
A Neural Network for Shortest
Path Computation

Filipe Araújo
Bernardete Ribeiro

Lúıs Rodrigues

DI–FCUL TR–00–2

April 6, 2000

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Neural Network for Shortest Path Computation

Filipe Araújo
Faculdade de Ciências

Universidade de Lisboa
Campo Grande, 1700 Lisboa, Portugal

filipius@di.fc.ul.pt

Bernardete Ribeiro
Centro de Informática e Sistemas

Universidade de Coimbra
Pinhal de Marrocos, 3030 Coimbra, Portugal

bribeiro@dei.uc.pt

Lúıs Rodrigues
Faculdade de Ciências

Universidade de Lisboa
Campo Grande, 1700 Lisboa, Portugal

ler@di.fc.ul.pt

April 6, 2000

Abstract

This paper presents a new neural network to solve the shortest path problem for internet-
work routing. The proposed solution extends the traditional single-layer recurrent Hopfield
architecture introducing a two-layer architecture that automatically guarantees an entire set
of constraints held by any valid solution to the shortest path problem. This new method ad-
dresses some of the limitations of previous solutions, in particular the lack of reliability in what
concerns succeeded and valid convergence. Experimental results show that a clear improve-
ment in well-succeeded convergence can be achieved. Additionally, computation performance
is also improved at the expense of slightly worse results.

1 Introduction

The problem of finding the shortest path (SP) from a single source to a single destination in a
graph arises as a subproblem to many broader problems, including routing problems in computer
networks. This problem has some well-known polynomial algorithmic solutions, namely Bellman-
Ford’s [2, 4] or Dijkstra’s.

Problems that require multiple or extremely fast computations of SP, such as the quasi-static
bifurcated routing problem in packet switched computer networks [7], can benefit from more efficient
methods of finding the SP. Motivated by this class of problems, a number of attempts using neural
networks (NN), namely Hopfield NN [3], were made to solve or provide an approximate solution
to the SP problem faster than would be possible with any algorithmic solution, relying on the NN
parallel architecture.

This idea was first presented by Rauch and Winarske [6]. Their method exhibits some impor-
tant limitations, one of them being the need to know the number of hops of the SP in advance.
To solve this problem an extension to this solution was introduced by Zhang and Thomopoulos [8]
which made it possible to find a path with as many as N hops, N being the number of nodes in
the graph which is also the highest number of hops the SP may have.

Ali and Kamoun [1] proposed a new method that aimed at NN adaptability to external varying
conditions as it is the case of a computer network where links or nodes may go up and down easily.
The idea was to apply graph arc costs and respective existence or non-existence in the neurons
biases and to change these biases whenever the graph representing the computer network changed.
However, this method has two major drawbacks: first, the NN fails to converge towards a valid

1

solution a considerable number of times and this problem worsens with an increasing number of
nodes in the graph. This makes Ali and Kamoun’s method nearly useless in certain classes of
graphs, when the number of nodes approaches 40; second, the method finds poor solutions when
compared to optimum solutions found by Dijkstra’s algorithm.

An evolution of the Ali and Kamoun’s method, thought for the multi-destination routing
problem, was introduced by Park and Choi [5]. When used in a single-destination version it
extends the range of operation of the former method, achieving noticeable improved solutions
even with a bigger number of nodes. In spite of these advantages, Park and Choi’s NN still fails
to converge too many times and presents poorer behavior with increasing number of graph nodes
in certain classes of graphs. All these solutions demand a number of neurons that squares the
number of graph nodes.

