of categorical data, the most commonly used models (logit, probit and complementary log-log) can be obtained as limiting cases. We further compare the proposed model with some other asymmetrical models. The Bayesian as well as frequentist estimation procedures for binomial and multinomial data responses are presented in details. The analysis of two data sets to show the efficiency of the proposed model is performed

    A Quantile Variant of the EM Algorithm and Its Applications to Parameter Estimation with Interval Data

    Full text link
    The expectation-maximization (EM) algorithm is a powerful computational technique for finding the maximum likelihood estimates for parametric models when the data are not fully observed. The EM is best suited for situations where the expectation in each E-step and the maximization in each M-step are straightforward. A difficulty with the implementation of the EM algorithm is that each E-step requires the integration of the log-likelihood function in closed form. The explicit integration can be avoided by using what is known as the Monte Carlo EM (MCEM) algorithm. The MCEM uses a random sample to estimate the integral at each E-step. However, the problem with the MCEM is that it often converges to the integral quite slowly and the convergence behavior can also be unstable, which causes a computational burden. In this paper, we propose what we refer to as the quantile variant of the EM (QEM) algorithm. We prove that the proposed QEM method has an accuracy of O(1/K2)O(1/K^2) while the MCEM method has an accuracy of Op(1/K)O_p(1/\sqrt{K}). Thus, the proposed QEM method possesses faster and more stable convergence properties when compared with the MCEM algorithm. The improved performance is illustrated through the numerical studies. Several practical examples illustrating its use in interval-censored data problems are also provided

    Reliability-centered maintenance: analyzing failure in harvest sugarcane machine using some generalizations of the Weibull distribution

    Full text link
    In this study we considered five generalizations of the standard Weibull distribution to describe the lifetime of two important components of harvest sugarcane machines. The harvesters considered in the analysis does the harvest of an average of 20 tons of sugarcane per hour and their malfunction may lead to major losses, therefore, an effective maintenance approach is of main interesting for cost savings. For the considered distributions, the mathematical background is presented. Maximum likelihood is used for parameter estimation. Further, different discrimination procedures were used to obtain the best fit for each component. At the end, we propose a maintenance scheduling for the components of the harvesters using predictive analysis

    Density Regression Based on Proportional Hazards Family

    Get PDF
    This paper develops a class of density regression models based on proportional hazards family, namely, Gamma transformation proportional hazard (Gt-PH) model . Exact inference for the regression parameters and hazard ratio is derived. These estimators enjoy some good properties such as unbiased estimation, which may not be shared by other inference methods such as maximum likelihood estimate (MLE). Generalised confidence interval and hypothesis testing for regression parameters are also provided. The method itself is easy to implement in practice. The regression method is also extended to Lasso-based variable selection.National Natural Science Foundation of China (Grant No. 71490725, 71071087 and 11261048
    • 

    corecore