1,624 research outputs found

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Comparison of different strategies of utilizing fuzzy clustering in structure identification

    Get PDF
    Fuzzy systems approximate highly nonlinear systems by means of fuzzy "if-then" rules. In the literature, various algorithms are proposed for mining. These algorithms commonly utilize fuzzy clustering in structure identification. Basically, there are three different approaches in which one can utilize fuzzy clustering; the ïżœfirst one is based on input space clustering, the second one considers clustering realized in the output space, while the third one is concerned with clustering realized in the combined input-output space. In this study, we analyze these three approaches. We discuss each of the algorithms in great detail and o€er a thorough comparative analysis. Finally, we compare the performances of these algorithms in a medical diagnosis classiïżœcation problem, namely Aachen Aphasia Test. The experiment and the results provide a valuable insight about the merits and the shortcomings of these three clustering approaches

    An artificial immune systems based predictive modelling approach for the multi-objective elicitation of Mamdani fuzzy rules: a special application to modelling alloys

    Get PDF
    In this paper, a systematic multi-objective Mamdani fuzzy modeling approach is proposed, which can be viewed as an extended version of the previously proposed Singleton fuzzy modeling paradigm. A set of new back-error propagation (BEP) updating formulas are derived so that they can replace the old set developed in the singleton version. With the substitution, the extension to the multi-objective Mamdani Fuzzy Rule-Based Systems (FRBS) is almost endemic. Due to the carefully chosen output membership functions, the inference and the defuzzification methods, a closed form integral can be deducted for the defuzzification method, which ensures the efficiency of the developed Mamdani FRBS. Some important factors, such as the variable length coding scheme and the rule alignment, are also discussed. Experimental results for a real data set from the steel industry suggest that the proposed approach is capable of eliciting not only accurate but also transparent FRBS with good generalization ability

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Evolving Takagi-Sugeno-Kang fuzzy systems using multi-population grammar guided genetic programming

    Get PDF
    This work proposes a novel approach for the automatic generation and tuning of complete Takagi-Sugeno-Kang fuzzy rule based systems. The examined system aims to explore the effects of a reduced search space for a genetic programming framework by means of grammar guidance that describes candidate structures of fuzzy rule based systems. The presented approach applies context-free grammars to generate individuals and evolve solutions through the search process of the algorithm. A multi-population approach is adopted for the genetic programming system, in order to increase the depth of the search process. Two candidate grammars are examined in one regression problem and one system identification task. Preliminary results are included and discussion proposes further research directions

    Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization

    Get PDF
    To achieve the maximum power from wind in variable-speed regions of wind turbines (WTs), a suitable control signal should be applied to the pitch angle of the blades. However, the available uncertainty in the modeling of WTs complicates calculations of these signals. To cope with this problem, an optimal controller is suitable, such as particle swarm optimization (PSO). To improve the performance of the controller, fractional order PSO (FPSO) is proposed and implemented. In order to construct this approach for a two-mass WT, we propose a new state feedback, which was first applied to the turbine. The idea behind this state feedback was based on the Taylor series. Then, a linear model with uncertainty was obtained with a new input control signal. Thereafter, the conventional PSO (CPSO) and FPSO were used as optimal controllers for the resulting linear model. Finally, a comparison was performed between CPSO and FPSO and the fuzzy Takagi–Sugeno–Kang (TSK) inference system. The provided comparison demonstrates the advantages of the Taylor series with combination to these controllers. Notably, without the state feedback, CPSO, FPSO, and TSK fuzzy systems cannot stabilize WTs in tracking the desired trajectory
    • 

    corecore