This paper presents a new Hopfield NN that aims at improving the reliability of the solutions,
where reliability stands for succeeded and valid convergence. To achieve this, a new architecture,
named Dependent Variables (DV), which consists of a two layer Hopfield NN is presented. This
architecture automatically guarantees an entire class of restrictions, thus considerably increasing
the reliability of the method. At the same time, the number of neurons is equal to the number
of arcs in the graph instead of being equal to the squared number of nodes as it is the case
in Ali-Kamoun’s and Park-Choi’s NN. Thus, in general, the proposed architecture needs much
less neurons and neurons’ connections. Only in the worst-case scenario where all graph nodes
are connected to each other the number of neurons is equal. The price to pay for this reduced
number of neurons is that the NN is harder to adapt to external varying conditions, in particular
to topology changes, but not to changes in arc costs however, which are, once again, coded in
neurons biases.

The paper is organized as follows. Section 2 defines the single source-destination SP problem.
The new Dependent Variable Hopfield Neural Network (DVHNN) is decribed in Section 3 and its
performance is evaluated in Section 4. Section 5 concludes the paper.

2 Problem Definition

Consider a directed graph G = (V, A) composed of a set of N vertices — V — and a set of M
directed arcs — A. Associated with each arc (r, s) is a nonnegative number Crs that stands for
the cost from node r to node s. Non-existing arc costs are set to infinite (∞). Often, for clarity of
exposition, namely when referring to figures, we will label each existing arc with a unique index
and denote its cost simply by Ci.

Let Psd be a path from a source node s to a destination node d, defined as a set of consecutive
nodes, connected by arcs in set A:

Psd = {s, n1, n2, . . . , d}
There is a cost associated with each path Psd which consists of the sum of all partial arc costs

participating in the path. The shortest path problem consists in finding the path connecting a
given source-destination pair, (s, d), such that the cost associated with that path is minimum.
Stated as an integer linear programming problem this is (here double indexes are used because (2)
is thus easier to state):

Minimize
N∑

i=1

N∑
j=1

Cijvij (1)

subject to
N∑

j=1

j 6=i

vij

(i,j) exists

−
N∑

j=1

j 6=i

vji

(j,i) exists

= φi i = 1, . . . , N (2)

and vij ∈ {0, 1} (3)

2

• vij is the participation of the arc (i, j) in the path which can only be 0 or 1, i.e., the arc
whether participates entirely or doesn’t participate at all in the path. Non-existing arcs are
not to be considered.

• φi =

1 if i = s
−1 if i = d
0 otherwise

The set of N equations (2) can be stated in matrix form, though only N − 1 equations are
linearly independent (thus, one of them is omitted). In addition, the double indexes in vij are
replaced by corresponding single indexes variables. The resulting equation is then stated as:

a11 a12 · · · a1M

a21 a22 · · · a2M

...
aN−1,1 aN−1,2 · · · aN−1,M

v1

v2

...
vM

 =

φ1

φ2

...
φN−1

⇐⇒ (4)

Av = φ

vi ∈ {0, 1}
In this equation, A is a (N − 1) ×M matrix which depends on graph configuration, φ is a

vector with (N − 1) elements, which enables path source and destination specification and v is a
vector with M elements, where each one represents the participation of a single arc of the directed
graph in the selected path.

The constraints just expressed in (4), that we will call Kirchoff’s constraints, are of considerable
importance, because they are held by any valid solution to the SP problem (though the reciprocal
is not necessarily true).

3 Dependent Variables Hopfield Neural Network

3.1 Kirchoff’s Constraints

To build a NN that guarantees constraints (4), this equation is first rewritten to the form presented
in (5), using Gauss-Jordan elimination 1.

v1

v2

...
vN−1

 =

α1N α1,N+1 · · · α1M

α2N α2,N+1 · · · α2M

...
αN−1,N αN−1,N+1 · · · αN−1,M

vN

vN+1

...
vM−1

vM

+

o1

o2

...
oN−1

 (5)

The variables v1, . . . , vN−1 are dependent variables and will be represented by dependent neu-
rons in the NN to be presented next, while variables vN , . . . , vM are independent variables, that
will be represented by independent neurons.

