288 research outputs found

    A neurocomputational account of self-other distinction: from cell to society

    Get PDF
    Human social systems are unique in the animal kingdom. Social norms, constructed at a higher level of organisation, influence individuals across vast spatiotemporal scales. Characterising the neurocomputational processes that enable the emergence of these social systems could inform holistic models of human cognition and mental illness. Social neuroscience has shown that the processing of ‘social’ information demands many of the same computations as those involved in reasoning about inanimate objects in ‘non-social’ contexts. However, for people to reason about each other’s mental states, the brain must be able to distinguish between one mind and another. This ability, to attribute a mental state to a specific agent, has long been studied by philosophers under the guise of ‘meta-representation’. Empathy research has taken strides in describing the neural correlates of representing another person’s affective or bodily state, as distinct from one’s own. However, Self-Other distinction in beliefs, and hence meta-representation, has not figured in formal models of cognitive neuroscience. Here, I introduce a novel behavioural paradigm, which acts as a computational assay for Self-Other distinction in a cognitive domain. The experiments in this thesis combine computational modelling with magnetoencephalography and functional magnetic resonance imaging to explore how basic units of computation, predictions and prediction errors, are selectively attributed to Self and Other, when subjects have to simulate another agent’s learning process. I find that these low-level learning signals encode information about agent identity. Furthermore, the fidelity of this encoding is susceptible to experience-dependent plasticity, and predicts the presence of subclinical psychopathological traits. The results suggest that the neural signals generating an internal model of the world contain information, not only about ‘what’ is out there, but also about ‘who’ the model belongs to. That this agent-specificity is learnable highlights potential computational failure modes in mental illnesses with an altered sense of Self

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Sampling Reality: Exploring Evidence Accumulation Mechanisms in the Psychotic Phenotype

    Get PDF
    The way the brain samples evidence could be crucial in shaping ourexperience of reality. Predictive coding accounts hypothesise that increasedsensory precision might bias sampling and impact inferences of reality. In apredictive coding framework integrated with the use of sequential samplingmodels, we investigated the relationship between evidence accumulationmechanisms and psychotic phenotypes in the general population.Study 1 explored the association of psychotic phenotypes with alterations ofevidence accumulation in perceptual inference. We fitted drift-diffusionmodels (DDM) to behavioural data and evaluated the relation betweenpsychotic phenotype and DDM parameters using the drift rate as a proxy ofprecision of sensory evidence. Additionally, we sought to replicate findingslinking reduced data-gathering in probabilistic reasoning with delusion-likeexperiences, a bias known as the Jumping to Conclusions bias (JTC). Resultsshowed that both hallucination- and delusion-like experiences were associatedwith increased sensory precision in perceptual inference. Onlyhallucination-like experiences predicted lower decision thresholds, while wedid not find JTC in the psychotic phenotypes.Study 2 aimed to modulate evidence accumulation by applying inhibitorytranscranial magnetic stimulation (TMS) to the posterior parietal cortex (PPC)and examining its effects along the psychotic phenotype continuum. PPCactivity has been correlated with sampling behaviour and might be involved inalterations of evidence accumulation associated with psychosis. We replicatedresults from Study 1 with both psychotic phenotypes showing increasedsensory precision. Notably, participants with a higher delusional phenotypeundergoing TMS showed decreased sensory precision.In conclusion, our findings indicate that increased precision of sensoryevidence characterises perceptual inference in both delusional andhallucinatory phenotypes. Specifically for the delusional phenotype, PPCactivity might be implicated in alterations of precision encoding. Overall, ourstudies point to evidence accumulation mechanisms potentially influencingour experience of reality and contributing to the psychotic phenotype in thegeneral populatio

    Towards a complete multiple-mechanism account of predictive language processing [Commentary on Pickering & Garrod]

    Get PDF
    Although we agree with Pickering & Garrod (P&G) that prediction-by-simulation and prediction-by-association are important mechanisms of anticipatory language processing, this commentary suggests that they: (1) overlook other potential mechanisms that might underlie prediction in language processing, (2) overestimate the importance of prediction-by-association in early childhood, and (3) underestimate the complexity and significance of several factors that might mediate prediction during language processing

    Feed-Forward Segmentation of Figure-Ground and Assignment of Border-Ownership

    Get PDF
    Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    corecore