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MATCHINGS AND TILINGS IN HYPERGRAPHS

by

CHUANYUN ZANG

Under the Direction of Yi Zhao, PhD

ABSTRACT

We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite

k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the

partite minimum codegree threshold for matchings with at most one vertex left in each part,

thereby answering a problem asked by Rödl and Ruciński. We further improve the partite

minimum codegree conditions to sum of all k partite codegrees, in which case the partite

minimum codegree is not necessary large.

Second, as a generalization of (hyper)graph matchings, we determine the minimum ver-



tex degree threshold asymptotically for perfect Ka,b,c-tlings in large 3-uniform hypergraphs,

where Ka,b,c is any complete 3-partite 3-uniform hypergraphs with each part of size a, b and

c. This partially answers a question of Mycroft, who proved an analogous result with respect

to codegree for r-uniform hypergraphs for all r ≥ 3. Our proof uses Regularity Lemma, the

absorbing method, fractional tiling, and a recent result on shadows for 3-graphs.

INDEX WORDS: Absorbing method, Regularity lemma, Hypergraph, Perfect matching,
Graph tiling, Graph packing, Minimum degree.
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PART 1

INTRODUCTION

Combinatorics is the study of discrete structures, and graph is perhaps the single most

important discrete structure in combinatorics. A graph G is an ordered pair (V (G), E(G))

consisting of a set V (G) of vertices and a set E(G), disjoint from V (G), of edges, together

with an incidence function ψG that associates with each edge of G an unordered pair of (not

necessary distinct) vertices of G. In this thesis, we only consider the graph with each edge

associated to two distinct vertices and each pair of two vertices to one edge, i.e. simple graph.

It is of great interest to find some well performed substructures (which are called subgraphs)

in graphs. A subgraph is called spanning subgraph if it covers all vertices of the graph. A

matching of graph G is a subgraph that consists of a collection of vertex-disjoint edges in G.

A matching is called perfect if it is a spanning subgraph. A perfect matching is also called

1-factor because it is a 1-regular spanning subgraph. Similarly, we can introduce k-factor

to be a k-regular spanning subgraphs. In general, given graphs F and G, an F -packing or

F -tiling of G is a subgraph of G that consists of vertex-disjoint copies of F , and an F -factor

is a spanning F -packing.

The perfect matchings or packings are finding a partition of vertex set. Another inter-

esting topic is finding a partition of edge set, which is usually called graph decomposition.

One problem is the edge coloring, a partition of the edges set into as few disjoint matchings

as possible (see section 1.3). When mentioning coloring, it is better to define proper vertex

coloring, which assigns colors to the vertices of G so that no two adjacent vertices share the

same color. The smallest number of colors needed is called chromatic number of G, denoted

by χ(G). The first results in graph coloring is one of the most famous problems in graph

theory – the four color problem.

Extremal combinatorics is a field of combinatorics which has been growing spectacularly
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in recent years. The word ’extremal’ comes from the nature of the problems this filed deals

with: if a collection of finite objects (numbers, graphs, vectors, sets. etc.) satisfies certain

restrictions, how large or how small can it be? Here is one question in extremal graph theory:

Given an n-vertex graph H and a g-vertex graph G, how many edges can H have so that

H does not contain a copy of a fixed graph G? The celebrated Mantel’s Theorem [67] says

that if H has more than n2/4 edges, then H contains a K3 (triangle). This result has been

generalized by Turán [89] for G = Kr, a complete graph on r vertices (a graph in which

every pair of vertices are adjacent). In general, the Turán number for a graph G is the

maximum number of edges in an n-vertex graph H such that H does not contain a copy

of G, denoted by ex(n,G). Erdös and Stone [22] extended Turán’s result asymptotically to

Kr(t), the complete r-partite graph with t vertices in each class, see Theorem 2.4, which

has been described as the ”the fundamental theorem of extremal graph theory”. Many work

has been done on Turán type problems for graphs and hypergraphs, see surveys [30, 49].

However, for example, we still do not know the Turán number for complete bipartite graphs

or Turán number for complete hypergraphs.

Another important question in extremal combinatorics: given a fixed g-vertex graph

G, at least how many vertices are needed so that every 2-edge-colored complete graph on

these vertices contains a monochromatic G? This is a classic two-color Ramsey problem.

The smallest number of vertices needed here is called Ramsey number of G. For example,

the Ramsey number of K3 is 6, i.e., every 2-edge-colored K6 contains a monochromatic K3.

Ramsey Theory is initiated and named after Frank Plumpton Ramsey who wrote a paper

[73] in 1930. At about the same time, Van der Waerden [91] in 1927 proved his famous

Ramsey-type result on arithmetical progressions (An arithmetic progression is a sequence

of numbers that advances in steps of the same size). More detailed introduction about

Ramsey theory can be found in the book [82]. Szemerédi [83] in 1975 improved Van Der

Waerden’s result and answered a notorious and decades-old conjecture of Erdös and Turán

[26]. He showed that any positive fraction of the positive integers will contain arbitrarily long

arithmetic progressions. The statement of Szemerédi Theorem is simple but the proof is much
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more difficult. This theorem was originally proved by Szemeredi in 1975 by a sophisticated

combinatorial argument, introducing for the first time the powerful Szemerédi regularity

lemma. There are several other deep and important proofs of this theorem, including the

ergodic-theoretic proof of Furstenberg [32], the additive combinatorial proof of Gowers [33],

and the hypergraph regularity proofs of Gowers [34] and Nagle, Rödl, Schacht, and Skokan

[71, 79, 80, 81]. Szemerédi’s Regularity Lemma has since become a powerful and now still

a central tool in extremal combinatorics. The survey paper [56] provides a wide range of

applications of regularity lemma. Also we briefly introduce it in Part 2.

We are more interested in finding spanning subgraphs. For matchings, there are a

large number of results related to matching theory. Tutte’s theorem [90] characterized the

graphs that have perfect matchings and Edmonds [20] provided an efficient algorithm to find

such a matching in polynomial time. However, when F is not an edge, it is NP-complete

to determine whether a graph has an F -factor. Therefore it is natural to seek sufficient

conditions for finding perfect a packing, like degree conditions. Given graph G and v ∈ G,

define deg(v) be the number of edges in G containing v. Minimum degree, denoted by δ(G),

is the minimum of deg(v) taken over all vertices v. In 1952 Dirac [19] proved a celebrated

theorem stating that a graph on n ≥ 3 vertices with minimum degree n/2 contains a Hamilton

cycle (a cycle containing all vertices) and in hence a perfect matching when n is even. So

problems related to minimum degree conditions are often called Dirac-type problems. Much

work has been done on Dirac-type problems for graphs. Started from complete graphs on

r vertices Kr, the celebrated Hajnal-Szemerédi theorem [35] in 1970 showed that a graph

with δ(H) ≥ (1− 1/r)n contain a perfect Kr-tiling. More generally, for any fixed graph F ,

Komlós, Sárközy and Szemerédi [55] showed there is a constant C such that the minimum

degree threshold to have a perfect F -tiling is (1−1/χ(F ))n+C where χ(F ) is the chromatic

number of F . This confirmed a conjecture of Alon and Yuster [4] who had showed a weaker

result with o(n) in place of C. Finally, Kühn and Osthus [61] determined the minimum degree

threshold completely up to an additive constant for any F .

As a generalization of a simple graph, for k ≥ 2, a k-uniform hypergraph (in short,
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Figure 1.1. Graph and hypergraph on 4 vertices

k-graph) consists of a vertex set V and an edge set E ⊆
(
V
k

)
, that is, every edge is a k-

element subset of V . If k = 2, it is just the graph we defined earlier. One particular type

of hypergraphs, a generalization of bipartite graphs, is k-partite k-graphs. A k-graph H is

said to be k-partite if V (H) can be partitioned into k parts, V (H) = V1 ∪ · · · ∪ Vk such

that every edge consists of exactly one vertex from each part. Similarly, given two k-graphs

F and H, we can also define F -packing/tiling in H. When turning to hypergraphs with

k ≥ 3, the problem to determine the existence of a perfect packing gets harder. Even for

matchings, the decision problem whether a 3-partite 3-graph contains a perfect matching is

among the first 21 NP-complete problems given by Karp [46]. Therefore, we do not expect a

nice characterization, and again it is natural to seek sufficient conditions for finding a perfect

packing in hypergraphs.

It is worth mentioning that a relaxation of the perfect matching is to take into account

of the fractional edges. A fractional matching of a k-graph H = (V,E) is a function ω : E →

[0, 1] such that for each v ∈ V we have
∑

e3v ω(e) ≤ 1. The size of ω , denoted by ν∗(H), is∑
e∈E ω(e) = 1

k

∑
v

∑
e3v ω(e) ≤ n/k. It is called perfect if

∑
e3v ω(e) = 1 for every vertex v,

and hence ν∗(H) = n/k. So the integer matching we introduced earlier is to take ω(e) = 0

or 1.

One of the natural parameter of (hyper)graphs is minimum degree. Suppose H is a

k-graph on n vertices. There are several definitions of the minimum degrees in H. For any

set S of d vertices, where 1 ≤ d ≤ k − 1, we define degH(S) to be the number of edges of H
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which contain S. Let

δd(H) := δd = min {degH(S) : S = {v1, . . . , vd} ⊂ V (H)}

be the minimum d-degree δd(H) of H. Two cases have received more attention: minimum

1-degree and minimum (k− 1)-degree. When d = 1, it is referred as minimum vertex degree,

and when d = k − 1, it is called minimum codegree. Observe that δd(H) ≤
(
n−d
k−d

)
and

δ1(H)(
n−1
k−1

) ≥ δ2(H)(
n−2
k−2

) ≥ · · · ≥ δk−1(H)

n− k + 1

we have that for any c > 0, if δd(H) ≥ c
(
n−d
k−d

)
, then δd−1(H) ≥

(
n−(d−1)
k−(d−1)

)
.

Now the question change to ask the minimum d-degree threshold to force an F -factor.

We briefly introduce two problems in extremal graphs in separate sections: matchings in

k-graphs (section 1) and tilings in k-graphs (section 2). More results can be found in the

surveys of Rödle and Rucińki [74], Köhn and Osthus [60], and Zhao [94]. In the last section,

we put more information on edge-coloring.

1.1 Matchings in k-graphs

Hypergraph matchings have many practical applications such as the Santa Claus al-

location problem [6]. As we stated earlier, the decision problem whether a given k-graph

contains a perfect matching is NP-complete, so much attention are drawn to find sufficient

conditions for a perfect matching. Suppose H is a k-graph on N vertices. The first result

relating the minimum degree and the existence of a large (though, far from perfect) matching

in k-graphs was given by Bollobás, Daykin and Erdös [7]. It was further extended by Daykin

and Häggkvist [18] who showed that every k-graph H with δ1(H) ≥ (1− 1/k)
(
N−1
k−1

)
contains

a perfect matching.

Definition 1.1. Given d, k, r and N satisfying 1 ≤ d ≤ k−1 and k | (n−r), define mr
d(k,N)

as the smallest integer m such that every N-vertex k-graph H with δd(H) ≥ m contains a
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matching M with |V (M)| = N − r. As to finding perfect matchings with r = 0, we suppress

the subscript r, i.e., md(k,N) := m0
d(k,N).

When k = 2, an easy greedy argument shows that m1(2, N) = N/2 (see Part 2). The

Dirac-type minimum d-degree thresholds for perfect matchings in general k-graphs have

been studied intensively, see [2, 17, 36, 47, 51, 53, 52, 63, 66, 68, 72, 85, 87]. For k ≥ 3,

d = k − 1, a result of Rödle, Ruciński and Semerédi [76] on Hamilton cycles implies that

mk−1(k,N) ≤ N/2 + o(N). Kühn and Osthus [59] sharpened this bound to mk−1(k,N) ≤

N/2 + 3k2
√
N logN by using a result for the k-partite k-graphs which they had showed

first. It was furthered improved to mk−1(k,N) ≤ N/2 + C log n by Rödle, Ruciński and

Semerédi [77] in which they used the absorbing method. Rödle, Ruciński, Schacht and

Semerédi in [75] found a fairly simple proof of mk−1(k,N) ≤ N/2 + k/4, and finally, in

[78] they determined exactly mk−1(k,N) = N/2 − k + c where c ∈ {3/2, 2, 5/2, 3} depends

on N and k. In particular, for the decision problem of a given k-graph H under degree

conditions δk−1(H) ≥ N/k + o(N), Keevash, Knox and Mycroft [50] provided a polynomial-

time algorithm to determine the existence of perfect matchings. Later Han [39] improved

the degree condition to N/k in his polynomial-time algorithm.

For other values of d, Pikhurko [72] proved that for d ≥ k/2, md(k,N) = (1/2 +

o(1))
(
N−d
k−d

)
, which is asymptotically best possible. Treglown and Zhao [86, 87] determined

the exact values of md(k,N) when d ≥ k/2. Independently Czygrinow and Kamat [17]

determined the exact value of m2(4, N). Kühn, Osthus and Treglown [63], and independently

Khan [53] determined the exact value of m1(3, N). Khan [52] also determined m1(4, N)

exactly.

Based on all known results and constructions (see [94]), the following conjecture comes

up.

Conjecture 1.2 ([88]). For k ≥ 3 and 1 ≤ d ≤ k − 1,

md(k,N) ≈ max

{
1

2
, 1−

(
k − 1

k

)k−d}(
N − d
k − d

)
.
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Note that the case when d ≥ k/2 has been verified in [72]. Alon, Frankl, Huang, Rödl,

Ruciński and Sudakov [2] verified Conjecture 1.2 for the case d ≥ k − 4, and very recently

Treglown and Zhao [88] determined exact values of m2(5, N) and m3(7, N). More recently,

Han [40] determined the exact values of md(k,N) for 0.42k ≤ d < k/2, m5(12, N) and

m7(17, N).

When k ≥ 3 and 1 ≤ d < k/2, Hàn, Person and Schacht [36] gave a general bound

as md(k,N) ≤ ((k − d)/k + o(1))
(
N−d
k−d

)
. Markström and Ruciński [68] improved it to

md(k,N) ≤
(
(k − d)/k − 1/kk−d + o(1)

) (
N−d
k−d

)
. Very recently, Kühn, Osthus and Townsend

[62] further improved it to md(k,N) ≤
(
(k − d)/k − (k − d− 1)/kk−d + o(1)

) (
N−d
k−d

)
by using

fractional matchings. The conjecture 1.2 is still far from completion.

