33,924 research outputs found

    Validating specifications of dynamic systems using automated reasoning techniques

    Get PDF
    In this paper, we propose a new approach to validating formal specifications of observable behavior of discrete dynamic systems. By observable behavior we mean system behavior as observed by users or other systems in the environment of the system. Validation of a formal specification of an informal domain tries to answer the question whether the specification actually describes the intended domain. This differs from the verification problem, which deals with the correspondence between formal objects, e.g. between a formal specification of a system and an implementation of it. We consider formal specifications of object-oriented dynamic systems that are subject to static and dynamic integrity constraints. To validate that such a specification expresses the intended behavior, we propose to use a tool that can answer reachability queries. In a reachability query we ask whether the system can evolve from one state into another without violating the integrity constraints. If the query is answered positively, the system should exhibit an example path between the states; if the answer is negative, the system should explain why this is so. An example path produced by the tool can be used to produce scenarios for presentations of system behavior, but can also be used as a basis for acceptance testing. In this paper, we discuss the use of planning and theoremproving techniques to answer such queries, and illustrate the use of reachability queries in the context of information system development

    Applying the proto-theory of design to explain and modify the parameter analysis method of conceptual design

    Get PDF
    This article reports on the outcomes of applying the notions provided by the reconstructed proto-theory of design, based on Aristotle’s remarks, to the parameter analysis (PA) method of conceptual design. Two research questions are addressed: (1) What further clarification and explanation to the approach of PA is provided by the proto-theory? (2) Which conclusions can be drawn from the study of an empirically derived design approach through the proto-theory regarding usefulness, validity and range of that theory? An overview of PA and an application example illustrate its present model and unique characteristics. Then, seven features of the proto-theory are explained and demonstrated through geometrical problem solving and analogies are drawn between these features and the corresponding ideas in modern design thinking. Historical and current uses of the terms analysis and synthesis in design are also outlined and contrasted, showing that caution should be exercised when applying them. Consequences regarding the design moves, process and strategy of PA allow proposing modifications to its model, while demonstrating how the ancient method of analysis can contribute to better understanding of contemporary design-theoretic issues

    Application of shape grammar theory to underground rail station design and passenger evacuation

    Get PDF
    This paper outlines the development of a computer design environment that generates station ‘reference’ plans for analysis by designers at the project feasibility stage. The developed program uses the theoretical concept of shape grammar, based upon principles of recognition and replacement of a particular shape to enable the generation of station layouts. The developed novel shape grammar rules produce multiple plans of accurately sized infrastructure faster than by traditional means. A finite set of station infrastructure elements and a finite set of connection possibilities for them, directed by regulations and the logical processes of station usage, allows for increasingly complex composite shapes to be automatically produced, some of which are credible station layouts at ‘reference’ block plan level. The proposed method of generating shape grammar plans is aligned to London Underground standards, in particular to the Station Planning Standards and Guidelines 5th edition (SPSG5 2007) and the BS-7974 fire safety engineering process. Quantitative testing is via existing evacuation modelling software. The prototype system, named SGEvac, has both the scope and potential for redevelopment to any other country’s design legislation

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515

    Case Study on Design Management: Inefficiencies and Possible Remedies

    Get PDF
    Delivering better products with a reduced lead time and less resources has become the primary focus of design management. The aim of this work is to revisit typical design management inefficiencies and discuss possible remedies for these problems. To this end, a case study and interviews with seven Estonian architects were carried out. The data obtained was analyzed within the framework of the transformation-flow-value theory of production. Despite its failure to deliver customer value, a single-minded transformation view of operations has been the dominant approach taken in design management and processes, leading to inefficiencies in design practices

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA
    corecore