Consider as an example the graph represented in Figure 1: arcs (1, 3), (2, 4), (2, 5) and (3, 5)
may be represented by independent neurons while neurons representing arcs (1, 2), (2, 3), (3, 4)
and (3, 5) will then depend linearly on former neurons values, for this selection of dependent and
independent variables, as shown in (6).

(1) v12 = 1− v13

(2) v23 = 1− v13 − v24 − v25

(3) v34 = 1− v24 − v25 − v35

(4) v45 = 1− v25 − v35

(6)

1The computational order of Gauss-Jordan elimination is not important and a method to achieve an equivalent
result will be presented ahead in this paper.

3

d =5

43

s =1

2

Figure 1: Graph example

3.2 Binary Outputs

Even if Kirchoff’s constraints are held, as it is the case of the set of equations (6), it still is
necessary to assure that vi ∈ {0, 1}, for i = 1, . . . , M . For that, a Liapunov energy function is
defined for the NN:

E =
M∑
i=1

ρ1f (vi) (7)

In (7), ρ1 is a positive constant and f(x) is a function with zeros at x = 0 and x = 1. In (8)
a function with these properties is presented and in addition to this, it is differentiable, which is
rather important as will be seen shortly. f ′(x) is presented in (9). These functions are depicted
in Figures 2 and 3. The energy function (7) will be minimum when all the vi’s have binary values
of 0 or 1.

If (4) is met and all the variables, vi, have binary output values, then the solution is valid,
though not necessarily optimal.

f (x) = (x− 0)2 (x− 1)2 = x4 − 2x3 + x2 (8)

f ′ (x) = 4x3 − 6x2 + 2x (9)

f (x)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

-0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

Figure 2: Neuron energy function

f' (x)

-4

-3

-2

-1

0

1

2

3

4

-0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

Figure 3: Neuron activation function (energy
function derivative)

The dynamic properties of the DVHNN that make it capable of finding the shortest paths will
be presented next.

4

3.3 Neuron Motion Equation

Only the motion equation of independent neurons (vi, with N ≤ i ≤M) needs to be defined since
dependent neurons have a totally conditioned behavior. The neuron to be used is comprised of a
summation unit and a capacitor, as depicted in Figure 4. The corresponding electrical equation
is expressed in (10) and transformed to (11) without any loss of generality.

Ci

Σ jwij 'xj(t)+I i'

...

wi1'

wi2'

wiN'

I i '
1

x1

x2

xi

xN

x3

vi
wi3'

Σ ϕ(.)

Figure 4: Neuron model

Ci
dvi (t)

dt
=

N∑
j=1

w′
ijxj (t) + I ′i (10)

dvi (t)
dt

=
N∑

j=1

wijxj (t) + Ii (11)

For the NN to follow a gradient-descent of the energy function, the neurons’ motion equation is
defined as in an Hopfield NN, except for the fact that, in (12), no activation function is considered.
In this equation k is a positive constant.

dvi

dt
= −k

∂E

∂vi
(12)

If (12) holds, then

dE

dt
=

M∑
i=N

∂E

∂vi

dvi

dt
=

= −k

M∑
i=N

(
∂E

∂vi

)2

≤ 0

and as E ≥ 0 the DVHNN should evolve to an energy minimum (though, this does not
guarantee by itself that the NN may not cycle between equivalent energy states with E > 0).

Now, calculating ∂E/∂vi and from the fact that ∂vj/∂vi = 0, i, j = N, . . . , M (i.e., vi, vj are
both independent neurons) and i 6= j:

5

∂E

∂vi
= ρ1

M∑
j=1

∂f(vj)
∂vi

= ρ1f
′(vi) + ρ1

N−1∑
j=1

f ′(vj)
∂vj

∂vi

Since ∂vj/∂vi = αji, for j = 1, . . . , N ; i = N, . . . , M , (i.e., vj is a dependent neuron and vi

independent) it yields (13) and then (14) where µ1 = kρ1.