Instead of finding a perfect matching, one question of interest is how about the minimum

degree threshold for an almost perfect matching. Surprisingly, the threshold for perfect

matchings in general k-graphs drops significantly if we allow even one vertex to be uncovered.

When k - N , the threshold to have a matching of size bN
k
c is shown to be between bN

k
c and

bN
k
c+O(logN) in [78], and later proved to be exactly bN

k
c in [39].

How about the minimum degree thresholds in k-partite k-graphs? Suppose H is k-

partite k-graph with V (H) = V1 ∪ · · · ∪ Vk. A subset S ⊂ V (H) is called legal if |S ∩ Vi| ≤ 1

for each i ∈ [k]. We define the partite minimum d-degree as the minimum of degH(S) taken

over all legal d-vertex sets S in H, denoted by δ′d(H). For L ⊆ [k], the partite minimum

L-degree δ′L(H) is minimum of degH(S) taken over all legal |L|-set S ⊂
⋃
i∈L Vi.

When k = 2, Hall’s Theorem gave a necessary and sufficient condition for the existence

of perfect matching in a bipartite graph. However when k ≥ 3, there is no such good result.

Suppose H is a k-partite k-graph with each part of size n. As a simple corollary of Hall’s

theorem for graphs, if δ′k−1(H) ≥ n/2 then H contains a perfect matching (It can also be

derived from Dirac Theorem, or simple greedy algorithm, see Part 2). Kühn and Osthus

[59] gave an analogous result when k ≥ 3, which is that if δ′k−1(H) ≥ n/2 +
√

2n log n

then H has a perfect matching. Later Aharoni, Geogakopoulos and Sprüseel [1] improved

this result by using conditions on only two types of partite minimum codegrees (See Part
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2 for a brief proof). They showed that there is perfect matching if δ′[k]\{1}(H) > n/2 and

δ′[k]\{k}(H) ≥ n/2, and consequently, if δ′k−1(H) > n/2 then H has a perfect matching. Their

result is best possible with k even and n ≡ 2(mod 4). However, for other values of k and

n, it is still possible to strengthen it (see survey [74]). In addition, a conjecture is stated in

their paper.

Conjecture 1.3 ([1]). If δ′L(H) > nk−|L|/2 and δ′[k]\L(H) ≥ n|L|/2 for some L ⊂ [k − 1],

then H has a perfect matching. Or a stronger version, if δ′L(H)/nk−|L| + δ′[k]\L(H)/n|L| > 1,

then H has a perfect matching.

Aharoni, Geogakopoulos and Sprüseel [1] gave a proof for the existence of a perfect

fractional matching under the above condition. Pirkurko [72] showed an asymptotic result

of the stronger version of Conjecture 1.3, see Theorem 3.9. Other than that, the conjecture

is still open.

As interesting as in the general k-graph case, the minimum degree threshold for almost

perfect matchings in k-partite k-graphs also drops significantly. Kühn and Osthus in [59]

proved that δ′k−1(H) ≥ dn
k
e guarantees a matching covering at least n − (k − 2) vertices

from each part. Rödl and Ruciński asked in their survey paper [74, Problem 3.14] whether

dn
k
e guarantees a matching in H covering at least n − 1 vertices from each part. In Part

3, we answer this question and show that the threshold can be further weakened to bn
k
c

when n ≡ 1(mod k). In addition, we improve it to a new result by considering each partite

minimum codegree δ′[k]\{i}(H): if there are at least three i’s such that δ′[k]\{i}(H) > εn for

some ε > 0, then there is a matching covering at least min{n− 1,
∑

i∈[k] δ
′
[k]\{i}(H)} vertices

in each vertex class.

1.2 Tilings in k-graphs

Recall that given two k-graphs F and H, an F -tiling (or F -packing) of H is a spanning

subgraph which consists of a collection of vertex-disjoint copies of F in H. Given an integer

n that is divisible by |V (F )|, we define the tiling threshold td(n, F ) to be the smallest integer
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Figure 1.2. K3
4 − 2e or C3

4 or K1,1,2

t such that every k-graph H on n vertices with δd(H) ≥ t contains an F -factor.

Much work has been done on graphs (k = 2) as we stated earlier. When k ≥ 3,

tiling problems becomes much harder. Other than the matching problem, only a few tiling

thresholds are known. Let’s take a look at some codegree thresholds first. The natural

starting point is 3-graphs on 4 points. Let C3
4 be the unique 3-graph on four vertices with two

edges (this 3-graph was denoted by K3
4 −2e in [16], and by Y in [43]). Kühn and Osthus [58]

showed that t2(n, C3
4) = (1+o(1))n/4. Later Czygrinow, DeBiasio and Nagle [16] determined

t2(n, C3
4) exactly for large n, t2(n, C3

4) = n/4 + 1 if n ∈ 8N and t2(n, C3
4) = n/4 otherwise.

Let K3
4 denote the complete 3-graph on four vertices. Lo and Markström [66] proved that

t2(n,K3
4) = (1 + o(1))3n/4. Simultaneously, Keevash and Mycroft [51] determined the exact

value of t2(n,K3
4) for sufficiently large n is 3n/4−2 if n ∈ 8N or 3n/4−1 otherwise. Let K3

4−e

denote the (unique) 3-graph on four vertices with three edges. In [65], Lo and Markström

proved that t2(n,K3
4 − e) = (1 + o(1))n/2, which confirmed a conjecture of Pikhurko [72].

Exact of t2(n,K3
4 − e) is recently proved to be n/2− 1 by Han, Lo, Treglown and Zhao [41].

For the other k-graphs, Mycroft [70] determined tk−1(n,K) asymptotically for a wide

class of k-partite k-graphs including all complete k-partite k-graphs and loose cycles. Here

we state his result on complete k-partite k-graphs since there are some similarity between

his result for codegree and our result in Part 4 for vertex degree. Let K := Km1,...,mk be the

complete k-partite k-graph with parts of size m1 ≤ m2 ≤ · · · ≤ mr. We divide all complete

k-partite r-graphs into types : K is type 0 if gcd(m1, . . . ,mr) > 1 or m1 = · · · = mk = 1; K

is type d ≥ 1 if gcd(m1, . . . ,mk) = 1 and gcd({mj −mi : j > i}) = d. Mycroft [70] showed
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that

δk−1(n,K) =


n/2 + o(n), if K is type 0;

m1

|V (K)|n+ o(n), if K is type 1;

max{ m1

|V (K)|n, n/p}+ o(n), if K is type d ≥ 2,

where p is the smallest prime factor of d. The proof of [70] makes use of Hypergraph

Regularity Lemma and Blow-up Lemma of Keevash [48].

As to the vertex degree conditions, there are even fewer tiling results. Lo and Markström

[66] determined t1(n,K3
3(m)) and t1(n,K4

4(m)) asymptotically, where Kk
k (m) denotes the

complete k-partite k-graph with m vertices in each part. Recently Han and Zhao [44] and

independently Czygrinow [15] determined t1(n, C3
4) exactly for sufficiently large n. We [42]

extend these results by determining t1(n,K) asymptotically for all complete 3-partite 3-

graphs K, and thus partially answer a question of Mycroft [70], see Part 4.

1.3 Edge Coloring in Graphs

An edge-coloring is an assignment of colors to edges of a graph. A proper edge-coloring

is an edge-coloring such that no two edges with common endpoint receive the same color.

Clearly, a proper edge coloring is an edge coloring in which every color class is a matching.

The smallest number of colors in a proper edge-coloring is called edge chromatic number

of G, denoted by χ′(G). Let G be a graph with maximum degree ∆. The edge chromatic

number of G is very closely related to the maximum degree ∆. Vizing’s theorem shows

χ′(G) = ∆ or ∆ + 1. In particular, if every color class is an induced matching (a matching

in which no pair of two edges are joint by any edge from the host graph), it is called a strong

edge coloring. In other words, a strong edge-coloring is an assignment of colors to edges of

a graph such that no two edges of distance at most two receive the same color. Two edges

are of distance at most two if and only if either they share an endpoint or one of their end

points are adjacent. An induced matching is a set of edges such that no two edges are of

distance at most two.
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The strong edge chromatic number of G, usually denoted by χ′s(G), is the minimum

number of colors in a strong edge-coloring of G. For example, the strong chromatic number

of Petersen graph is 5. Finding the best possible bound on χ′s(G) in terms of ∆ would

be an analogue of Vizing’s Theorem for strong edge-coloring. P. Erdős and J. Nešetřil [27]

proposed the following conjecture in 1985.

Conjecture 1.4 ([27]).

χ′s(G) ≤


5
4
∆2 if ∆ is even

1
4
(5∆2 − 2∆ + 1) if ∆ is odd.

The conjectured bounds are best possible with the constructions obtained from a blowup

of C5. When ∆ is even, expanding each vertex of a 5-cycle into an independent set of

cardinality ∆/2 yields such a graph with 5∆2/4 edges. Similarly when ∆ is odd, expanding

each of two adjacent vertices into an independent set of cardinality (∆ + 1)/2 and each of

the other three vertices of C5 into independent set of cardinality (∆ − 1)/2 yields a graph

with strong chromatic number (5∆2 − 2∆ + 1)/4. Chung, Gyǎrfǎs, Trotter, and Tuza [11]

proved that this operation gives the maximum number of edges in a 2K2-free graph with

maximum degree ∆.

Conjecture 1.4 has been verified for graphs with maximum degree ∆ ≤ 3. By using

greedy edge coloring strategy, we can easily get χ′s(G) ≤ 2∆2 − 2∆ + 1. That implies the

conjecture is true for ∆ ≤ 2. For ∆ = 3, it is proved by Andersen[5] and independently,

by Horǎk, He and Trotter [45], that χ′s(G) ≤ 10 where G is a graph with maximum degree

∆ = 3. For ∆ = 4, as conjectured χ′s(G) = 20. D. Cranston [92] proved that any graph

with maximum degree 4 has a strong edge-coloring using at most 22 colors. That is the best

upper bound known for ∆ = 4. Conjecture 1.4 for ∆ = 4 or 5 is still open.

We [93] intend to improve the greedy algorithm to give an upper bound of the strong

chromatic number in terms of ∆ and use the algorithm to get an strong edge-coloring with

37 colors. See Part 5.
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PART 2

TOOLS AND PRELIMINARIES

2.1 Greedy Algorithms

A greedy algorithm is an algorithm that makes the locally optimal choice at each stage

with the hope of finding a global optimum. In many problems, a greedy strategy does not in

general produce an optimal solution, but nonetheless a greedy algorithm may yield locally

optimal solutions that approximate a global optimal solution in a reasonable time. Greedy

algorithms play a useful role in the exploratory searching for matchings in k-graphs.

2.1.1 Greedy algorithms in finding maximum matchings

In this section, we state the use of greedy algorithms in finding maximum matchings.

For example, when k = 2, we want to prove that a bipartite graph H with V (H) = V1 ∪ V2,

|V1| = |V2| = n and δ′1(H) ≥ δ contains a matching of size min{n, 2δ}. Suppose we find a

maximum matching M and |M | < min{n, 2δ}. Let v, u be the leftover vertex from each part,

then N(v) ⊂ V (M) and N(u) ⊂ V (M) otherwise contradicting the maximality of M . Since

deg(v) + deg(u) ≥ 2δ > |M |, there exists one edge e = {xy} ∈M incident to both u and v,

say xu, yv ∈ E(H). Replacing e by xu and yv gives a larger matching, a contradiction.

Another example is from Kühn and Osthus [59] to find an almost perfect matching in

k-partite k-graphs.

Theorem 2.1 ([59]). For s ≥ 1, ` > 0, let H be a k-partite k-graphs with each part of size

n. Denote δ′ = dn/ke− ` if k | n or n ≡ k− 1 mod k and δ′ = bn/kc− ` otherwise. Suppose

there are fewer than sk−1 legal (k − 1)-set S with degH(S) < δ′. Then H has a matching

which covers all but at most (k − 1)s+ `k − 1 vertices.

Proof. Let V1, . . . , Vk denote the vertex classes of H. Assume the maximum matching M is

of size |M | ≤ (k − 1)s + `k. Since each class has at least (k − 1)s + `k ≥ (k − 1)s vertices
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unmatched, for each i = 1, . . . , k, one can find (k−1)s-sets A1, . . . , Ak such that Ai contains

exactly s unmatched vertices in Vj with j 6= i. Thus each Ai contains a legal (k − 1)-set Si

with deg(Si) ≥ δ′, and all the neighbors of Si lie entirely in V (M) due to the maximality of

M . Since
∑

i∈[k] deg(Si) ≥ kδ′ > n− (k − 1)s− `k > |M |, there exist distinct indices i 6= j

such that Si and Sj have neighbors on the same edge e ∈M , say vi ∈ Si ∩ e and vj ∈ Sj ∩ e.

Replacing e by {vi} ∪ Si and {vj} ∪ Sj gives a larger matching, a contradiction.

At last we state the beautiful and surprisingly short proof in finding almost perfect

matchings in k-partite k-graphs by Aharoni, Geogakopoulos and Sprüseel [1].

Theorem 2.2 ([1]). Let H be a k-partite k-graphs with each part of size n. If δ′[k]\{1} > n/2

and δ′[k]\{k} ≥ n/2, then H has a perfect matching.

Proof. It suffices to prove the theorem for k = 3. To see this, let k > 3 and choose a perfect

matching F = g1, g2, . . . , gn in the complete (k−2)-partite (k−2)-graph with vertex partition

V2, V3, . . . , Vk−1. Let H ′ be the 3-partite 3-graph with vertex partition V1, F, Vk such that

for x ∈ V1, y ∈ Vk, (x, gi, y) is an edge of H ′ if and only if {x} ∪ gi ∪ {y} is an edge of H.

Clearly, H ′ satisfies the conditions of the theorem, with k = 3. Assuming that the theorem is

valid in this case, H ′ has a perfect matching, and ’de-contracting’ each gi results in a perfect

matching of H.

