15 research outputs found

    Lossy/Lossless Floating/Grounded Inductance Simulation Using One DDCC

    Get PDF
    In this work, we present new topologies for realizing one lossless grounded inductor and two floating, one lossless and one lossy, inductors employing a single differential difference current conveyor (DDCC) and a minimum number of passive components, two resistors, and one grounded capacitor. The floating inductors are based on ordinary dual-output differential difference current conveyor (DO-DDCC) while the grounded lossless inductor is based one a modified dual-output differential difference current conveyor (MDO-DDCC). The proposed lossless floating inductor is obtained from the lossy one by employing a negative impedance converter (NIC). The non-ideality effects of the active element on the simulated inductors are investigated. To demonstrate the performance of the proposed grounded inductance simulator as an example, it is used to construct a parallel resonant circuit. SPICE simulation results are given to confirm the theoretical analysis

    One-Input Three-Output Current-Mode Universal Filter Using Translinear Current Conveyors

    Get PDF
    This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations

    Study of Adjustable Gains for Control of Oscillation Frequency and Oscillation Condition in 3R-2C Oscillator

    Get PDF
    An idea of adjustable gain in order to obtain controllable features is very useful for design of tuneable oscillators. Several active elements with adjustable properties (current and voltage gain) are discussed in this paper. Three modified oscillator conceptions that are quite simple, directly electronically adjustable, providing independent control of oscillation condition and frequency were designed. Positive and negative aspects of presented method of control are discussed. Expected assumptions of adjustability are verified experimentally on one of the presented solution

    Unity / variable gain voltage - mode / current - mode first - order all - pass filters using single Dual - X second generation current conveyor

    Get PDF
    In this paper, two new general topologies for realizing voltage-mode (VM)/current-mode (CM) first-order all-pass filter transfer functions (TFs) are presented. The proposed topologies use single dual-X second-generation current conveyor (DXCCII) and three impedances Z(1), Z(2) and Z(3). Based on the selection of Z(1), Z(2) and Z(3), new VM and CM all-pass filters with unity or variable gains are obtained. The proposed VM/CM filters have high-input/high-output impedances which provide easy cascading at their input/output terminals, respectively. Non-ideal gain and parasitic impedance effects, associated with actual DXCCII implementation, on the performance of the developed topologies are also included. Finally, simulation program with integrated circuit emphasis (SPICE) simulation results based on level 49, 0.25 mu m TSMC complementary metal-oxide-semiconductor (CMOS) technology parameters are given to confirm the theory

    Voltage Gain-Controlled Third-Generation Current Conveyor and its All-Pass Filter Verification

    Get PDF
    The paper presents a new active building block (ABB) called minus-type voltage gain-controlled third-generation current conveyor (VGC-CCIII) in which the voltage gain between Y to X terminal can be controlled. The usefulness of the tunable feature in the presented ABB is demonstrated in current-mode {0.3rd; 0.5th; 0.7th; 1st}-order all-pass filter (APF) employing single VGC-CCIII, one capacitor, and one resistor. The theoretical results of the integer- and fractional-order APF are verified by SPICE simulations based on readily available IC OPA860 macromodel, which can also be used in experiments

    Current Gain Controlled CCTA and its Application in Quadrature Oscillator and Direct Frequency Modulator

    Get PDF
    A modified conception of adjustable current conveyor transconductance amplifier (CCTA) and its interesting application in simple quadrature oscillator expandable for direct frequency modulation purposes, employing only four grounded passive elements is presented in this paper. It is quite simple solution for modern communication subsystem components. An electronic adjusting of the oscillation frequency is easily possible and control of condition of the oscillation is realized via only one grounded resistor. The characteristic equation, condition of oscillation and major parasitic influences of real active part are discussed. The verification includes PSpice simulation and measurement with the CCTA block formed by commercially available active elements

    CFOA-Based Fractional Order PIλDδ Controller

    Get PDF
    Conventional Current Feedback Operational Amplifier (CFOA) is not current controllable or not electronically controllable. It is thus of interest to add a current mirror into the CFOA in order to make it current controllable. This modification can be achieved by using Diamond Transistor (DT) instead of going through complicated IC fabrication process. This work applies the modified CFOA in fractional order proportional integral derivative (PIλDδ) controller. Both simulation and experimental results confirm that the modified CFOA is electronically controllable
    corecore