275 research outputs found

    Hypergraph matchings and designs

    Full text link
    We survey some aspects of the perfect matching problem in hypergraphs, with particular emphasis on structural characterisation of the existence problem in dense hypergraphs and the existence of designs.Comment: 19 pages, for the 2018 IC

    Matchings and Tilings in Hypergraphs

    Get PDF
    We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by R ̈odl and Rucin ́ski. We further improve the partite minimum codegree conditions to sum of all k partite codegrees, in which case the partite minimum codegree is not necessary large. Second, as a generalization of (hyper)graph matchings, we determine the minimum vertex degree threshold asymptotically for perfect Ka,b,c-tlings in large 3-uniform hypergraphs, where Ka,b,c is any complete 3-partite 3-uniform hypergraphs with each part of size a, b and c. This partially answers a question of Mycroft, who proved an analogous result with respect to codegree for r-uniform hypergraphs for all r ≥ 3. Our proof uses Regularity Lemma, the absorbing method, fractional tiling, and a recent result on shadows for 3-graphs

    A Geometric Theory for Hypergraph Matching

    Full text link
    We develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: 'space barriers' from convex geometry, and 'divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, we introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. We determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, our main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, we apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in 3-graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemer\'edi Theorem. Here we prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical we defer it to a subsequent paper.Comment: Accepted for publication in Memoirs of the American Mathematical Society. 101 pages. v2: minor changes including some additional diagrams and passages of expository tex

    Inapproximability of H-Transversal/Packing

    Get PDF
    Given an undirected graph G=(V,E) and a fixed pattern graph H with k vertices, we consider the H-Transversal and H-Packing problems. The former asks to find the smallest subset S of vertices such that the subgraph induced by V - S does not have H as a subgraph, and the latter asks to find the maximum number of pairwise disjoint k-subsets S1, ..., Sm such that the subgraph induced by each Si has H as a subgraph. We prove that if H is 2-connected, H-Transversal and H-Packing are almost as hard to approximate as general k-Hypergraph Vertex Cover and k-Set Packing, so it is NP-hard to approximate them within a factor of Omega(k) and Omega(k / polylog(k)) respectively. We also show that there is a 1-connected H where H-Transversal admits an O(log k)-approximation algorithm, so that the connectivity requirement cannot be relaxed from 2 to 1. For a special case of H-Transversal where H is a (family of) cycles, we mention the implication of our result to the related Feedback Vertex Set problem, and give a different hardness proof for directed graphs

    Polynomial-time perfect matchings in dense hypergraphs

    Get PDF
    Let HH be a kk-graph on nn vertices, with minimum codegree at least n/k+cnn/k + cn for some fixed c>0c > 0. In this paper we construct a polynomial-time algorithm which finds either a perfect matching in HH or a certificate that none exists. This essentially solves a problem of Karpi\'nski, Ruci\'nski and Szyma\'nska; Szyma\'nska previously showed that this problem is NP-hard for a minimum codegree of n/kcnn/k - cn. Our algorithm relies on a theoretical result of independent interest, in which we characterise any such hypergraph with no perfect matching using a family of lattice-based constructions.Comment: 64 pages. Update includes minor revisions. To appear in Advances in Mathematic

    A Multipartite Hajnal-Szemer\'edi Theorem

    Get PDF
    The celebrated Hajnal-Szemer\'edi theorem gives the precise minimum degree threshold that forces a graph to contain a perfect K_k-packing. Fischer's conjecture states that the analogous result holds for all multipartite graphs except for those formed by a single construction. Recently, we deduced an approximate version of this conjecture from new results on perfect matchings in hypergraphs. In this paper, we apply a stability analysis to the extremal cases of this argument, thus showing that the exact conjecture holds for any sufficiently large graph.Comment: Final version, accepted to appear in JCTB. 43 pages, 2 figure
    corecore