Thus we may assume that k = 3. Suppose that the theorem fails. We may assume that

H has a matching M that matches all but one vertex from each class; let x1 ∈ V1, x2 ∈ V2,

x3 ∈ V3 be the unmatched vertices. Let U be the set of pairs (u, v) where u ∈ V2, v ∈ V3 such

that there is an edge of M containing both u and v. Since each pair in U has more than

n/2 neighbors in V1, there exists a vertex w ∈ V1 that is a neighbor of at least n/2 pairs in

U . We consider three cases, in all of which we will be able to construct a perfect matching

of H.

The first case is when w = x1. Since the pair (x2, x3) has more than n/2 neighbors in V1,

there is an edge e = (u1, u2, u3) ∈M such that (x1, u2, u3) ∈ E(H) and (u1, x2, x3) ∈ E(H).

Then replacing e by (x1, u2, u3) and (u1, x2, x3) gives a perfect matching of H.
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The next case is when w lies on an edge f = (w, u2, u3) ∈ M such that (x1, x2, u3) ∈

E(H). Since the pair (u2, x3) has more than n/2 neighbors, there is an edge g = (v1, v2, v3) ∈

M such that v1 is a neighbor of the pair (u2, x3) and the element (v2, v3) ∈ U is in an edge

with w. If v1 = w (in which case f = g) then replacing (w, u2, u3) by (x1, x2, u3) and

(w, u2, x3) gives a perfect matching of H; if v1 6= w then replacing f and g by (x1, x2, v3),

(x3, u2, v1) and (w, v2, v3) gives a perfect matching.

Finally, consider the case when w lies in an edge f = (w, u2, u3) ∈ M such that

(x1, x2, u3) /∈ E(H). Since d((u2, u3)) > n/2 and d((x1, x2)) ≥ n/2 there is an edge

g = (v1, v2, v3) ∈ M such that (v1, u2, u3) ∈ E(H) and (x1, x2, v3) ∈ E(H). Let M ′ be

the matching M −f − g+ (v1, u2, u3) + (x1, x2, v3). The only vertices not matched by M ′ are

v2, x3 and w. Now we can repeat the argument of the first case with w playing the role of

x1. But in this case we have to be more careful: as w was a neighbor of at least n/2 pairs in

U , and the only element of U that is not in an edge of M ′ is (v2, v3), there are still at least

n/2 − 1 elements of U neighboring w that are each in an edge of M ′. On the other hand,

if (w, v2, x3) ∈ E(H) we are done. Hence we can assume that the pair (v2, x3) has at least

(n + 1)/2 neighbors in V1 \ {w}. But n/2 − 1 + (n + 1)/2 > n − 1, thus there is an edge

e ∈M ′ containing a pair neighboring w and a neighbor of (v2, x3). Replacing e from M ′ by

the two corresponding edges yields a perfect matching of H.

2.2 Tools in Extremal Graph Theory

2.2.1 Some extremal graph theorems

In this section, we list some standard results from extremal graph theory mostly often

used when employing the Regularity Lemma. Some of them may already be introduced in

Part 1. Given a family L of prohibited graphs (hypergraphs), ex(n,L) denotes the maxi-

mum number of edges (hyperedges) that an n-vertex graph (hyergraph) G can have without

containing any subgraph L ∈ L.

As is well known, Turán [89] proved that for every p there is a unique graph on ex(n,Kp)
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vertices without containing Kp. The unique graph, called Turán graph, is the complete p-

partite graph with n vertices whose partite sets differ in size by at most 1. The following

form is weaker than Turán’s original form but it is more usable.

Theorem 2.3 (Turán Theorem [89]).

ex(n,Kp) ≤
(

1− 1

p− 1

)
n2

2

Paul Erdös and Arthur Stone [22] extended Turán’s result to Kp(t), the complete p-

partite graph with t vertices in each class, which is asymptotically. (For a strengthen versions,

see [12, 13].)

Theorem 2.4 (Erdös-Stone Theorem [22]). For any integers p ≥ 2 and t ≥ 1,

ex(n,Kp(t)) =

(
1− 1

p− 1

)(
n

2

)
+ o(n2)

Erdös and Simonovits [21] showed the general asymptotic result of ex(n,L), which plays

a crucial role in extremal graph theory.

Theorem 2.5 ([21]). If L is finite and minL∈L χ(L) = p > 1, then

ex(n,L) =

(
1− 1

p− 1

)(
n

2

)
+ o(n2)

In general, for r-graphs, we have similar results. Given `1, . . . , `r ∈ N, let K
(r)
`1,...,`r

denote

the complete r-partite r-graph whose jth part has exactly `j vertices for all j ∈ [r].

Theorem 2.6 (Erdös Theorem [23]). For r-graphs,

ex(n,K
(r)
`,...,`) < nr−`

1−r

Now we state a generalization of the Erdös-Stone Theorem for hypergraphs by Erdös

[24] and Brown, simonovits [8].
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Theorem 2.7 ([24, 8]).

ex(n,K
(r)
`1,...,`r

) = ex(n,K
(r)
1,...,1) + o(nr)

Given L as a family of prohibited r-graphs, the r-graphs are called supersaturated if it

has more edges than ex(n,L). The basic question is how many copies of L ∈ L must occur

in a r-graph on n vertices with more than ex(n,L) edges. The following proposition is from

the result of Erdós and Simonovits on supersaturation.

Proposition 2.8 ([25]). Given µ > 0, l1, . . . , lr ∈ N, there exists µ′ > 0 such that the

following holds for sufficiently large n. Let H be an r-graph on n vertices with a vertex

partition V1 ∪ · · · ∪ Vm. Suppose i1, . . . , ir ∈ [m] and H contains at least µnr edges e =

{v1, . . . , vr} such that v1 ∈ Vi1, . . . , vr ∈ Vir . Then H contains at least µ′nl1+···+lr copies of

K
(r)
l1,...,lr

whose jth part is contained in Vij for all j ∈ [r].

2.2.2 Szemerédi’s Regularity Lemma

Szemerédi’s Regularity Lemma [84] has been proved to be an incredibly powerful and

useful tool in graph theory as well as in Ramsey theory, combinatorial number theory and

other areas of mathematics and theoretical computer science. The lemma essentially says

that, in some sense, all large graphs can be approximated by a random-looking graphs. It

helps to prove results for arbitrary graphs whenever the corresponding results are trivial for

random graphs.

Given a graph H and a pair (U,W ) of disjoint non-empty subsets of V (H). We denote

the density of (U,W ) by

d(U,W ) =
e(U,W )

|U ||W |
.

The pair (U,W ) is called (ε, d)-regular for ε > 0 and d ≥ 0 if

|d(U ′,W ′)− d| ≤ ε
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for U ′ ⊆ U,W ′ ⊂ W with |U ′| ≥ ε|U |, |W ′| ≥ ε|W |. The pair (U,W ) is called ε-regular if it

is (ε, d)-regular for some d ≥ 0. It is immediate from the definition that in an (ε, d)-regular

pair (U,W ), if U ′ ⊂ U , |U ′| ≥ c|U | and W ′ ⊂ W , |W ′| ≥ c|W | for some c ≥ ε, then (U ′,W ′)

is (ε/c, d)-regular.

Lemma 2.9 (Regularity Lemma [84]). For all ε > 0 and l ∈ N there exist n0,M ∈ N such

that for every n ≥ n0 the following holds. Let G be an n-vertex graph whose vertex set is

pre-partitioned into sets V1, V2, . . . , Vl′, l
′ ≤ l. Then there exists a partition U0, U1, . . . , Ut of

V (G), l < t < M , with the following properties.

(i) For every i, j ∈ [t] we have |Ui| = |Uj| and |U0| < εn

(ii) For every i ∈ [t] and every j ∈ [l′] either Ui ∩ Vj = ∅ or Ui ⊂ Vj

(iii) All but at most εt2 pairs (Ui, Uj), i, j ∈ [t], i 6= j, are ε-regular.

The partition given in Lemma ?? is called an ε-regular partition of G. Given an ε-

regular partition of G and d ≥ 0, we refer to Vi, i ∈ [t] as clusters. The reduced graph (or

cluster graph) R is the graph whose vertices are clusters U1, . . . , Ut and {Ui, Uj} form an

edge of R if and only if (Ui, Uj) is ε-regular and d(Ui, Uj) ≥ d. Reduced graphs inherit many

properties of G like the following degree result.

Proposition 2.10. If 0 < 2ε ≤ d ≤ c/2 and δ(H) ≥ c, then δ(R) ≥ (c− 2d)|R|.

Many proofs using Regularity Lemma are similar: If G has a reduced graph R then

every small subgraph of R is also a subgraph of G.

For a graph R and integer t > 0, let R(t) be the graph obtained by replacing each

vertex x ∈ V (R) with a set Vx of t vertices, and for u ∈ Vx, v ∈ Vy, uv ∈ E(R(t)) if and only

if xy ∈ E(R). So R(t) is obtained by replacing each edge of R by a copy of the complete

bipartite graph Kt,t.

A key lemma to use Regularity Lemma was stated by Komlós and Simonovites [56] as

follows.



18

Lemma 2.11 (Key Lemma,[56]). Given d > ε > 0, a graph R, and a positive integer m.

Let G be a graph by replacing every vertex of R by m vertices, and replacing the edges of R

with ε-regular pairs of density at least d. Let F be s subgraph of R(t) with f vertices and

maximum degree ∆ > 0, and let ε0 = (d − ε)∆/(2 + ∆). If ε ≤ ε0 and t − 1 ≤ ε0m, then

F ⊂ G.

We will state another lemma, Blow-up Lemma, which plays the same role in embedding

spanning graphs as the Key Lemma played in embedding smaller graphs.

Given a graph G and two disjoint vertex sets A,B ⊂ V , we say the pair (A,B) is (ε, δ)-

super-regular if for every X ⊂ A and Y ⊂ B satisfying |X| > ε|A| and |Y | > ε|B| we will

have e(X, Y ) > δ|X||Y |, and furthermore, deg(a) > δ|B| for all a ∈ A, and deg(b) > δ|A|

for all b ∈ B. Now we are ready to state the Blow-up Lemma.

Lemma 2.12 (Blow-up Lemma). Given a graph R of order r and positive parameters δ,∆,

there exists an ε > 0 such that the following holds. Let n1.n2, . . . , nr be arbitrary positive

integers and let us replace the vertices of R with pairwise disjoint sets V1, V2, . . . , Vr of sizes

n1, n2, . . . , nr (blowing up). We construct two graphs on the same vertex-set V = ∪Vi. The

first graph R is obtained by replacing each edge {vi, vj} of R with the complete bipartite

graph between the corresponding vertex-sets Vi and Vj. A sparser graph G is constructed by

replacing each edge {vi, vj} with an (ε, δ)-duper-regular pair between vi and Vj. If a graph H

with ∆(H) ≤ ∆ is embeddable into R then it is already embeddable into G.

An example of using Regularity Lemma We prove the following result by using

Regularity Lemma and Erdös-Stone Theorem. It is also discussed in Part 6.

Theorem 2.13. Given graphs H and F with |V (H)| = n, |V (F )| = f and f � n. Let

r = χ(F ). For γ > 0 if δ(H) ≥ (1 − 1
r−1

+ γ)n then every vertex of H can be covered by

some copy of F .

Proof. Let γ > 0 and δ(H) ≥ (1 − 1
r−1

+ γ)n. Let v be an arbitrary vertex in V (H). Let

V1 be the set of vertices that are adjacent to v, and V2 be the set of vertices which are not

adjacent to v. |V1| ≥ (1− 1
r−1

+ γ)n.
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When r = 2, F is a bipartite graph Ks,t with s ≤ t. In this case, |V1| ≥ γn. Choose

Ṽ1 ⊂ V1 with |Ṽ1| = γn/2. Let V ′2 = V (H) \ {Ṽ1 ∪ {v}}, then e(Ṽ1, V
′

2) ≥ (γ
2
n)2. By Erdös

Theorem, there exists a bipartite graph Kt,t ⊂ H[Ṽ1, V
′

2 ]. Since v is adjacent to all vertices

in Ṽ1, we can find a copy of F containing v.

When r ≥ 3, we use Regularity Lemma. Let 0 < 2ε ≤ d � γ. Apply Regularity

Lemma on V (H) \ {v} with pre-partition {V1, V2}. We get a new partition {U1, U2, . . . , Ut}

and reduced graph R with δ(R) ≥ (1 − 1
r−1

+ γ − 2d)t ≥ (1 − 1
r−1

+ γ/2)t and |R ∩ V ′1 | ≥

(1− 1
r−1

+ γ − ε)n/(1−ε
t
n) > (1− 1

r−1
+ γ/2)t, where V ′i ⊂ V (R) contains all clusters in Vi.

In the induced graph R[V ′1 ],

degV ′1 (v) ≥ (1− 1

r − 1
+ γ/2)t− (

1

r − 1
− γ/2)t

≥ (1− 2

r − 1
+ γ)t

≥ (1− 1

r − 2
+ γ/2)|V ′1 |

By Edös-Stone Theorem 2.4, R[V ′1 ] contain a Kr−1. Without Loss of Generality, we may

assume V (Kr−1) = {U1, . . . , Ur−1}.

Claim 2.14. Let γ > 0, k � t. Let X be a set of t elements and let A1, A2, . . . , Ak be

subsets of X with size at least (k−1
k

+ γ/2)t, then
⋂k
i=1 Ai 6= ∅.

Proof. Let Aci = X \Ai for i ∈ [k]. It is sufficient to show that ∪ki=1A
c
i 6= X. This is obviously

true since |Aci | ≤ ( 1
k
− γ/2)n and hence | ∪ki=1 A

c
i | ≤

∑k
i=1 |Aci | < t.

Since |NR(Ui)| ≥ (1 − 1
r−1

+ γ/2)t, one can apply Claim 2.14 on V (R) with subsets

NR(Ui) for i = 1, ..., r − 1 and k = r − 1. Therefore, there is a cluster, denoted by U ′,

disjoint from and adjacent to all vertices of {U1, . . . , Ur−1}. Hence there exists a Kr in R

with vertices {U1, . . . , Ur−1, U
′}.

By Key Lemma 2.11, from Kr ⊂ R we can get a complete r-partite graph K ⊂

KU1,...,Ur−1,U ′ . In K ∪ {v}, one can find a copy of F containing v.
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2.2.3 Hypergraph version of Regularity Lemma

Weak Hypergraph Regularity Lemma Szemerédi’s Regularity Lemma [84] has

many generalizations to hypergraphs. In this thesis, we use the so-called Weak Hypergraph

Regularity Lemma, which is a straightforward extension of the original Szemerédi’s regularity

lemma to hypergraphs (see [29, 10]).