∂E

∂vi
= ρ1f

′(vi) + ρ1

N−1∑
j=1

αjif
′(vj) (13)

dvi (t)
dt

= −µ1f
′(vi (t))− µ1

N−1∑
j=1

αjif
′(vj (t)) (14)

Comparing (11) with (14) it yields, for any neuron l and for an independent neuron i:

xl = f ′(vl) (15)

wil =

−µ1 if l = i
0 if l 6= i, l = N, . . . , M

−µ1αli if l = 1, . . . , N
(16)

Ii = 0 (17)

A relevant fact that stems from this result is that feedback to the NN is done through inde-
pendent neurons with neuron outputs affected by individual derivative functions f ′(x) which play
the role of activation functions.

For the graph presented in Figure 1 the DVHNN depicted in Figure 5 would be used, where
independent neurons are in the bottom, while dependent neurons are on the top. Recurrent
connections (top to down in the picture) are all affected by the activation function f ′(x).

+1 +1+1 +1 +1
+1 +1 +1 +1

+1 +1 +1 +1

-1
-1 -1

-1
-1

-1
-1

-1

v35

v45v34v23v12

v13

-1

v24 v25

-1-1-1-1

Figure 5: Example of Dependent Variables Hopfield Neural Network

6

3.4 Cost Consideration

The NN presented until this point considers only solution validity but ignores arc costs. In order
to take arc costs into consideration, the following method is used:

• change the energy function to consider the costs;

• start NN and let it converge to a final result which may not be valid but that considers arc
costs;

• from this point of convergence, eliminate the costs from energy function and let NN converge
again, this time to a valid solution.

Cost consideration is easy to implement because costs will be introduced in neurons biases so
it is easy to consider or not the costs just by controlling neurons biases.

The energy function presented in (18) differs from (7) in the term affected by ρ2. Ci stands
for the cost of arc i (here a sequential index number is given to each one of the arcs of the graph
unlike (1) where a source and destination node identified the arc).

E =
M∑
i=1

(ρ1f (vi) + ρ2Civi) (18)

Using exactly the same reasoning presented in the previous section it yields:

dvi

dt
=− µ1f

′(vi)− µ1

N−1∑
j=1

αjif
′(vj)−

− µ2Ci − µ2

N−1∑
j=1

αjiCj (19)

From comparing (19) and (11), equations (15) and (16) still hold, but equation (17) must be
replaced by (20), for i = N, . . . , M .

Ii = −µ2Ci − µ2

N−1∑
j=1

αjiCj (20)

So, it is very simple to consider or not the costs: just make Ii as in (20) or Ii = 0, respectively,
as in (17).

It is important to note that dependent variables cost is thus coded in independent variables
which are the only neurons that can vary freely.

3.5 NN Convergence

One aspect that affects the convergence of the algorithm is the existence of equivalent cost paths.
These may lead the NN to an indefinite final state where it cannot decide for one or the other. To
solve this, some random noise is added to the independent neurons biases. If b was the bias to apply
to some neuron, the real bias should be randomly selected in the interval [(1− γ/2) b, (1 + γ/2) b]
around b. The experimental results shown in section 4 consider γ = 5%. This procedure enables
symmetry breaking.

Alternative techniques that first consider and then eliminate costs can also be used to improve
convergence. For instance, independent neurons biases could be halved each time the NN con-
verges, instead of being totally eliminated as it was proposed before in this text. This corresponds
to an exponential reduction and would have the same effect as reducing the constant µ2, used
above to calculate the biases. Although more accurate, this method consumes much more time,
because instead of converging only twice, the NN must converge a predefined number of times, say

7

N times (this however does not mean that the total calculation is N times slower than a single
convergence). Thus, here too, there is a trade-off between convergence time and solution quality.

In the experimental results presented in this paper, the first method described in this section
(eliminate the biases at once) is used.

