9,192 research outputs found

    Optimal control and robust estimation for ocean wave energy converters

    No full text
    This thesis deals with the optimal control of wave energy converters and some associated observer design problems. The first part of the thesis will investigate model predictive control of an ocean wave energy converter to maximize extracted power. A generic heaving converter that can have both linear dampers and active elements as a power take-off system is considered and an efficient optimal control algorithm is developed for use within a receding horizon control framework. The optimal control is also characterized analytically. A direct transcription of the optimal control problem is also considered as a general nonlinear program. A variation of the projected gradient optimization scheme is formulated and shown to be feasible and computationally inexpensive compared to a standard nonlinear program solver. Since the system model is bilinear and the cost function is not convex quadratic, the resulting optimization problem is shown not to be a quadratic program. Results are compared with other methods like optimal latching to demonstrate the improvement in absorbed power under irregular sea condition simulations. In the second part, robust estimation of the radiation forces and states inherent in the optimal control of wave energy converters is considered. Motivated by this, low order H∞ observer design for bilinear systems with input constraints is investigated and numerically tractable methods for design are developed. A bilinear Luenberger type observer is formulated and the resulting synthesis problem reformulated as that for a linear parameter varying system. A bilinear matrix inequality problem is then solved to find nominal and robust quadratically stable observers. The performance of these observers is compared with that of an extended Kalman filter. The robustness of the observers to parameter uncertainty and to variation in the radiation subsystem model order is also investigated. This thesis also explores the numerical integration of bilinear control systems with zero-order hold on the control inputs. Making use of exponential integrators, exact to high accuracy integration is proposed for such systems. New a priori bounds are derived on the computational complexity of integrating bilinear systems with a given error tolerance. Employing our new bounds on computational complexity, we propose a direct exponential integrator to solve bilinear ODEs via the solution of sparse linear systems of equations. Based on this, a novel sparse direct collocation of bilinear systems for optimal control is proposed. These integration schemes are also used within the indirect optimal control method discussed in the first part.Open Acces

    A Robust Constrained Reference Governor Approach using Linear Matrix Inequalities

    Get PDF
    The purpose of this paper is to examine and provide a solution to the output reference tracking problem for uncertain systems subject to input saturation. As well-known, input saturation and modelling errors are very common problems at industry, where control schemes are implemented without accounting for such problems. In many cases, it is sometimes difficult to modify the existing implemented control schemes being necessary to provide them with external supervisory control approaches in order to tackle problems with constraints and modelling errors. In this way, a cascade structure is proposed, combining an inner loop containing any proper controller with an outer loop where a generalized predictive controller (GPC) provides adequate references for the inner loop considering input saturations and uncertainties. Therefore, the contribution of this paper consists in providing a state space representation for the inner loop and using linear matrix inequalities (LMI) to obtain a predictive state-vector feedback in such a way that the input reference for the inner loop is calculated to satisfy robust tracking specifications considering input saturations. Hence, the final proposed solution consists in solving a regulation problem to a fixed reference value subjected to a set of constraints described by several LMI and bilinear matrix inequalities (BMI). The main contribution of the paper is that the proposed solution is a non-linear setpoint tracking approach, that is, it is allowed that the system goes into saturation facing the problem of setpoint tracking instead of regulating to the origin. An illustrative numerical example is presented.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-01/0

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur

    On Time Optimization of Centroidal Momentum Dynamics

    Full text link
    Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing.Comment: 7 pages, 4 figures, ICRA 201
    corecore