Let H = (V,E) be a k-graph and let A1, . . . , Ak be mutually disjoint non-empty subsets

of V . We define e(A1, . . . , Ak) to be the number of edges with one vertex in each Ai, i ∈ [k],

and the density of H with respect to (A1, . . . , Ak) as

d(A1, . . . , Ak) =
e(A1, . . . , Ak)

|A1| · · · |Ak|
.

We say a k-tuple (V1, . . . , Vk) of mutually disjoint subsets V1, . . . , Vk ⊆ V is (ε, d)-regular, for

ε > 0 and d ≥ 0, if

|d(A1, . . . , Ak)− d| ≤ ε

for all k-tuples of subsets Ai ⊆ Vi, i ∈ [k], satisfying |Ai| ≥ ε|Vi|. We say (V1, . . . , Vk) is

ε-regular if it is (ε, d)-regular for some d ≥ 0. It is immediate from the definition that in

an (ε, d)-regular k-tuple (V1, . . . , Vk), if V ′i ⊂ Vi has size |V ′i | ≥ c|Vi| for some c ≥ ε, then

(V ′1 , . . . , V
′
k) is (ε/c, d)-regular.

Theorem 2.15 (Weak Regularity Lemma). Given t0 ≥ 0 and ε > 0, there exist T0 = T0(t0, ε)

and n0 = n0(t0, ε) so that for every k-graph H = (V,E) on n > n0 vertices, there exists a

partition V = V0 ∪ V1 ∪ · · · ∪ Vt such that

(i) t0 ≤ t ≤ T0,

(ii) |V1| = |V2| = · · · = |Vt| and |V0| ≤ εn,

(iii) for all but at most ε
(
t
k

)
k-subsets {i1, . . . , ik} ⊂ [t], the k-tuple (Vi1 , . . . , Vik) is ε-regular.

The partition given in Theorem 2.15 is called an ε-regular partition of H. Given an

ε-regular partition of H and d ≥ 0, we refer to Vi, i ∈ [t] as clusters and define the cluster
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hypergraph R = R(ε, d) with vertex set [t] and {i1, . . . , ik} ⊂ [t] is an edge if and only if

(Vi1 , . . . , Vik) is ε-regular and d(Vi1 , . . . , Vik) ≥ d.

The following corollary shows that the cluster hypergraph inherits the minimum degree

of the original hypergraph. Its proof is almost the same as in [37, Proposition 16] after we

replace 1
2(k−`) + γ by c – we thus omit the proof.

Corollary 2.16. [37] Given c, ε, d > 0 and integers k ≥ 3, t0 such that 0 < ε < d2/4 and

t0 ≥ 2k/d, there exist T0 and n0 such that the following holds. Let H be a k-graph on n > n0

vertices such that δk−1(H) ≥ cn. If H has an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vt with

t0 ≤ t ≤ T0 and R = R(ε, d) is the cluster hypergraph, then at most
√
εtk−1 (k − 1)-subsets

S of [t] violate degR(S) ≥ (c− 2d)t.

We will use the Weak Hypergraph Regularity Lemma in Part 4.

Strong Hypergraph Regularity Lemma One of the main reasons for the wide

applicability of Szemerédi’s Regularity Lemma is the fact that it enbles one to find all small

graphs as subgraphs of a regular graph. To generalize this application in finding small

subgraphs in its regular partition, we need to strengthen the definition of regularity.

Before we can state the strong regularity lemma, we first define a complex. A hypergraph

H consists of a vertex set V (H) and an edge set E(H), where every edge e ∈ E(H) is a

non-empty subset of V (H). A hypergraph H is a complex if whenever e ∈ E(H) and e′ is a

non-empty subset of e we have that e′ ∈ E(H). All the complexes considered in this section

have the property that every vertex forms an edge.

For a positive integer k, a complex H is a k-complex if every edge of H consists of at

most k vertices. The edges of size i are called i-edges of H. Given a k-complex H, for each

i ∈ [k] we denote by Hi the underlying i-graph of H: the vertices of Hi are those of H and

the edges of Hi are the i-edges of H.

Given s ≥ k, a (k, s)-complex H is an s-partite k-complex, by which we mean that the

vertex set of H can be partitioned into sets V1, . . . , Vs such that every edge of H is crossing,

namely, meets each Vi in at most one vertex.
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Given i ≥ 2, an i-partite i-graph H and an i-partite (i− 1)-graph G on the same vertex

set, we write Ki(G) for the family of all crossing i-sets that form a copy of the complete

(i− 1)-graph K
(i−1)
i in G. We define the density of H with respect to G to be

d(H|G) :=
|Ki(G) ∩ E(H)|
|Ki(G)|

if |Ki(G)| > 0,

and d(H|G) = 0 otherwise. More generally, if Q = (Q1, . . . , Qr) is a collection of r subhy-

pergraphs of G, we define Ki(Q) :=
⋃r
j=1Ki(Qj) and

d(H|Q) :=
|Ki(Q) ∩ E(H)|
|Ki(Q)|

if |Ki(Q)| > 0,

and d(H|Q) = 0 otherwise.

We say that H is (d, δ, r)-regular with respect to G if every r-tuple Q with |Ki(Q)| >

δ|Ki(G)| satisfies |d(H|Q) − d| ≤ δ. Instead of (d, δ, 1)-regularity we simply refer to (d, δ)-

regularity.

Given 3 ≤ k ≤ s and a (k, s)-complex H, we say that H is (dk, . . . , d2, δk, δ, r)-regular

if the following conditions hold:

(i) For every i = 2, . . . , k− 1 and every i-tuple K of vertex classes, Hi[K] is (di, δ)-regular

with respect to Hi−1[K] unless e(Hi[K]) = 0, where Hi[K] is the restriction of Hi to

the union of all vertex classes in K.

(ii) For every k-tuple K of vertex classes, Hk[K] is (dk, δ3, r)-regular with respect to

Hk−1[K] unless e(Hk[K]) = 0.

The following states that the restriction of regular complexes to a sufficiently large set

of vertices is still regular, by Kühn,Mycroft and Othus [57].

Lemma 2.17 ([57], Lemma 4.1). Let k, s, r,m be positive integers and α, d2, . . . , dk, δ, δk be

positive constants such that

1

m
≤ 1

r
, δ ≤ min{δk, d2, . . . , dk} ≤ δk � α� dk,

1

s
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Let H be a (dk, . . . , d2, δk, δ, r)-regular (k, s)-complex with vertex classes V1, V2, . . . , Vs with

size m. For each i let V ′i ⊂ Vi be a set of size at least αm. Then the restriction H ′ =

H[V ′1 , V
′

2 , V
′

3 , . . . , V
′
s ] of H to V ′1 ∪ V ′2 ∪ V ′3 ∪ · · · ∪ V ′s is (d2, d3,

√
δk,
√
δ, r)-regular.

Statement of the Regularity Lemma In this section we state the version of the

regularity lemma due to Rödl and Schacht [79] for 3-graphs, which is almost the same as

the one given by Frankl and Rödl [28]. We need more notation. Suppose that V is a finite

set of vertices and P(1) is a partition of V into sets V1, . . . , Vt, which will be called clusters.

Given any j ∈ [3], we denote by Crossj = Crossj(P(1)) the set of all crossing j-subsets of

V . For every set A ⊆ [t] we write CrossA for all the crossing subsets of V that meet Vi

whenever i ∈ A. Let PA be a partition of CrossA. We refer to the partition classes of PA as

cells. Let P(2) be the union of all PA with |A| = 2 (so P(2) is a partition of Cross2). We call

P = {P(1),P(2)} a family of partitions on V .

Given P = {P(1),P(2)} and K = vivjvk with vi ∈ Vi, vj ∈ Vj and vk ∈ Vk, the polyad

P (K) is the 3-partite 2-graph on Vi∪Vj∪Vk with edge set C(vivj)∪C(vivk)∪C(vjvk), where

e.g., C(vivj) is the cell in Vi × Vj that contains vivj. We say that P (K) is (d2, δ)-regular if

all C(vivj), C(vivk), C(vjvk) are (d2, δ)-regular with respect to their underlying sets. We let

P̂(2) be the family of all P (K) for K ∈ Cross3.

Now we are ready to state the regularity lemma for 3-graphs.

Theorem 2.18 ([79]). For all δ3 > 0, t0 ∈ N and all functions r : N→ N and δ : N→ (0, 1],

there are d2 > 0 such that 1/d2 ∈ N and integers T, n0 such that the following holds for all

n ≥ n0 that are divisible by T !. Let H be a 3-graph of order n. Then there exists a family of

partitions P = {P(1),P(2)} of the vertex set V of H such that

(i) P(1) = {V1, . . . , Vt} is a partition of V into t clusters of equal size, where t0 ≤ t ≤ T ,

(ii) P(2) is a partition of Cross2 into at most T cells,

(iii) for every K ∈ Cross3, P (K) is (d2, δ(T ))-regular,
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(iv)
∑
|K3(P )| ≤ δ3|V |3, where the summation is over all P ∈ P̂(2) such that H is not

(d, δ3, r(T ))-regular with respect to P for any d > 0.

2.3 Absorbing Method

2.3.1 Technique descriptions

The absorbing method, initiated by Rödl, Ruciński, and Szemerédi [76], has been shown

to be effective handling extremal problems in graphs and hypergraphs. Roughly speaking,

the absorbing method reduces the task of finding a spanning structure to finding an almost

spanning structure. One example is the re-proof of Posa’s conjecture by Levitt, Sárközy,

and Szemerédi [64], while the original proof of Komlós, Sárközy, and Szemerédi [54] used the

Regularity Lemma.

We will briefly introduce the simple and basic version of the absorbing lemma, and then

use it to illustrate the algorithm of using the absorbing method. For this purpose, more

detail can be found in [66].

Let H be an r-graph on n vertices. Given a vertex set U ⊂ V (H), H[U ] is the subgraph

of H induced by the vertices of U . Given an r-graph F of order t, β > 0, i ∈ N and two

vertices u, v ∈ V (H), we call that u, v are (F, β, i)-reachable in H if and only if there are at

least βnit−1 (it− 1)-sets W such that both H[{u} ∪W ] and H[{v} ∪W ] contain K-factors.

In this case, we call W a reachable set for u and v. A vertex set A is (F, β, i)-closed in

H if every two vertices in A are (F, β, i)-reachable in H. When it is clear, we use (β, i) to

represent for (F, β, i).

Lemma 2.19 (Absorption Lemma for F-factors, [66]). Let F be an r-graph of order t. Given

β > 0, and i0 ∈ N, there exists η > 0 such that the following holds for all sufficiently large

integers n. Suppose H is an (F, β, i0)-closed r-graph on n vertices. Then there exists a

vertex set W ⊆ V and |W | ≤ ηn such that for any vertex set U ⊆ V \W with |U | ≤ η3n and

|U | ∈ tZ, both H[W ] and H[W ∪ U ] contain F -factors.

Equipped with the absorption lemma, we can break down the task of finding an F -factor
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in large hypergraphs H into the following algorithm.

Algorithm for finding F-factors via the Absorbing Method.

1. Remove a small set T1 of vertex-disjoint copies of F from H such that the resultant

graph H1 = H[V \ V (T1)] is (F, β, i0)-closed for some integer i0 and constant β > 0.

2. Find a vertex set W ⊂ V (H1) satisfying the conditions of the absorption lemma. Set

H2 = H1[V (H1) \W ].

3. Show that H2 contains an almost F -factor, i.e. a set T2 of vertex-disjoint copies of F

such that |V (H2) \ V (T2)| < α|V (H2)| for small α > 0.

4. Set U = V (H2) \ V (T2). Since H1[W ∪U ] contains an F -factor T3 by the choice of W ,

T1 ∪ T2 ∪ T3 is an F -factor in H.

Step 1 and Step 3 of the algorithm require most of the work. Main use of Step 1 is to get

the hypergraph ready to use absorbing lemma, the closeness. However it is not always the

case that H1 = H[V \V (T1)] is (β, i0)-closed, instead in Part 4 we have V \V0 is (β, i0)-closed

in H. In this case, we adjust the absorbing lemma, but the core idea of proof is essential,

which is the crucial proof we show in the next section.

2.3.2 Crucial proof in the absorbing method

In this section, we show a classic proof of Lemma 2.19. One crucial part of the absorbing

method is the probabilistic arguments. We include the well-known Chernoff’s bound and

Markov’s bound [3] here.

Proposition 2.20 (Chernoff’s bound). Let 0 < p < 1 and let X1, . . . , Xn be mutually

independent indicator random variables with P[Xi = 1] = p for all i, and let X =
∑
Xi.

Then for all a > 0,

P[|X − E[X]| > a] ≤ 2e−a
2/2n.
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Proposition 2.21 (Markov’s bound). If X is any nonnegative random variable and a > 0,

then

P[X ≥ a] ≤ E[X]

a
.

We call an m-set A an absorbing m-set for a t-set T if A ∩ T = ∅ and both H[A] and

H[A∪ T ] contain F -factors. Denote by Am(S) the set of all absorbing m-sets for S. We are

ready to illustrate the proof of the absorbing lemma.

Proof of Lemma 2.19. Define

m = i0k
2 − i0k, η =

1

m!
(
β

2
)k and α = η3.

There are two steps in our proof. In the first step, we show that every t-set has suf-

ficiently many absorbing sets; in the second step, by probabilistic argument, we build an

absorbing family F ′ such that any small portion of vertices in V can be absorbed by using

different members of F ′.

Claim 2.22. For every t-set T , |Am(T )| ≥ ηnm.

Proof. Fix a t-set T = {v1, v2, . . . , vt} ⊂ V . We first find a t-set S ′ = {v1, u2, . . . , ut} ⊂ V

such that S ′ intersects T only at v1 and spans a copy of F . Since v1 and u is (β, i0)-reachable

for any u /∈ T , there are at least βni0t−1 (i0t − 1)-sets S such that H[S ∪ {v1}] contains an

F -factor. Hence, by averaging argument there are at least βnt−1 copies of F containing v1.

Therefore there are at least

βnt − (t− 1)nt−2 > β
2
nt−1

choices for S ′.

