3,392 research outputs found

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    VEGa : a high performance vehicular Ethernet gateway on hybrid FPGA

    Get PDF
    Modern vehicles employ a large amount of distributed computation and require the underlying communication scheme to provide high bandwidth and low latency. Existing communication protocols like Controller Area Network (CAN) and FlexRay do not provide the required bandwidth, paving the way for adoption of Ethernet as the next generation network backbone for in-vehicle systems. Ethernet would co-exist with safety-critical communication on legacy networks, providing a scalable platform for evolving vehicular systems. This requires a high-performance network gateway that can simultaneously handle high bandwidth, low latency, and isolation; features that are not achievable with traditional processor based gateway implementations. We present VEGa, a configurable vehicular Ethernet gateway architecture utilising a hybrid FPGA to closely couple software control on a processor with dedicated switching circuit on the reconfigurable fabric. The fabric implements isolated interface ports and an accelerated routing mechanism, which can be controlled and monitored from software. Further, reconfigurability enables the switching behaviour to be altered at run-time under software control, while the configurable architecture allows easy adaptation to different vehicular architectures using high-level parameter settings. We demonstrate the architecture on the Xilinx Zynq platform and evaluate the bandwidth, latency, and isolation using extensive tests in hardware

    Time Sensitive Networking Protocol Implementation for Linux End Equipment

    Get PDF
    By bringing industrial-grade robustness and reliability to Ethernet, Time Sensitive Networking (TSN) offers an IEEE standard communication technology that enables interoperability between standard-conformant industrial devices from any vendor. It also eliminates the need for physical separation of critical and non-critical communication networks, which allows a direct exchange of data between operation centers and companies, a concept at the heart of the Industrial Internet of Things (IIoT). This article describes creating an end-to-end TSN network using specialized PCI Express (PCIe) cards and two final Linux endpoints. For this purpose, the two primary standards of TSN, IEEE 802.1AS (regarding clock synchronization), and IEEE 802.1Qbv (regarding time scheduled traffic) have been implemented in Linux equipment as well as a configuration and monitoring system.This work has been supported by the Ministerio de EconomĂ­a y Competitividad of Spain within the project TEC2017-84011-R and FEDER funds as well as by the Department of Education of the Basque Government within the fund for research groups of the Basque university system IT978-16

    Real-Time Performance of Industrial IoT Communication Technologies: A Review

    Full text link
    With the growing need for automation and the ongoing merge of OT and IT, industrial networks have to transport a high amount of heterogeneous data with mixed criticality such as control traffic, sensor data, and configuration messages. Current advances in IT technologies furthermore enable a new set of automation scenarios under the roof of Industry 4.0 and IIoT where industrial networks now have to meet new requirements in flexibility and reliability. The necessary real-time guarantees will place significant demands on the networks. In this paper, we identify IIoT use cases and infer real-time requirements along several axes before bridging the gap between real-time network technologies and the identified scenarios. We review real-time networking technologies and present peer-reviewed works from the past 5 years for industrial environments. We investigate how these can be applied to controllers, systems, and embedded devices. Finally, we discuss open challenges for real-time communication technologies to enable the identified scenarios. The review shows academic interest in the field of real-time communication technologies but also highlights a lack of a fixed set of standards important for trust in safety and reliability, especially where wireless technologies are concerned.Comment: IEEE Internet of Things Journal 2023 | Journal article DOI: 10.1109/JIOT.2023.333250

    Integrated Transversal Equalizers in High-Speed Fiber-Optic Systems

    Get PDF
    Intersymbol interference (ISI) caused by intermodal dispersion in multimode fibers is the major limiting factor in the achievable data rate or transmission distance in high-speed multimode fiber-optic links for local area networks applications. Compared with optical-domain and other electrical-domain dispersion compensation methods, equalization with transversal filters based on distributed circuit techniques presents a cost-effective and low-power solution. The design of integrated distributed transversal equalizers is described in detail with focus on delay lines and gain stages. This seven-tap distributed transversal equalizer prototype has been implemented in a commercial 0.18-µm SiGe BiCMOS process for 10-Gb/s multimode fiber-optic links. A seven-tap distributed transversal equalizer reduces the ISI of a 10-Gb/s signal after 800 m of 50-µm multimode fiber from 5 to 1.38 dB, and improves the bit-error rate from about 10^-5 to less than 10^-12

    An implementation of packet-switched communication for pilot protection at Tennessee Valley Authority

    Get PDF
    The utility network has long relied on Time Division Multiplexing (TDM) such as T1 and Synchronous Optical Network (SONET) as the main channel to transmit and receive data in a communication system. However, TDM technology is aging and its equipment becoming obsolete as vendors transition to Packet-Switched Networks (PSN) to make way for Ethernet-based network communications. Teleprotection is a critical element for a reliable power system as it provides high-speed tripping for faults on the protected line and is applied in various pilot protection schemes. Protection schemes cannot perform at their best without a fast and reliable communication system. The transition from a circuit-switched technology like SONET to a packet-based technology like Multiprotocol Label Switching-Transport Profile (MPLS-TP) has caused reservations for protection engineers as they express their concerns for lacking guaranteed 100% availability and potential latency. This paper will address this issue and the consistent test results at the Tennessee Valley Authority (TVA)\u27s lab have proven to satisfy the communication requirements in a teleprotection system. Teleprotection traffics make to its destination in order in microseconds, the symmetrical delay is less than 1µs, and especially the recovery from a failure occurs under 50ms (3 cycles). The results reassure the protection engineers that the Ethernet migration is necessary yet provides a better performance compared to the legacy system
    • …
    corecore