1,364 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep learning for optical coherence tomography angiography: Quantifying microvascular changes in diabetic retinopathy

    Get PDF
    Optical Coherence Tomography Angiography (OCT-A) permits visualization of the changes to the retinal circulation due to diabetic retinopathy (DR), a microvascular complication of diabetes. Machine learning applications have directly benefited ophthalmology, leveraging large amounts of data to create frameworks to aid clinical decision-making. In this thesis, several techniques to quantify the retinal microvasculature are explored. First, high-quality, averaged, 6x6mm OCT-A enface images are used to produce manual segmentations for the corresponding lower-quality, single-frame images to produce more training data. Using transfer learning, the resulting convolutional neural network (CNN) segmented the superficial capillary plexus and deep vascular complex with performance exceeding inter-rater comparisons. Next, a federated learning framework was designed to allow for collaborative training by multiple participants on a de-centralized data corpus. When trained for microvasculature segmentation, the framework achieved comparable performance to a CNN trained on a fully-centralized dataset

    Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

    Full text link
    [EN] Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 +/- 2.59 and 1.90 +/- 0.91 mu m is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 +/- 1.25 mu m is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.Animal experiment permission was granted by the Danish Animal Experimentation Council (license number: 2017-15-020101213). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109.Morales, S.; Colomer, A.; Mossi GarcĂ­a, JM.; Del Amor, R.; Woldbye, D.; Klemp, K.; Larsen, M.... (2021). Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks. Computer Methods and Programs in Biomedicine. 198:1-14. https://doi.org/10.1016/j.cmpb.2020.105788S11419

    Structural Change Can Be Detected in Advanced-Glaucoma Eyes.

    Get PDF
    PurposeTo compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients.MethodsThirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < -21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation.ResultsThe number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, -0.18 ÎĽm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001).ConclusionsGanglion cell-inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression

    Optic-Net: A Novel Convolutional Neural Network for Diagnosis of Retinal Diseases from Optical Tomography Images

    Full text link
    Diagnosing different retinal diseases from Spectral Domain Optical Coherence Tomography (SD-OCT) images is a challenging task. Different automated approaches such as image processing, machine learning and deep learning algorithms have been used for early detection and diagnosis of retinal diseases. Unfortunately, these are prone to error and computational inefficiency, which requires further intervention from human experts. In this paper, we propose a novel convolution neural network architecture to successfully distinguish between different degeneration of retinal layers and their underlying causes. The proposed novel architecture outperforms other classification models while addressing the issue of gradient explosion. Our approach reaches near perfect accuracy of 99.8% and 100% for two separately available Retinal SD-OCT data-set respectively. Additionally, our architecture predicts retinal diseases in real time while outperforming human diagnosticians.Comment: 8 pages. Accepted to 18th IEEE International Conference on Machine Learning and Applications (ICMLA 2019
    • …
    corecore