Since V is (β, i0)-closed, there are at least βni0t−1 reachable (i0t− 1)-sets Si for ui and

vi where i = 2, . . . , t. Next we choose a collection of pairwise disjoint sets Si for i = 2, . . . , t.

Since in each step we need to avoid at most i0t(t− 1) + t previously selected vertices, there

are at least βni0t−1/2 choices for each Si. Let A = S ′ ∪
(⋃t

i Si
)
, therefore |A| = m. In total,
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we get at least

β

2
nt−1

(
β

2
ni0t−1

)t−1

= (m!)ηnm

m-sets A with multiplicity at most m!. Since H[A] and H[A∪ T ] contain F -factors, A is an

absorbing m-set for S and |Am(T )| ≥ ηnm.

Now we will build a family F ′ by standard probabilistic arguments. Choose a family

F of m-sets by selecting each of the
(
n
m

)
possible m-sets independently with probability

p = ηn1−m/(8m). Then by Chernoff’s bound with probability 1−o(1) as n→∞, the family

F satisfies the following properties: ∀T ∈
(
V
t

)
,

|F| ≤ 2p

(
n

m

)
≤ ηn

m
and |Am(T ) ∩ F| ≥ p|Am(T )|

2
≥ η2n

16m
. (2.1)

Furthermore, the expected number of pairs of m-sets that are intersecting is at most

(
n

m

)
·m ·

(
n

m− 1

)
· p2 ≤ η2n

64m
.

Thus, by using Markov’s inequality, we derive that with probability at least 1/2

F contains at most
η2n

32m
intersecting pairs of m-sets. (2.2)

Hence, with positive probability the family F has all properties stated in (4.2) and (4.3). By

deleting one element of each intersecting pair and removing m-sets that are not absorbing

sets for any t-set T ⊂ V \ V0, we get a new family F ′ and

|V (F ′)| = m|F ′| ≤ m|F| ≤ ηn.

Note that F ′ contains pairwise disjoint m-sets. Since every m-set in F ′ is an absorbing m-set

for some k-set S, H[V (F ′)] has an F -factor and therefore |V (F ′)| ∈ tZ. For any t-set T , by



28

(4.2) above we have

|Am(T ) ∩ F ′| ≥ η2n

16m
− η2n

32m
=

η2n

32m
(2.3)

For any set U ⊂ V \ V (F ′) of size |U | ≤ αn and |U | ∈ tZ, it can be partitioned into at most

(αn/t) t-sets. Since

αn

t
≤ η2n

32m
,

each t-set in U can be greedily absorbed by using some unique absorbing m-set in F ′. Hence,

H[U ∪ V (F ′)] contains an F -factor.

Let W = V (F ′). We get the desired absorbing set W satisfying |W | < ηn such that

for any vertex set U with U ⊂ V \W , |U | ∈ tZ and |U | ≤ αn, both H[W ] and H[U ∪W ]

contain F -factors.

When r-graph is dense enough, the absorbing method provides a powerful, global (small)

absorbing structure that can absorb any (smaller) set of leftover vertices. This reduces the

job of finding a spanning structure into the one of finding an almost spanning structure.

Interestingly, when the minimum degree condition falls below the critical threshold for which

the absorbing structure exists, a partite structure appears in the (hyper)graph (see [51, 50]).

In this case, we modify Step 1 and Step 2 of the Algorithm (see Part 4). First we partition

the vertex set of the r-graph into a few parts such that each part is closed, and then build

the lattice-based absorbing structure on the partition. Our lattice-based absorbing structure

works under the subcritical degree conditions and gives enough structural information in

some applications.
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PART 3

MATCHINGS IN K-PARTITE K-GRAPHS

3.1 Introduction

A k-graph H is said to be k-partite if V (H) can be partitioned into k parts, V (H) =

V1 ∪ · · · ∪ Vk such that every edge consists of exactly one vertex from each class, that is,

E(H) ⊂ V1×· · ·×Vk. Given such a partition, a subset S ⊂ V (H) is called legal if |S∩Vi| ≤ 1

for each i ∈ [k]. In a k-graph H with a set S of d vertices, where 1 ≤ d ≤ k − 1, we define

degH(S) to be the number of edges containing S. The minimum d-degree δd(H) of H is the

minimum of degH(S) taken over all d-vertex sets S in H. When d = k − 1, it is referred as

codegree. In a k-partite k-graph H, we define the partite minimum d-degree as the minimum

of degH(S) taken over all legal d-vertex sets S in H, denoted by δ′d(H).

First of all, we state our main result as follows.

Theorem 3.1 (Main Result). For any k ≥ 3 and ε0 > 0, there exists n0 such that for

any n ≥ n0 the following holds. Let H be a k-partite k-graph with parts of size n such

that δ[k]\{i} ≥ ai for all i ∈ [k] and (1 − ε0)n ≥ a1 ≥ a2 ≥ · · · ≥ ak, a3 > ε0n, and∑
i∈[k] ai ≥ n− k + 3. Then H contains a matching of size at least min{n− 1,

∑
i∈[k] ai}.

Let ν(H) be the size of a maximum matching in H. The following fact gives a proof of

Theorem 3.1 when
∑

i∈[k] ai ≤ n− k + 2.

Fact 3.2. Fix ε > 0 and n is sufficiently large. For i ∈ [k], let ai = ai(n). Let H be a

k-partite k-graph with parts of size n such that δ[k]\{i} ≥ ai for all i ∈ [k], then

ν(H) ≥
∑
i∈[k]

ai if
∑
i∈[k]

ai ≤ n− k + 2.

Proof. Assume a maximum matching M is of size |M | ≤
∑

i∈[k] ai − 1 ≤ n − k + 1. Since

each class has at least k − 1 vertices unmatched, we can find k disjoint legal (k − 1)-sets
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A1, . . . , Ak such that Ai contains exactly one unmatched vertex in Vj with j 6= i. Each Ai

has at least ai neighbors and all of them lie entirely in V (M). Since
∑

i∈[k] ai > |M |, there

exist distinct indices i 6= j such that Ai and Aj have neighbors on the same edge e ∈M , say

vi ∈ Ai ∩ e and vj ∈ Aj ∩ e. Replacing e by {vi} ∪Ai and {vj} ∪Aj gives a larger matching,

a contradiction.

To Prove Theorem 3.1, two cases are separately considered: when H is close to the

extremal k-partite k-graphs (extremal case), and when H is far from extremal k-partite k-

graphs (nonextremal case). In our paper, there are two types of extremal k-partite k-graphs.

Given ε > 0, a k-partite k-graphs H is called ε-close to k-partite k-graph H ′ if H

becomes H ′ after adding and deleting at most εnk edges. Given k-partite k-graph H, it is

called ε-S-extremal if V (H) contains an independent set I such that |I ∩ Vi| ≥ n − ai − εn

for each i ∈ [k].

Theorem 3.3 (Non-extremal case). Fix k ≥ 3 and 0 < γ � ε, and let n be sufficiently

large. Let H be a k-partite k-graph with parts of size n such that δ[k]\{i} ≥ ai for each i ∈ [k]

where (1− ε0)n ≥ a1 ≥ a2 ≥ · · · ≥ ak, a3 > ε0n, and
∑

i∈[k] ai ≥ (1− γ)n. Suppose H is not

5kγ-S-extremal. Then H contains a matching of size at least n− 1.

Theorem 3.4 (Extremal case). For any integer k ≥ 3 and ε0 > 0, there exists 0 < ε � ε0

such that the following holds for sufficiently large integer n. Let H be a k-partite k-graph

with vertex classes of size n. Suppose for each i ∈ [k], δ[k]\{i}(H) ≥ ai, where (1 − ε0)n ≥

a1 ≥ a2 ≥ · · · ≥ ak, a3 > ε0n, and
∑

i∈[k] ai ≥ n − k + 3. If H is ε-S-extremal, then H

contains a matching of size at least min{
∑

i∈[k] ai, n− 1}.

Proof of Theorem 3.1. When
∑

i∈[k] ai ≤ n−k+2, it follows from Fact 3.2. When
∑

i∈[k] ai >

n− k + 2, it follows from Theorem 3.3 and Theorem 3.4 immediately.

For the rest of this paper, in Section 3.2 we introduce the two types of absorbing lemmas

in k-partite k-graphs. In Section 3.3 and Section 3.4, we give the proof of Theorem 3.3 and

Theorem 3.4, respectively.
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Figure 3.1. S-absorbing edge in k-partite k-graphs

Notation: Throughout this paper, we denote by H a k-partite k-graph with the vertex

partition V (H) = V1 ∪ · · · ∪ Vk such that |V1| = · · · = |Vk| = n. Let Vi = Vi mod k if i > k.

3.2 Absorbing Techniques in k-partite k-graphs

In this section, we show the absorbing lemma that will be used to prove Theorem 3.3.

Let H be a k-partite k-graph. A set S is called balanced if it consists of the same

number of vertices from each part of V (H). Given balanced 2k-set S, an edge e ∈ E(H)

disjoint from S is called S-absorbing if there are two disjoint edges e1 and e2 in E(H) such

that |e1 ∩ S| = k − 1, |e1 ∩ e| = 1, |e2 ∩ S| = 2, and |e2 ∩ e| = k − 2. Given legal k-set

S, a balanced set T ⊂ V (H) disjoint from S is called S-perfect-absorbing if both H[T ] and

H[S ∪ T ] contain a perfect matching.

Proposition 3.5. Given λ, ε′, α > 0, the following holds for sufficiently large n. Let H be a

k-partite k-graph with parts of size n, and let § = {S : S ⊂ V (H)} such that any S ∈ § has

at least λni0k S(-perfect)-absorbing i0k-sets in H. Then there exists a matching M ′ in H of

size |M ′| ≤ ε′n such that for every set S ∈ §, the number of S(-perfect)-absorbing edges in

M ′ is at least αn.

Proof. We build the matching M ′ by standard probabilistic arguments. Choose a collection

M of induced matching of size i0 in H by selecting each independently with probability
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p = ε′/(2ni0k−1). For every legal k-set S, let XS be the number of S(-perfect)-absorbing

i0k-sets in M . Then by Chernoff’s bound, with probability 1− o(1), the family M satisfies

the following properties:

|M | ≤ 2ni0kp = ε′n and |XS ∩M | ≥
p

2
· λni0k =

1

4
λε′n for any legal k-set S.

Furthermore, the expected number of intersecting pairs of members in M is at most

kn2i0k−1p2 = ε′2kn/4. By Markov’s inequality, M contains at most ε′2kn/2 intersecting

edges with probability at least 1/2.

Let M ′ ⊂ M be the obtained collection by deleting one edge of each intersecting pair

and removing all edges that are not absorbing edges for any legal k-set S in M . Therefore,

|M ′| ≤ |M | ≤ ε′n and each legal k-set S has

|XS ∩M ′| − 1

2
ε′

2
kn ≥ 1

4
λε′n− 1

2
ε′

2
kn ≥ αn

S(-perfect)-absorbing edges in M ′. Hence, such an absorbing matching M ′ exists.

Lemma 3.6 (k-partite Absorbing lemma). Given 0 < ε′, α � ε, the following holds for

sufficiently large n. Let H be a k-partite k-graph with parts of size n such that δ[k]\{i} ≥ εn

for i ∈ [3], then there exists a matching M ′ in H of size |M ′| ≤ ε′n such that for every

balanced 2k-set S of H, the number of S-absorbing edges in M ′ is at least αn.

Proof. First we show that there are sufficiently many S-absorbing edges for each balanced 2k-

set S; then we prove the existence of a small absorbing matching by probabilistic arguments.

Given 0 < ε′ � ε and sufficiently large n, let H be a k-partite k-graph with parts of

size n such that δ[k]\{i} ≥ εn for i ∈ [3]. Define α = ε3ε′/16.

Claim 3.7. For every balanced 2k-set S, the number of S-absorbing edges is at least ε3nk/2.

Proof. Let {w, v} := S ∩ V3 and {u} := S ∩ V2. We only count those S-absorbing edges e

for which the corresponding edge e2 contains u and v. To this end, we will count ordered
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k-sets {v1, v2, . . . , vk} such that vj ∈ Vj, e = {v1, v2, . . . , vk} is disjoint from S, {w, v2} ∈ e1,

|e1 ∪ (S \ {u, v})| = k − 1 and e2 = {u, v, v4, . . . , vk, v1}.

For each j ∈ [4, k], there are exactly n−2 choices for vj. Having selected {v4, v5, . . . , vk},

we get the following property of v1, v2 and v3: v1 must be a neighbor of {u, v, v4, . . . , vk}; v2

must be a neighbor of S \ {u, v}; v3 must be a neighbor of {v4, . . . , vk, v1, v2}. Therefore,

there are at least aj − 2 choices of vj for j = 1, 2, 3. Hence, there are at least

(n− 2)k−3(εn− 2)3 ≥ 1

2
ε3nk

S-absorbing edges. The last inequality holds since n is sufficiently large.

Next we build the matching M ′ by applying Proposition 3.14.

3.3 Nonextremal k-partite k-graphs: Proof of Theorem 3.3

In this section we derive Theorem 3.3 from the absorbing lemmas in Section 3.2 and a

lemma that provides a matching covering all but a constant number of vertices when H is

non-extremal.

A matching that covers all but a constant number of vertices is provided by the following

lemma. We give the more general assertion with the degree condition in Theorem 3.3 fails

for a small fraction of legal (k − 1)-sets.

Lemma 3.8 (Almost perfect matching lemma). For any integer k ≥ 3 and 0 < ε � α, γ,

the following holds for sufficiently large integer n. For i ∈ [k], let ai = ai(n) such that∑
i∈[k] ai ≥ (1 − γ)n. Let H be a k-partite k-graph with parts of size n which is not 2γ-

extremal. Suppose for each i ∈ [k], there are fewer than εnk−1 legal (k − 1)-sets S such that

S ∩ Vi = ∅ and deg(S) < ai. Then H contains a matching that covers all but at most αn

vertices in each vertex class.