3.6 Dependent Variable Selection

As stated before, to find an equation in form (5) as needed by a Dependent Variable NN, it
is not efficient to use Gauss-Jordan elimination each time a new SP problem between different
source-destination pair arises.

To solve the problem, equation (5) is first extended to let dependent variables depend on other
dependent variables. This still enables NN to converge as long as there are not closed cycles
dependencies (as we shall insure below), i.e., given dependent variables vA and vB, vA cannot
depend on vB if vB previously depended on vA. Note that vA is also said to depend on vB if
vA depends on vC and vC depends on vB, being this definition recurrent. (22) shows dependent
variable vA depending on dependent variable vB defined in (21).

o
A

vB

o
B

Independent Neurons

vA

Figure 6: Dependent variable vA depends on another dependent variable, vB

vB =
M∑

k=N

αBkvk + oB (21)

vA = αAB

(
M∑

k=N

αBkvk + oB

)
+

M∑
k=N

αAkvk + oA (22)

The connection between these two neurons is represented in Figure 6. The advantage of doing
this is that the oi’s, from (5) and represented again in (21) and (22) (oA and oB) should correspond
to φi in (2) thus making it possible to switch source-destination pair instantaneously. How to do
this will be seen shortly.

To find all the dependent variable equations such as (22) (without any cycles between DV) an
algorithm is presented next. The algorithm keeps three sets of nodes: T — treated nodes; V —
neighbors of treated nodes; N — all other nodes. In the beginning T and V are empty and N
contains all the nodes. The algorithm is presented in Figure 7.

In the end, all nodes will belong to T , though all but the first one which enters there directly
must pass in V before entering T . When a node, say s, passes from V to T , the respective
restriction equation (2) is used and a dependent variable is chosen from this equation. A node
enters V whenever one of its neighbors enters T . So, for s to be in V , there must be at least one
neighbor, say r which is already in T .

Then, the DV to choose is exactly rs if it exists or sr if not (one of them must exist, otherwise
r and s would not be neighbors). Nor rs, neither sr may participate in any other equation to be
written in a further step of the algorithm since s is added to T and r has been already added to

8

Initialize set N to contain all the nodes
Initialize two empty sets: V (neighbors) and T (treated)
For number of nodes - 1 times

if T = ∅ then
Select any node s from N
N ← N\{s} ; T ← T ∪ {s}
Forall n; n is neighbor of s

N ← N\{n}; V ← V ∪ {n}
else

if V = ∅ then
Stop (with an error if N is not empty)

else
Select any node s from V
Select r: r is neighbor of s and r ∈ T
if arc rs exists then

rs is the dependent variable
else

sr is the dependent variable
Write the restriction equation of node s taking into consideration the source

and destination of the path
Forall n; n is neighbor of s

N ← N\{n}; V ← V ∪ {n}
V ← V \{s}; T ← T ∪ {s}

Figure 7: Algorithm that determines equations representing graph restrictions

T in a previous step. Now, rs/sr (which one was used doesn’t matter) may depend on another
dependent variable to be chosen ahead but not on a dependent variable already chosen and the
same applies to each one of the other dependent variables. Thus cycles cannot occur.

With the algorithm presented above, the oi’s are easily determined to be equal to φi, for any
node i (0, if the path is nor started neither finished in the node, 1 if the path starts in the node,
-1 if it ends there). This is possible because all the node equations are written directly without
any algebraic transformation.

4 Experimental Results

In this section an attempt is made to determine the behavior of the DVHNN when compared
with other methods of finding SP, namely with Dijstra’s algorithm and with Park and Choi’s NN
(PCNN) [5].

The three algorithms were repeatedly applyed to two 40-node graphs. The two graphs have
exactly the same configuration. The first graph has arcs with different costs, ranging from 4 to
48. Table 1 represents existing arcs and respective costs for Graph 1. Graph 2 has the same arcs,
but their costs are all set equal to 1. For each graph, 40 random source-destination pairs were
applied to each one of the three routing methods (DVHNN, PCNN, Dijkstra’s algorithm)2.

