28,330 research outputs found

    A Neural Network for Shortest Path Computation

    Get PDF
    This paper presents a new neural network to solve the shortest path problem for internetwork routing. The proposed solution extends the traditional single-layer recurrent Hopfield architecture introducing a two-layer architecture that automatically guarantees an entire set of constraints held by any valid solution to the shortest path problem. This new method addresses some of the limitations of previous solutions, in particular the lack of reliability in what concerns succeeded and valid convergence. Experimental results show that a clear improvement in well-succeeded convergence can be achieved. Additionally, computation performance is also improved at the expense of slightly worse result

    Delay-aware Backpressure Routing Using Graph Neural Networks

    Full text link
    We propose a throughput-optimal biased backpressure (BP) algorithm for routing, where the bias is learned through a graph neural network that seeks to minimize end-to-end delay. Classical BP routing provides a simple yet powerful distributed solution for resource allocation in wireless multi-hop networks but has poor delay performance. A low-cost approach to improve this delay performance is to favor shorter paths by incorporating pre-defined biases in the BP computation, such as a bias based on the shortest path (hop) distance to the destination. In this work, we improve upon the widely-used metric of hop distance (and its variants) for the shortest path bias by introducing a bias based on the link duty cycle, which we predict using a graph convolutional neural network. Numerical results show that our approach can improve the delay performance compared to classical BP and existing BP alternatives based on pre-defined bias while being adaptive to interference density. In terms of complexity, our distributed implementation only introduces a one-time overhead (linear in the number of devices in the network) compared to classical BP, and a constant overhead compared to the lowest-complexity existing bias-based BP algorithms.Comment: 5 pages, 5 figures, submitted to IEEE ICASSP 202

    A Potts Neuron Approach to Communication Routing

    Full text link
    A feedback neural network approach to communication routing problems is developed with emphasis on Multiple Shortest Path problems, with several requests for transmissions between distinct start- and endnodes. The basic ingredients are a set of Potts neurons for each request, with interactions designed to minimize path lengths and to prevent overloading of network arcs. The topological nature of the problem is conveniently handled using a propagator matrix approach. Although the constraints are global, the algorithmic steps are based entirely on local information, facilitating distributed implementations. In the polynomially solvable single-request case the approach reduces to a fuzzy version of the Bellman-Ford algorithm. The approach is evaluated for synthetic problems of varying sizes and load levels, by comparing with exact solutions from a branch-and-bound method. With very few exceptions, the Potts approach gives legal solutions of very high quality. The computational demand scales merely as the product of the numbers of requests, nodes, and arcs.Comment: 10 pages LaTe

    Genetic algorithms with elitism-based immigrants for dynamic shortest path problem in mobile ad hoc networks

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2009 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks (ANNs), genetic algorithms (GAs), particle swarm optimization (PSO), etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless sensor network (WSN), etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP problem turns out to be a dynamic optimization problem (DOP) in MANETs. In this paper, we propose to use elitism-based immigrants GA (EIGA) to solve the dynamic SP problem in MANETs. We consider MANETs as target systems because they represent new generation wireless networks. The experimental results show that the EIGA can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Brain architecture: A design for natural computation

    Full text link
    Fifty years ago, John von Neumann compared the architecture of the brain with that of computers that he invented and which is still in use today. In those days, the organisation of computers was based on concepts of brain organisation. Here, we give an update on current results on the global organisation of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing, and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture

    Two betweenness centrality measures based on Randomized Shortest Paths

    Full text link
    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.Comment: Minor updates; published in Scientific Report
    corecore