23,893 research outputs found

    Noise Cancellation In Speech Signal Processing Using Adaptive Algorithm

    Get PDF
    Speech has always been one of the most important carriers of information for people it becomes a challenge to maintain its high quality. In many application of noise cancellation, the changes in signal characteristics could be quite fast. This requ ires the utilization of adaptive algorithms, which converge rapidly. Least Mean Squares (LMS) and Normalized Least Mean Squares (NLMS) adaptive filters have been used in a wide range of signal processing application because of its simplicity in computation and implementation. The Recursive Least Squares (RLS) algorithm has established itself as the "ultimate" adaptive filtering algorithm in the sense that it is the adaptive filter exhibiting the best convergence behavior. Unfortunately, practical implementations o f the algorithm are often associated with high computational complexity and/or poor numerical properties. Recently adaptive filteri ng was presented, have a nice tradeoff between complexity and the convergence speed. This paper describes a new approach for n oise cancellation in speech signal using the new adaptive filtering algorithm named affine projection algorithm for attenuating no ise in speech signals. The simulation results demonstrate the good performance of the new algorithm in attenuating the noise

    A study on adaptive filtering for noise and echo cancellation.

    Get PDF
    The objective of this thesis is to investigate the adaptive filtering technique on the application of noise and echo cancellation. As a relatively new area in Digital Signal Processing (DSP), adaptive filters have gained a lot of popularity in the past several decades due to the advantages that they can deal with time-varying digital system and they do not require a priori knowledge of the statistics of the information to be processed. Adaptive filters have been successfully applied in a great many areas such as communications, speech processing, image processing, and noise/echo cancellation. Since Bernard Widrow and his colleagues introduced adaptive filter in the 1960s, many researchers have been working on noise/echo cancellation by using adaptive filters with different algorithms. Among these algorithms, normalized least mean square (NLMS) provides an efficient and robust approach, in which the model parameters are obtained on the base of mean square error (MSE). The choice of a structure for the adaptive filters also plays an important role on the performance of the algorithm as a whole. For this purpose, two different filter structures: finite impulse response (FIR) filter and infinite impulse response (IIR) filter have been studied. The adaptive processes with two kinds of filter structures and the aforementioned algorithm have been implemented and simulated using Matlab.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .J53. Source: Masters Abstracts International, Volume: 44-01, page: 0472. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Adaptive cancellation techniques for noise reduction in electrocardiography

    Get PDF
    This thesis describes an investigation of the application of adaptive filtering techniques in electrocardiography (ECG), with particular reference to exercise testing. The main objective in this study was to observe the effectiveness of adaptive methods for noise reduction. A number of techniques, including averaging, were tested for comparison and the limitation and inadequacy of these techniques in noise reduction were used as the basis for extending the application of adaptive filtering techniques. The theory and application of adaptive filtering relating to noise reduction in ECG has been developed, based upon the adaptive transversal filter using the Widrow-Hoff algorithm. The application of a new version of the adaptive filter, referred to the minimal time-sequence adaptive filter to enhance the ECG, was tested in order to improve cancellation with less distortion. The coherence function was studied as the basis for selecting electrode placement for particular adaptive filtering applications. The adaptive filtering technique was found to be an appropriate method for noise reduction and can improve the signal-to noise ratio by up to 15dB. It was also found, through the assessment of the results presented from 22 patients, that the use of adaptive filters in the exercise ECG is appropriate, after the removal of a d.c. variation

    An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    Get PDF
    In this research an advance variable structure adaptive Multiple Sub-Filters (MSF) based algorithm for single channel Acoustic Echo Cancellation (AEC) is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE) and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers

    Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems

    Get PDF
    This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal

    Feature Extracting in the Presence of Environmental Noise, using Subband Adaptive Filtering

    Get PDF
    In this work, a new feature extracting method in noisy environments is proposed. The approach is based on subband decomposition of speech signals followed by adaptive filtering in the noisiest subbbands of speech. The speech decomposition is obtained using low complexity octave filter bank, while adaptive filtering is performed using the normalized least mean square algorithm. The performance of the new feature was evaluated for isolated word speech recognition in the presence of a car noise. The proposed method showed higher recognition accuracy than conventional methods in noisy environments
    corecore