Proof. Let M be a maximum matching of size m in H. Let V ′i = Vi ∩ V (M) and Ui =

Vi \ V (M). Let s := |U1| = · · · = |Uk|. Suppose that s > αn.
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Figure 3.2. The proof of Almost Perfect Matching Lemma

For each i ∈ [k], we greedily find a collection of ti = dk/εe disjoint legal (k − 1)-sets

A such that A ∩ Vi = ∅ and deg(A) ≥ ai. This is possible since in each step, the legal

(k− 1)-sets that cannot be picked are those either intersect the ones that have been picked,

or those with low degree, whose number is at most

k(k − 1)tin
k−2 + εnk−1 < (αn)k−1 <

∏
j∈[k]\{i}

|Uj|,

by ε� α and that n is sufficiently large. Label these sets by A1, . . . , At accordingly so that

Aj ∩Vj′ = ∅ where j′ = j mod k.Therefore, deg(Aj) ≥ aj′ and all neighbors of Aj lie entirely

in V ′j′ by the maximality of M .

For i ∈ [k], let Di be the subset of V ′i each vertex of which has at least k sets Aj,

j ∈ [t] as neighbors, and let D =
⋃
Di. We claim that |e ∩ D| ≤ 1 for each e ∈ M .

Indeed, otherwise assume that x, y ∈ e ∩ D and pick Ai, Aj for some i, j ∈ [t] such that

{x} ∪ Ai, {y} ∪ Aj ∈ E(H). We obtain a matching of size m + 1 by deleting e and adding

{x} ∪ Ai as well as {y} ∪ Aj in M , contradicting the maximality of M .

Next we show that |Di| ≥ ai − εn for each i ∈ [k]. Since there are no edges between Aj

and V ′i for j 6= i mod k, by counting the number of edges between V ′i and {A1, . . . , At}, we

get

ti · ai ≤
∑

j≡i mod k

deg(Aj) ≤ |Di|ti + nk.
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Therefore, by ti ≥ k/ε, we have

|Di| ≥ ai −
nk

ti
≥ ai − εn.

Define M ′ := {e ∈M : e ∩D 6= ∅}. Then for each i ∈ [k], we have

|(V (M ′) \D) ∩ Vi| =
∑
j 6=i

|Dj| ≥
∑
j∈[k]

(aj − εn)− ai ≥ n− ai − 2γn.

Since H is not 2γ-extremal, H[V (M ′) \D] contains at least one edge, denoted by e0. Note

that e0 6∈ M since e0 ⊂ V (M ′) \ D. Assume that e0 intersects e1, . . . , ep in M for some

2 ≤ p ≤ k. Suppose {vj} = ej ∩ D, from the choice of e0, we have vj 6∈ e0 for all j ∈ [p].

By the definition of D, we can greedily pick A`1 , . . . , A`p such that {vj} ∪ A`j ∈ E(H) for

all j ∈ [p]. Let M ′′ be the matching obtained from replacing the edges e1, . . . , ep by e0 and

{vj} ∪ A`j for j ∈ [p]. Thus, M ′′ has m+ 1 edges, contradicting the choice of M .

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Suppose H is a k-partite k-graph with parts of size n and δ[k]\{i} ≥ ai

for each i ∈ [k], a1 ≥ a2 ≥ a3 ≥ εn and
∑

i∈[k] ai ≥ (1 − γ)n, and H is not 5kγ-S-extremal.

In particular, γ < 1
5k

. We first apply Lemma 3.6 on H and find the absorbing matching M ′

of size at most γn such that for every balanced 2k-set S ⊂ V (H), the number of S-absorbing

edges in M ′ is at least αn.

Let H ′ = H[V (H) \ V (M ′)] and n′ = |V (H ′) ∩ Vi| ≥ (1 − γ)n. Note that
∑

i∈[k] a
′
i ≥∑

i∈[k] ai − kγn ≥ (1 − 2kγ)n′. If H ′ is 4kγ-extremal, i.e., V (H ′) contains an independent

set I such that |I ∩ (Vi ∩ V (H ′))| ≥ n′ − a′i − 4kγn′ for each i ∈ [k], then we get that H is

5kγ-extremal since

n′ − a′i − 4kγn′ ≥ (1− γ)n− ai − (1− γ)4kγn ≥ n− ai − 5kγn,

a contradiction. Thus, H ′ is not 4kγ-extremal. By applying Lemma 3.8 onH ′ with parameter
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2γ, α and ε = 0, we obtain a matching M ′′ in H ′ that covers all but at most αn vertices in

each vertex class.

If there are at least three ai ≥ εn, then since for every balanced 2k-set S ⊂ V (H),

the number of S-absorbing edges in M ′ is at least αn, we can greedily absorb the leftover

(at most αn times, each time the number of the leftover vertices in each class is reduced

by 1) until there is 1 leftover vertex in each class. It is possible since each class has the

same number of leftover vertices and a legal k-set S always exists if the size of the leftover

is greater than k. Denote by M̃ the matching obtained after absorbing the leftover vertices

into M ′. Therefore M̃ ∪M ′′ is the required matching in H.

3.4 Extremal k-partite k-graphs

In this section, we prove Theorem 3.4. As inspired by [39], we apply the following weaker

form of a result from Pikhurko [72]. Let H be a k-partite k-graph with parts V1∪V2∪· · ·∪Vk =

V (H). Let L ⊆ [k] and recall that

δ′L(H) = min

{
deg(S) : S ⊂

⋃
i∈L

Vi is a legal |L|-set

}
.

Theorem 3.9. [72, Theorem 3] For k ≥ 2, L ⊆ [k], let m be sufficiently large.Let H be a

k-partite k-graph with parts V1 ∪ V2 ∪ · · · ∪ Vk = V (H) such that |Vi| = m for each i ∈ [k]. If

δ′L(H)m|L| + δ′[k]\L(H)mk−|L| ≥ 3

2
mk,

then H contains a perfect matching.

Proof of Theorem 3.4. Let ε � ε0 and α =
√
ε. Suppose n is sufficiently large. Let H be a

k-partite k-graph with parts V1 ∪ V2 ∪ · · · ∪ Vk = V (H) such that |Vi| = n for each i ∈ [k]

and δ[k]\{i}(H) ≥ ai, where (1 − ε0)n ≥ a1 ≥ a2 ≥ · · · ≥ ak, a3 ≥ ε0n, and without loss of

generality,

n− k + 3 ≤
∑
i∈[k]

ai ≤ n− 1.
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Assume that H is ε-S-extremal, namely, there is an independent set I ⊆ V (H) such that

|I∩Vi| ≥ n−ai−εn for each i ∈ [k]. Note that n−ai−εn ≥ (ε0−ε)n > 0 by our assumption.

Our goal is to find a matching in H of size at least
∑

i∈[k] ai.

Let C be a maximum independent set of V (H) satisfying |C ∩Vi| ≥ n−ai− εn for each

i ∈ [k]. We partition each Vi into Ai ∪Bi ∪ Ci for i ∈ [k] as follows. Let Ci = C ∩ Vi,

Ai =

{
x ∈ Vi \ Ci : deg(x,C) ≥ (1− α)

∏
j 6=i

|Cj|

}
, (3.1)

and Bi = Vi \ (Ai ∪ Ci). Moreover, let A =
⋃

1≤i≤k Ai and B =
⋃

1≤i≤k Bi. We observe the

following bounds of |Ai|, |Bi|, |Ci| for each i ∈ [k].

Claim 3.10. |Ai| ≥ ai − αn, |Bi| ≤ αn, and n− ai − εn ≤ |Ci| ≤ n− ai.

Proof. The lower bound for |Ci| follows from our hypothesis immediately. For any legal

(k− 1)-set S ⊂ C \Vi, we have N(S) ⊆ Ai ∪Bi. By the minimum degree condition, we have

ai ≤ |N(S)| ≤ |Ai|+ |Bi| = n− |Ci| ≤ ai + εn, (3.2)

which gives the upper bound for |Ci|. By the definitions of Ai and Bi, we have

ai
∏
j 6=i

|Cj| ≤ |E(Ai ∪Bi, C)| ≤ |Bi|(1− α)
∏
j 6=i

|Cj|+ |Ai|
∏
j 6=i

|Cj|,

where E(Ai ∪Bi, C) is the set of edges that consist of a legal (k − 1)-set in
⋃
j 6=iCi and one

vertex in Ai∪Bi. Thus, we get ai ≤ |Ai|+|Bi|−α|Bi|, which implies α|Bi| ≤ |Ai|+|Bi|−ai ≤

εn by (3.2). So |Bi| ≤ αn and |Ai| ≥ ai − |Bi| ≥ ai − αn.

Our procedure towards the desired matching consists of three steps. First, we build

small disjoint matchings that cover all vertices of B. Second, we adjust the sizes of the parts

such that we can finish the desired matching by Theorem 3.9. Finally, we apply Theorem 3.9

and get the final matching, leaving at most n−
∑

i∈[k] ai vertices in each class uncovered.
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Step 1. Small disjoint matchings that cover all vertices of B.

For each i ∈ [k], define ti := max{0, ai − |Ai|}. From (3.2), we have |Bi| ≥ ai − |Ai|.

Together with the definition of ti and Claim 3.10, we get that for each i ∈ [k],

ti ≤ |Bi| ≤ αn and ti + |Ai| ≥ ai. (3.3)

First we build a matching M i
1 of size ti for each i ∈ [k]. If ti = 0, then M i

1 = ∅. If ti > 0,

since δ[k]\{i}(H) ≥ ai and C is independent, every legal (k − 1)-set in
⋃
j 6=iCj has at least

ai − |Ai| = ti neighbors in Bi. We greedily pick ti disjoint edges each of which consists of a

legal (k − 1)-set in
⋃
j 6=iCj and one vertex in Bi.

Next for each i we greedily build a matching M i
2 that covers all the vertices in Bi\V (M i

1).

First, for i 6= 1, we pick one uncovered vertex in Bi, one uncovered legal (k − 2)-set S ′ in⋃
j 6=i,1Cj, and by codegree one uncovered vertex in V1. Second, for i = 1, we pick one

uncovered vertex in B1, one uncovered legal (k− 2)-set S ′ in
⋃
j 6=i,2Cj, and by codegree one

uncovered vertex in V2. Let Mj =
⋃k
i=1M

i
j for j = 1, 2. Now we show that the greedy process

is possible. Since a1 ≤ (1− ε0)n and a2 ≥ a3 ≥ · · · ≥ ak, we have a1 ≥ a2 ≥ a3 ≥ ε0n ≥ kαn,

as ε � ε0 and α =
√
ε. By definition, each edge in M1 ∪M2 contains at least one vertex

from B. Thus the number of vertices in Vi covered by the existing matchings is at most

|M1 ∪M2| ≤ |B| ≤ kαn < a3. So the greedy process is possible.

For each i ∈ [k], let

A′i = Ai \ V (M1 ∪M2), C ′i = Ci \ V (M1 ∪M2) and V ′i = Vi \ V (M1 ∪M2).

Since M1 does not contain any vertex in A, we have |A′i| = |Ai \ V (M i
2)| or

|A′i| ≥ |Ai| − |M i
2|. (3.4)

Step 2. Adjust the sizes of the parts.
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In this step, we will first build a small matching M3 that adjust the sizes of the parts

as follows.

Claim 3.11. There exists a matching M3 of size at most kεn in H[
⋃k
i=1 V

′
i ] so that |C ′i \

V (M3)| −
∑

j 6=i |A′j \ V (M3)| = r, where 0 ≤ r ≤ |n−
∑

i∈[k] ai|.

Proof. Let n′ = |V ′i | = |A′i| + |C ′i|. Note that s := |C ′i| −
∑

j 6=i |A′j| = n′ −
∑k

j=1 |A′j|, which

is independent of i ∈ [k]. We claim that −kεn ≤ s ≤ |n−
∑

i∈[k] ai|. Indeed,

s ≥ (n− |M1 ∪M2|)− |A| ≥ n− |B| − |A|
(3.2)

≥ n−
∑
i∈[k]

(ai + εn) ≥ −kεn.

On the other hand, by (3.4) and tj = |M j
1 | for j ∈ [k], we have

s ≤ n−
∑
j∈[k]

(|M j
1 |+ |M

j
2 |)−

∑
j∈[k]

(|Aj| − |M j
2 |) = n−

∑
j∈[k]

(tj + |Aj|)
(3.3)

≤ n−
∑
j∈[k]

ai.

In our process of finding M3, we update s as (n′ − |M3|) −
∑
|A′j \ V (M3)|. If s ≥ 0,

then set M3 = ∅. Otherwise if s < 0, we do the following procedure: greedily add edges

from
⋃

(A′i ∪ C ′i) to M3 by picking an uncovered legal 2-set in A′2 ∪ A′3, an uncovered legal

(k − 3)-set in
⋃
j′∈[4,k] C

′
j, and by codegree one uncovered vertex in V ′1 . Whenever one edge

e is added to M3, |M3| is increased by 1 and
∑
|A′j \ V (M3)| is reduced by |e ∩A|, which is

2 or 3, and hence s is increased by 1 or 2.

The iterations stop when s ∈ {0, 1}. In this case, we have added at most −s ≤ kεn

edges and thus |M3| ≤ kεn. Note that we can always form an edge in each step. First

observe that as long as we can pick the 2-set in A′2∪A′3, we can always form the desired edge

in each step because the number of covered vertices in V1 is at most |B|+ kεn ≤ 2kαn < a1.

Moreover, recall that a2 ≥ a3 ≥ ε0n/(k − 1), and thus by (3.4) and Claim 3.10, we have

|A′i| ≥ |Ai| − |M2
2 | ≥ ai − αn− kαn ≥ kεn,

where i = 1, 2 or 3 as ε� ε0.
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Step 3. Find the final matching.

For each i ∈ [k], let

A′′i = A′i \ V (M3), C ′′i = C ′i \ V (M3) and V ′′i = V ′i \ V (M3).

By Claim 3.10 and the definitions of M1,M2,M3, for each i ∈ [k], we have

|A′′i | = |Ai| − |M1 ∪M2 ∪M3| ≥ (ai − αn)− kαn− kεn ≥ ai − 2kαn.