To run the experiments, some numeric constant values had to be assigned. The Park and Choi
NN constants where assigned with the values proposed by its authors [5]. The respective energy
function is restated here for self containment:

2Specifically, the following pairs were chosen for the simulations: (10-32), (39-16), (21-17), (34-15), (33-14),
(27-28), (1-29), (2-35), (29-34), (22-33), (1-8), (37-34), (22-8), (0-31), (10-12), (32-35), (0-24), (2-22), (3-35), (7-34),
(35-6), (20-14), (34-38), (11-6), (3-19), (3-18), (11-23), (29-0), (0-17), (14-22), (39-37), (22-17), (22-32), (4-39),
(39-5), (10-7), (19-6), (31-30), (10-21), (7-32).

9

Table 1: Graph 1 Topology
Arc (s, d) Cost Arc (s, d) Cost Arc (s, d) Cost

(0, 33) 18 (0, 24) 24 (0, 19) 16
(0, 9) 28 (1, 33) 28 (2, 25) 12
(2, 12) 22 (3, 27) 32 (3, 14) 25
(3, 4) 17 (5, 39) 24 (5, 26) 4
(5, 18) 18 (5, 6) 16 (6, 20) 25
(6, 11) 16 (7, 26) 26 (8, 20) 22
(8, 17) 18 (9, 39) 22 (9, 36) 35
(9, 31) 14 (9, 25) 18 (9, 23) 20
(9, 13) 48 (10, 39) 21 (10, 30) 4
(10, 26) 19 (12, 29) 8 (12, 25) 19
(13, 19) 12 (14, 28) 22 (14, 18) 9
(15, 36) 26 (16, 31) 16 (16, 22) 23
(16, 21) 16 (17, 22) 27 (19, 36) 12
(19, 32) 16 (21, 31) 31 (23, 37) 22
(23, 36) 37 (23, 26) 19 (26, 34) 15
(28, 39) 31 (29, 35) 34 (29, 31) 16
(30, 38) 34 (34, 39) 32 (38, 39) 37

E =
A

2

n∑
m=1

n∑
i=1
i6=m

Cmixmi +
B

2

n∑
m=1

n∑
i=1
i6=m

ρmixmi+

C

2

n∑
m=1

n∑
i=1
i6=m

xmi −
n∑

i=1
i6=m

xim − φm

2

+
D

2

n∑
m=1

n∑
i=1
i6=m

xmi (1− xmi)+

F

2

n∑
m=1

n∑
i=1
i6=m

xmixim

The constants are A = 550, B = 2550, C = 2150, D = 250 and F = 1350.
In the DVHNN the constant values assigned where µ1 = 500 and µ2 = 80. These values

mean that more emphasis is put on the convergence success (bigger µ1) rather than on solution
quality (smaller µ2). Increasing µ1 and µ2 proportionally, results in faster convergence but worse
solutions.

To simulate by software the two NN the fourth-order Runge-Kutta method was applied as
described in [1] and [5]. The time step considered was ∆t = 10−5s for PCNN and ∆t = 10−5s
for DVHNN in graph 1 and ∆t = 10−6 for DVHNN in graph 2. This NN is very sensitive to this
parameter and may diverge if the step is chosen too high. This problem would not, of course,
occur in a real physical system.

To improve the results achieved by both NN, graph costs were bounded between 0 and 2 for
DVHNN and between 0 and 0.6 for PCNN. To do that, a linear transformation (23) was applied
to each arc cost, with f defined as CM N/CM , being CM N the desired maximum arc cost and CM

the existing maximum arc cost. costN is the new normalized cost, while cost is simply the original
arc cost.

costN = f × cost (23)

Symmetry breaking was introduced in DVHNN in the neurons biases representing the costs,

10

as explained in Section 3.5. In the PCNN symmetry breaking was introduced in neurons initial
activity, randomly set between 0 and 0.0002.

