806 research outputs found

    Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments

    Full text link
    For the past decade, query processing on relational data has been studied extensively, and many theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud ever decrypting the data is a very challenging task. In this paper, we focus on solving the k-nearest neighbor (kNN) query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud, and the cloud returns the k closest records to the user. We first present a basic scheme and demonstrate that such a naive solution is not secure. To provide better security, we propose a secure kNN protocol that protects the confidentiality of the data, user's input query, and data access patterns. Also, we empirically analyze the efficiency of our protocols through various experiments. These results indicate that our secure protocol is very efficient on the user end, and this lightweight scheme allows a user to use any mobile device to perform the kNN query.Comment: 23 pages, 8 figures, and 4 table

    Building Confidential and Efficient Query Services in the Cloud with RASP Data Perturbation

    Full text link
    With the wide deployment of public cloud computing infrastructures, using clouds to host data query services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly reduce the in-house workload to fully realize the benefits of cloud computing. We propose the RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. The RASP data perturbation method combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, which allows existing indexing techniques to be applied to speedup range query processing. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN queries. We have carefully analyzed the attacks on data and queries under a precisely defined threat model and realistic security assumptions. Extensive experiments have been conducted to show the advantages of this approach on efficiency and security.Comment: 18 pages, to appear in IEEE TKDE, accepted in December 201

    Privacy-preserving query processing over encrypted data in cloud

    Get PDF
    The query processing of relational data has been studied extensively throughout the past decade. A number of theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, data owners now have the opportunity to outsource not only their data but also data processing functionalities to the cloud. Because of data security and personal privacy concerns, sensitive data (e.g., medical records) should be encrypted before being outsourced to a cloud, and the cloud should perform query processing tasks on the encrypted data only. These tasks are termed as Privacy-Preserving Query Processing (PPQP) over encrypted data. Based on the concept of Secure Multiparty Computation (SMC), SMC-based distributed protocols were developed to allow the cloud to perform queries directly over encrypted data. These protocols protect the confidentiality of the stored data, user queries, and data access patterns from cloud service providers and other unauthorized users. Several queries were considered in an attempt to create a well-defined scope. These queries included the k-Nearest Neighbor (kNN) query, advanced analytical query, and correlated range query. The proposed protocols utilize an additive homomorphic cryptosystem and/or a garbled circuit technique at different stages of query processing to achieve the best performance. In addition, by adopting a multi-cloud computing paradigm, all computations can be done on the encrypted data without using very expensive fully homomorphic encryptions. The proposed protocols\u27 security was analyzed theoretically, and its practicality was evaluated through extensive empirical results --Abstract, page iii
    • …
    corecore