Recall that a1 ≥ a2 ≥ a3 ≥ ε0n, by ε� ε0, we have

|A′′1|, |A′′2|, |A′′3| ≥ a3 − 2kαn ≥ ε0n/2. (3.5)

By Claim 3.11, we have

0 ≤ r = |C ′′i | −
∑
j 6=i

|A′′j | ≤ |n−
∑
i∈[k]

ai|. (3.6)

This implies that for each i ∈ [k],

|C ′′i | ≥ min{|A′′1|+ |A′′2|, |A′′1|+ |A′′3|, |A′′2|+ |A′′3|} ≥ 2a3 − 2kαn ≥ ε0n. (3.7)

Now we greedily match the vertices in A′′4, . . . , A
′′
k. Indeed, for any 4 ≤ j ≤ k and

any vertex v ∈ A′′j ⊆ Aj, by (3.1), the number of legal (k − 1)-sets S in
∏

l 6=j C
′′
l such that

S ∪ {v} /∈ E(H) is at most

α
∏
l 6=j

|Cl| ≤ αnk−1 ≤ α(k/ε0)k−1
∏
l 6=j

|C ′′l | ≤
√
α
∏
l 6=j

|C ′′l |,

where we used (3.12) and that α� ε0. So we can greedily match these vertices because the

number of leftover vertices in each C ′′j is at least min{|A′′1|+|A′′2|, |A′′1|+|A′′3|, |A′′2|+|A′′3|}+r ≥

ε0n and thus the number of available legal (k − 1)-sets is at least (ε0n)k−1 ≥
√
αnk−1 >
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√
α
∏

l 6=j |C ′′l |. Let M0
4 be the resulting matching in this step.

Finally, consider the unmatched vertices of H. Let mi := |A′′i | for all i ∈ [3]. Note

that the number of unmatched vertices in C ′′1 , C ′′2 and C ′′3 are m2 + m3 + r, m1 + m3 + r

and m1 + m2 + r, respectively, and the number of unmatched vertices in C ′′i , i ∈ [4, k] is

m1 + m2 + m3 + r. For i = 1, 2 and 3, pick arbitrary disjoint subsets C2
1 , C

3
1 of uncovered

vertices in C ′′1 of size m2,m3 and C1
2 , C

3
2 of uncovered vertices in C ′′2 of size m1,m3; for

i ∈ [4, k], we can partition all but r vertices of C ′′i into C1
i of size m1, C2

i of size m2 and C3
i

of size m3. Therefore, we get k-partite k-graphs Hj := H[A′′j ,
⋃
` 6=j C

j
` ] for j ∈ [3]. Let us

verify the assumptions of Theorem 3.9 for Hj where j = 1, 2, 3.

First, for any legal (k− 1)-set S ⊂
⋃
`6=j C

j
` , the number of its non-neighbors in Aj ∪Bj

is at most

|Aj|+ |Bj| − aj
(3.2)

≤ εn
(3.11)

≤ kε

ε0
mj ≤ αmj,

as ε� ε0. So we have

δ′[k]\{j}(Hj) ≥ mj − αmj = (1− α)mj.

Next, for any v ∈ A′′j , by (3.1) the number of its non-neighbors in
⋃
` 6=j C

j
` is at most

α
∏
` 6=j

|Cj
` | < αnk−1

(3.11)

≤ α

(
k

ε0
mj

)k−1

≤
√
αmk−1

j ,

which implies that δ′{j}(Hj) ≥ (1−
√
α)mk−1

j . Thus, we have

δ′{j}(Hj)mj + δ′[k]\{j}(Hj)m
k−1
j ≥ (1−

√
α)mk−1

j mj + (1− α)mjm
k−1
j >

3

2
mk
j ,

since ε is small enough. By Theorem 3.9, we find a perfect matching M j
4 in Hj for each

j ∈ [3]. Let M4 = M0
4 ∪M1

4 ∪M2
4 , then M1 ∪M2 ∪M3 ∪M4 is a matching in H of size at

least n− r ≥
∑

i∈[k] ai and we are done.
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3.5 Future Work

We proved that a k-partite k-graph H with three sufficiently large codegrees has a

matching of size min{n − 1,
∑k

i=1 ai} where δ[k]\{i} ≥ ai for all i ∈ [k]. We would further

improve our result by weakening the conditions to a k-partite k-graph H with two sufficiently

large codegrees. Under this condition, there are two types of extremal graphs. One is called

Space Barrier, and the other is called Divisibility Barrier. Here we only state the divisibility

barrier: suppose a k-partite k-graph H with |V1| = · · · = |Vk| = n. Further partition Vi for

i = 1 or 2 into two parts such that Vi = Xi ∪ Yi and |Xi| = dn/2e, |Yi| = bn/2c for t = 1, 2.

The edge set consists of those edges who intersect X1 ∪ X2 at either even or odd vertices.

In the former case, the edge set is denoted as Eeven; and in the later case, the edge set is

denoted as Eodd. A k-partite k-graph H with edge set Eeven or Eodd is called a divisibility

barrier. Given k-partite k-graph H, it is called ε-D-extremal if H is ε-close to divisibility

barriers.

Now we show some extension of our proof to a k-partite k-graph H with only two

sufficiently large codegrees. The almost perfect matching lemma keeps the same as in the

case with three sufficiently large codegrees. We state some work on Absorbing Lemma and

the extremal case.

3.5.1 Absorbing Lemma.

The following states that the minimum vertex degree in terms of codegrees.

Fact 3.12. Let H be a k-partite k-graph with parts of size n such that δ[k]\{i} ≥ ai for each

i ∈ [k], then any i ∈ [k] and v ∈ Vi, we have deg(v) ≥ maxj 6=i ajn
k−2.

Given β > 0, i ∈ N, j ∈ [k] and two vertices u, v ∈ Vj, we say that u, v are (β, i)-reachable

in H if and only if there are at least βnik−1 (ik− 1)-sets W such that both H[{u} ∪W ] and

H[{v} ∪W ] contain perfect matchings. W is called reachable set for u, v. If all u, v ∈ Vj are

(β, i)-reachable, then we say Vj is (β, i)-closed. Denote by Ñβ,i(v) the set of vertices that are

(β, i)-reachable to v.
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We show that the number of one-step reachable neighbors to any vertex in each part Vi

is not much less than the corresponding codegree ai, where i ∈ [k].

Proposition 3.13. Suppose 0 < 1/n� α� ε� 1/k and let H be a k-partite k-graph such

that δ[k]\{1}(H), δ[k]\{2}(H) ≥ εn. For any j ∈ [k] and v ∈ Vj, |Ñα,1(v)| ≥ δ[k]\{j}(H)−
√
αn.

Proof. Fix a vertex v ∈ Vj for some j ∈ [k], note that for any other vertex u ∈ Vj, u ∈ Ñα,1(v)

if and only if |NH(u) ∩NH(v)| ≥ αnk−1. By double counting, we have

∑
S∈NH(v)

degH(S, Vj) < |Ñα,1(v)| · |NH(v)|+ n · αnk−1.

For any S in the above inequality, we know that degH(S, Vj) ≥ δ[k]\{j}(H). Moreover, since

v is not in one of V1 and V2, we have that

|NH(v)| ≥ nk−2εn ≥
√
αnk−1,

as α� ε. Thus, |Ñα,1(v)| > δ[k]\{j}(H)− αnk

|NH(v)| ≥ δ[k]\{j}(H)−
√
αn as desired.

Throughout the rest of this subsection, without loss of generality, we may assume only

a1, a2 ≥ εn. The following is the key point to our proof. Here we only give a tentative

outline.

Lemma 3.14 (draft). Given 0 < ε′, γ � ε, ε∗ and sufficiently large n, there exists α > 0

such that the following holds. Let H be a k-partite k-graph with parts of size n such that

δ[k]\{i} ≥ ai for each i ∈ [k]. If
∑

i∈[`] ai ≥ (1 − γ)n, a1 ≥ a2 ≥ εn and aj < εn for j ≥ 3,

then one of the following holds.

(i) a1 ≥ a2 ≥ n/2− kεn, H is ε∗-D-extremal.

(ii) There exists a matching M ′ of size |M ′| ≤ ε′n such that for every legal k-set S of H,

the number of S-perfect-absorbing sets in M ′ is at least αn.
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Proof. Given 0 < ε′ � ε and sufficiently large n, let H be a k-partite k-graph with parts of

size n such that δ[k]\{1}, δ[k]\{2} ≥ εn. By Fact 3.12,

δ′1(H) ≥ min{a1n
k−2, a2n

k−2} ≥ εnk−1.

Claim 3.15. If any of Vj where j ∈ [2] is β-closed for some β > 0, then there exists a

matching M ′ in H of size |M ′| ≤ ε′n and α > 0 such that for every legal k-set S of H, the

number of S-perfect-absorbing sets in M ′ is at least αn.

Proof. If one of V1, V2 is β-closed for some β > 0, assume V1 is (β, i0)-closed, i.e., any u, v ∈ V1

are (β, i0)-reachable.

Fix a legal k-set S = {v1, v2, . . . , vk} such that vj ∈ Vj, we claim there are at least

εβni0k/2 S-perfect-absorbing i0k-sets. First of all, we find v′1 ∈ V1 \ {v1} such that

{v′1, v2, . . . , vk} spans an edge. Since deg(S \ {v1}) ≥ εn, there are at least εn − 1 choic-

es of v′1. Since V1 is β-closed, there are at least βni0k−1 reachable (i0k− 1)-sets W for v1 and

v′1. Among them, at least βni0k−1 − (k − 1)nk−2 ≥ βni0k−1/2 reachable (i0k − 1)-sets W are

disjoint from S. In total, we have at least εβni0k/2 S-perfect-absorbing sets. Next we build

the matching M ′ by applying Proposition 3.14.

We have two cases.

Case 1: If a1 ≥ n/2 + εn, then V2 is (2ε, 1)-closed. Indeed, by Fact 3.12, any v ∈ V2

has deg(v) ≥ (1/2 + ε)nk−1, therefore, for any u, v ∈ V2, we have|N1(u) ∩ N1(v)| ≥ 2εnk−1.

By Claim 3.15, (ii) is true.

Case 2: If a1 < n/2+εn, since a1+a2 ≥ n−γn−(k−2)εn, we have a1 ≥ a2 > n/2−kεn.

In this case, for any v ∈ V , by Fact 3.12, deg(v) ≥ (1/2− kε)nk−1.

Claim 3.16. For any i ∈ [k], either Vi is β-closed for some β > 0 or there is a partition

Vi = X ′i ∪ Y ′i such that X ′i and Y ′i are (β′, 1)-closed for some β′ > 0.

Proof. Fix i ∈ [k]. If for any pair of vertices xi, yi ∈ Vi , there exists α > 0 such that

|N(xi) ∩ N(yi)| ≥ αnk−1 or at least αn vertices z ∈ Vi such that |N(xi) ∩ N(z)| ≥ αnk−1



45

and |N(yi) ∩N(z)| ≥ αnk−1, then Vi is (β, 2)-closed for some β > 0.

We may assume that there exists xi, yi ∈ Vi such that for any α > 0, |N(xi) ∩N(yi)| <

αnk−1 and, at most αn vertices z ∈ Vi such that |N(xi)∩N(z)| ≥ αnk−1 and |N(yi)∩N(z)| ≥

αnk−1. In this case, let Xi = {v ∈ Vi : |N(yi) ∩ N(v)| < αnk−1} and Y = {v ∈ Vi :

N(xi)∩N(v)| < αnk−1}. Let Zi = Vi \ (Xi ∪ Yi). We have the following properties of Xi, Yi

and Zi.

(i) xi ∈ Xi and yi ∈ Yi by definations of Xi, Yi.

(ii) Xi ∩ Yi = ∅. Suppose v ∈ Xi ∩ Yi.

|N(xi) ∪N(yi) ∪N(v)| = |N(v) \N(xi) ∪N(yi)|+ |N(xi) \N(yi)|+ |N(yi)|

> 3(
1

2
− ε)nk−1 − 3αnk−1 > nk−1,

a contradiction.

(iii) |Zi| < αn

(iv) For any x, x′ ∈ Xi, |N(x)∆N(x′)| < 8αnk−1, and hence x, x′ are 1-reachable to each

other. The same holds for any pair of vertices in Yi.

(v) For any x ∈ Xi and y ∈ Yi, |N(x) ∩N(y)| < 5αnk−1

For vertex z ∈ Zi, if zi is 1-reachable to any vertex x ∈ Xi, then add z to Xi; otherwise,

there exists x0 ∈ Xi such that |N(x0) ∩N(z)| < εnk−1. In the later case, we claim that z is

1-reachable to any y ∈ Yi, and hence we add z to Yi. For y ∈ Yi. assume |N(y)∩N(z)| < ε′n,

then |N(x0) ∪N(y) ∪N(z)| > nk−1, a contradiction. Denote the resulted sets as X ′i and Y ′i

, which will be the desired partition.

By Proposition 3.13 with α � ε, for i = 1, 2, |Ñα,1(v)| ≥ δ[k]\{i}(H) −
√
αn > (1/2 −

kε−
√
α)n . So |X ′i|, |Yi| > (1/2− ε′)n for i = 1, 2.

After having the partition of each part, we need to consider the edge set of H. This is

the hard part, and more work need to be done.

The almost perfect matching lemma is the same as Lemma 3.8. Hence the above would
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give an outline to solve the non-extremal case. For the extremal case, we need to handle two

subcases: the space barrier similar to the one we did and the divisibility barrier.

3.5.2 Extremal Case

Space barrier when there are at least two large partite codegrees Most of the

proof can be borrowed directly from the previous section. We first partition each part and

get Claim 3.10. Step 1 follows the same approach to get small disjoint matchings that cover

all vertices of B. We need some careful adjustment in Step 2.

Since we only have two sufficiently large codegrees, in the process of finding M3 (see

Claim 3.15), the iterations stop either when s ∈ {0, 1} or we cannot continue. In the former

case, we have added at most −s ≤ kεn edges and thus |M3| ≤ kεn. In the latter case, first

observe that as long as we can pick the 2-set in A′2∪A′j, we can always form the desired edge

in each step because the number of covered vertices in V1 is at most |B|+ kεn ≤ 2kαn < a1.