The experimental results are shown in Table 2. A failure is a try (i.e., a source-destination
pair) for which the method is unable to find a solution. As should be apparent, this case just
happens with NN, but never with Dijkstra’s algorithm (unless no path exists), when the NN gets
locked in a local minimum which doesn’t lead to a valid solution whether optimum or not.

Table 2: Simulation results
Graph 1

Dijkstra PC DV
Total cost (average) 2603 (72.3) 2613 (72.6) 2702 (75.1)
Failures 0 4 0

Graph 2
Dijkstra PC DV

Total cost (average) 94 (3.1) 94 (3.1) 100 (3.3)
Failures 0 10 0

As can be seen in graph 1 results, the PCNN performs slightly better (3% to 6% smaller costs)
than DVHNN, whenever it reaches a succeeded convergence, but DVHNN successfully converges
many more times, proving itself to be a much more reliable solution, achieving 100% reliability
with these graphs.

An interesting fact is that the PCNN performs worse with equal arc costs (failing 25% of the
times) while the DVHNN performs better.

Regarding the number of iterations needed, DVHNN shows the best results, needing only 22%
of the iterations, which means, 22% of the time in Graph 1 and 15% of the time in Graph 23, as
can be seen in table 3.

Table 3: Number of iterations and time average
PC DV

Iterations avg. (graph 1) 7489 1684
Iterations avg. (graph2) 8485 1286
Time avg. (graph 1) 74.89 ms 16.84 ms
Time avg. (graph 2) 84.85 ms 12.86 ms

5 Conclusions

A new method to solve the shortest path problem was proposed using a two-layer Hopfield Neural
Network. This solution aims to achieve an increased number of succeeded and valid convergences,
which is one of the main limitations of previous solutions based on Neural Networks. Additionally,
in general, it requires less neurons.

The experimental results show that the main goal of the architecture is accomplished making
it almost totally reliable (i.e., it achieves succeeded and valid convergences almost always) while
considerably improving computational performance at the expense of the results, which are, only
slightly worse.

Two open issues deserve further work: first, the convergence to sub-optimal results; second,
the adaptability to external varying conditions, in particular, to different graph topologies, which
may not be trivial to achieve with the proposed architecture.

3Note that an iteration with step ∆t = 10−5 is worth for 10 iterations with step ∆t = 10−6.

11

References

[1] Mustafa K. Mehmet Ali and Faouzi Kamoun. Neural networks for shortest path computation
and routing in computer networks. IEEE Transactions on Neural Networks, 4(5):941–953,
November 1993.

[2] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J., 1957.

[3] J.J. Hopfield and D.W. Tank. “Neural” computation of decisions in optimization problems.
Biological Cybernetics, pages 533–541, 1986.

[4] L.R. Ford Jr. and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
N.J., 1962.

[5] Dong-Chul Park and Seung-Eok Choi. A neural network based multi-destination routing al-
gorithm for communication network. IEEE, pages 1673–1678, 1998.

[6] Herbert E. Rauch and Theo Winarske. Neural networks for routing communication traffic.
IEEE Control Systems Magazine, pages 26–31, April 1988.

[7] Mischa Scharwtz. Telecommunication Networks. Addison-Wesley Publishing Company, 1987.

[8] L. Zhang and S. C. A. Thomopoulos. Neural network implementation of the shortrest path
algorithm for traffic routing in communication networks. In Proceedings of International Con-
ference Neural Networks, page 591, 1989.

12

List of Figures

1 Graph example . 4
2 Neuron energy function . 4
3 Neuron activation function (energy function derivative) 4
4 Neuron model . 5
5 Example of Dependent Variables Hopfield Neural Network 6
6 Dependent variable vA depends on another dependent variable, vB 8
7 Algorithm that determines equations representing graph restrictions 9

13