Moreover, recall that a2 ≥ ε0n/(k − 1), and thus by (3.4) and Claim 3.10, we have

|A′2| ≥ |A2| − |M2
2 | ≥ a2 − αn− kαn ≥ kεn,

as ε � ε0. So the only reason such that we cannot continue the process is that we have

run out of vertices in A′3, . . . , A
′
k, i.e.,

∑
3≤i≤k |A′i| ≤ kεn. By definition, we have A′i ⊆

(Ai ∪Bi) \ V (M1 ∪M2) and recall that |M1 ∪M2| ≤ |B|. By (3.2), we have

ai ≤ |Ai|+ |Bi| ≤ |A′i|+ |V (M1 ∪M2) ∩ Vi| ≤ |A′i|+ kαn, (3.8)

since |V (M1 ∪M2) ∩ Vi| = |M1 ∪M2| ≤ |B| ≤ kαn. This implies that

∑
3≤i≤k

ai ≤
∑

3≤i≤k

(|A′i|+ kαn) ≤ kεn+ (k − 2)kαn ≤ k2αn. (3.9)

Since a1 ≤ (1− ε0)n and ε� ε0, we get that a2 ≥ ε0n− k2αn ≥ ε0n/2.

Now we do the following. We greedily add edges that consist of uncovered vertices and
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have type A′1 × A′2 × (
∏

j∈[3,k] C
′
j) to M3 . First note that when one such edge e is added to

M3, |M3| is increased by 1 and
∑
|A′j \ V (M3)| is reduced by |e ∩ A| = 2, and hence s is

increased by 1. So we can make s = 0 in at most kεn steps (this includes the previous edges

added to M3).

It remains to show that the above process is possible. First, if a1 ≥ (1/2 + ε0)n, then

the process is always possible. Indeed, by (3.8), we get

n− |A′1| ≤ n− (a1 − kαn) ≤ (1/2− ε0/2)n ≤ a1 − kεn.

This means that each legal (k − 1)-set of type A′2 × (
∏

j∈[3,k] C
′
i) has at least kεn neighbors

in A′1, and thus we can pick up to kεn disjoint edges of type A′1 × A′2 × (
∏

j∈[3,k] C
′
i). So we

may assume that a1 ≤ (1/2 + ε0)n. Together with (3.9), this implies that

(1/2− 2ε0)n ≤ a1, a2 ≤ (1/2 + ε0)n. (3.10)

Moreover, suppose that we cannot finish this process, that is, after picking at most kεn such

edges of type A′1×A′2× (
∏

j∈[3,k] C
′
j) , all other such edges intersect V (M3). Or, equivalently,

all edges of type (A1 ∪ B1) × (A2 ∪ B2) × (
∏

j∈[3,k] Cj) intersect V (M1 ∪M2 ∪M3). Since

|M1 ∪M2 ∪M3| ≤ kαn + kεn ≤ 2kαn, there are at most 2kαn · nk−1 = 2kαnk such edges.

Note that since C is an independent set, there is no edge in H of type
∏

j∈[k] Cj. So all but

at most 2kαnk edges of H contains exactly one vertex in A1 ∪A2. By (3.9) and (3.10), H is

2ε0-D-extremal, a contradiction.

For Step 3, we only need to modify accordingly like the following equations:

|A′′1|, |A′′2| ≥ a2 − 2kαn ≥ ε0n/k. (3.11)

|C ′′i | ≥ min{|A′′1|, |A′′2|} ≥ a2 − 2kαn ≥ ε0n/k. (3.12)
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Let mi := |A′′i | for all i ∈ [2]. Note that the number of unmatched vertices in C ′′1 and C ′′2

are m2 + r and m1 + r, respectively, and the number of unmatched vertices in C ′′i , i ∈ [3, k]

is m1 + m2 + r. For i = 1, 2, pick arbitrary subset C2
1 of uncovered vertices in C ′′1 of size

m2 and C1
2 of uncovered vertices in C ′′2 of size m1; for i ∈ [3, k], we can partition all but r

vertices of C ′′i into C1
i of size m1 and C2

i of size m2. Therefore, we get k-partite k-graphs

Hj := H[A′′j ,
⋃
` 6=j C

j
` ] for j ∈ [2]. Let us verify the assumptions of Theorem 3.9 for H1 and

H2, respectively.

We can follow the same process to verify that the conditions of Theorem 3.9 are satisfied

so that to find a perfect matching M j
4 in Hj for each j ∈ [2]. Let M4 = M0

4 ∪M1
4 ∪M2

4 , then

M1 ∪M2 ∪M3 ∪M4 is a matching in H of size at least n− r ≥
∑

i∈[k] ai and we are done.

Divisibility barrier when there are exactly two large partite codegrees

In this case, without loss of generality, we may assume only a1 ≥ a2 ≥ εn. By Lemma

3.14, a1,≥ a2 ≥ n/2 − kεn and H is divisibility barrier such that each of V1 and V2 is

partitioned into two closed subsets of size around n/2, and each of Vi for i ≥ 3 is either

closed or can be partitioned into two closed subsets. This part needs real hardwork and we

hope to finish it soon.
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PART 4

MINIMUM VERTEX DEGREE THRESHOLD FOR TILING 3-PARTITE

3-GRAPHS

4.1 Introduction

Given r ≥ 2, an r-uniform hypergraph (in short, r-graph) consists of a vertex set V

and an edge set E ⊆
(
V
r

)
, that is, every edge is an r-element subset of V . Given an r-graph

H with a set S of d vertices, where 1 ≤ d ≤ r − 1, we define degH(S) to be the number of

edges containing S (the subscript H is omitted if it is clear from the context). The minimum

d-degree δd(H) of H is the minimum of degH(S) over all d-vertex sets S in H. The minimum

1-degree is also referred as the minimum vertex degree.

Given two r-graphs F and H, an F -tiling (also known as F -packing) of H is a collection

of vertex-disjoint copies of F in H. An F -tiling is called a perfect F -tiling (or an F -factor)

of H if it covers all the vertices of H. An obvious necessary condition for H to contain an

F -factor is |V (F )| | |V (H)|. Given an integer n that is divisible by |V (F )|, we define the

tiling threshold td(n, F ) to be the smallest integer t such that every r-graph H of order n

with δd(H) ≥ t contains an F -factor.

In this Part we extend these results by determining t1(n,K) asymptotically for all

complete 3-partite 3-graphs K, and thus partially answer a question of Mycroft [69].

Given a ≤ b ≤ c, let d = gcd(b− a, c− b) and define

f(a, b, c) :=



1/4, if a = 1, gcd(a, b, c) = 1 and d = 1;

6− 4
√

2 ≈ 0.343, if a ≥ 2, gcd(a, b, c) = 1 and d = 1;

4/9, if gcd(a, b, c) = 1 and d ≥ 3 is odd;

1/2, otherwise.

(4.1)
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Theorem 4.1 (Main Result).

t1(n,Ka,b,c) =

(
max

{
f(a, b, c), 1−

(
b+ c

a+ b+ c

)2

,

(
a+ b

a+ b+ c

)2
}

+ o(1)

)(
n

2

)
.

Let us compare Theorem 4.1 with the corresponding result in [70], which states that

t2(n,Ka,b,c) =


n/2 + o(n) if gcd(a, b, c) > 1 or a = b = c = 1;

an/(a+ b+ c) + o(n) if gcd(a, b, c) = 1 and d = 1;

max{an/(a+ b+ c), n/p}+ o(n) otherwise.

where p is the smallest prime factor of d. Not only is Theorem 4.1 more complicated, but

also it contains a case where the coefficient of the threshold is irrational. In fact, as far as

we know, all the previously known tiling thresholds had rational coefficients.

The lower bound in Theorem 4.1 follows from six constructions given in Section 2. Three

of them are known as divisibility barriers and two are known as space barriers. Roughly

speaking, the divisibility barriers, known as lattice-based constructions, only prevent the

existence of a perfect K-tiling; in contrast, the space barriers are ‘robust’ because they

prevent the existence of an almost perfect K-tiling. Our last construction is related to the

nature of tiling, where every vertex must be contained in a copy of Ka,b,c, so we call it a

tiling barrier. Such a barrier has never appeared before – see concluding remarks in Part 6.

Our proof of the upper bound of Theorem 4.1 consists of two parts: one is on finding

an almost perfect K-tiling in H, and the other is on ‘finishing up’ the perfect K-tiling. Our

first lemma says that H contains an almost perfect K-tiling if the minimum vertex degree

of H exceeds those of the space barriers.

Lemma 4.2 (Almost Tiling Lemma). Fix integers 1 ≤ a ≤ b ≤ c. For any γ > 0 and

α > 0, there exists an integer n0 such that the following holds. Suppose H is a 3-graph

of order n > n0 with δ1(H) ≥ (max{1 − ( b+c
a+b+c

)2, ( a+b
a+b+c

)2} + γ)
(
n
2

)
, then there exists a

Ka,b,c-tiling covering all but at most αn vertices.
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The absorbing method, initiated by Rödl, Ruciński and Szemerédi [76], has been shown

to be effective in finding spanning (hyper)graphs. Our absorbing lemma says that H contains

a small Ka,b,c-tiling that can absorb any much smaller set of vertices of H if the minimum

vertex degree of H exceeds those of the divisibility barriers.

Lemma 4.3 (Absorbing Lemma). Fix integers 1 ≤ a ≤ b ≤ c. For any γ > 0, there exists

α > 0 such that the following holds for sufficiently large n. Suppose H is a 3-graph on n

vertices such that

δ1(H) ≥ (f(a, b, c) + γ)

(
n

2

)
.

Then there exists a vertex set W with |W | ≤ 1
4
γn such that for any vertex set U ⊂ V (H)\W

with |U | ≤ αn and |U | ∈ (a+ b+ c)Z, both H[W ] and H[W ∪ U ] have Ka,b,c-factors.

The upper bound of t1(n,Ka,b,c) in Theorem 4.1 follows from Lemmas 4.2 and 4.3 easily.

Proof of Theorem 4.1 (upper bound). Let 1 ≤ a ≤ b ≤ c be integers and γ > 0. Let α > 0 be

the constant returned by Lemma 4.3 and let n ∈ (a+ b+ c)N be sufficiently large. Suppose

that H is a 3-graph on n vertices with δ1(H) ≥ (δ + γ)
(
n
2

)
, where

δ = max

{
f(a, b, c), 1−

(
b+ c

a+ b+ c

)2

,

(
a+ b

a+ b+ c

)2
}
.

We apply Lemma 4.3 to H and get a vertex set W with |W | ≤ 1
4
γn and the described

absorbing property. In particular, |W | ∈ (a+ b+ c)N. Let H ′ = H[V (H) \W ]. Then

δ1(H ′) ≥ δ1(H)− |W |(n− 1) ≥ (δ + γ)

(
n

2

)
− γ

2

(
n

2

)
≥
(
δ +

γ

2

)(|V (H ′)|
2

)
.

Next we apply Lemma 4.2 on H ′ with γ/2 in place of γ and get a Ka,b,c-tiling covering T all

but a set U of at most α|V (H ′)| < αn vertices of H ′. Since |V (H)|, |W |, |V (T )| ∈ (a+b+c)N,

|U | = |V (H)| − |W | − |V (T )| ∈ (a+ b+ c)N. By the absorbing property of W , there exists

a Ka,b,c-factor on H[W ∪ U ]. Thus we get a Ka,b,c-factor of H.

Although this proof is a straightforward application of the absorbing method, there are
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several new ideas in the proofs of Lemmas 4.2 and 4.3. First, in order to show that almost

every (a + b + c)-set has many absorbing sets, we use lattice-based absorbing arguments

developed recently by Han [38]. Second, in order to prove Lemma 4.2, we use the concept of

fractional homomorphic tiling given by Buß, Hàn and Schacht [9]. Third, we need a recent

result of Füredi and Zhao [31] on shadows, which can be viewed as a vertex degree version

of the well-known Kruskal-Katona Theorem for 3-graphs.

The rest of the paper is organized as follows. We prove the lower bound in Theorem

4.1 by six constructions in Section 2. We prove Lemma 4.3 in Section 3 and Lemma 4.2 in

Section 4, respectively. Finally, we give concluding remarks in Section 5.

Notations. Throughout this paper we let 1 ≤ a ≤ b ≤ c be three integers and k = a+b+c ≥

3. When it is clear from the context, we write Ka,b,c as K for short. By x� y we mean that

for any y > 0 there exists x0 > 0 such that for any x < x0 the following statement holds.

We omit the floor and ceiling functions when they do not affect the proof.

4.2 Extremal Examples

In this section, we prove the lower bound in Theorem 4.1 by six constructions. Following

the definition in [70], we say a 3-partite 3-graph Ka,b,c is of type 0 if gcd(a, b, c) > 1 or

a = b = c = 1. We say Ka,b,c is of type d ≥ 1 if gcd(a, b, c) = 1 and gcd(b− a, c− b) = d.

Construction 4.4 (Space Barrier I). Let V1 and V2 be two disjoint sets of vertices such that

|V1| = a
k
n−1 and |V1|+|V2| = n. Let G1 be the 3-graph on V1∪V2 whose edge set consists of all

triples e such that |e∩V1| ≥ 1. Then δ1(G1) =
(
n−1

2

)
−
(

(1− a
k

)n
2

)
= (1−(1− a/k)2)

(
n
2

)
+o(n2).

Since a ≤ b ≤ c, we have a ≤ k/3 and 0 < 1− (1− a/k)2 ≤ 5/9.

We claim that G1 has no perfect Ka,b,c-tiling. Indeed, consider a copy K ′ of Ka,b,c in G1.

We observe that at least one color class of K ′ is a subset of V1 – otherwise V2 contains at least

one vertex from each color class; since K ′ is complete, there is an edge in V2, contradicting

the definition of G1. Hence a Ka,b,c-tiling in G1 covers at most |V1|
a
k < n vertices, so it cannot

be perfect.
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Figure 4.1. Space barriers

Construction 4.5 (Space Barrier II). Let V1 and V2 be two disjoint sets of vertices such that

|V1| = a+b
k
n− 1 and |V1|+ |V2| = n. Let G2 be the 3-graph on V1 ∪V2 whose edge set consists

of all triples e such that |e ∩ V1| ≥ 2. Then δ1(G2) =
(a+b

k
n−1
2

)
= ((a + b)2/k2)

(
n
2

)
+ o(n2).

Since a ≤ b ≤ c, we have a+ b ≤ 2k/3 and 0 < (a+ b)2/k2 ≤ 4/9.

We claim that G2 has no perfect Ka,b,c-tiling. Similarly as in the previous case, for any

copy K ′ of Ka,b,c in G2, at least two color classes of K ′ are subsets of V1. Hence a Ka,b,c-tiling

in G2 covers at most |V1|
a+b

k < n vertices, so it cannot be perfect.

Construction 4.6 (Divisibility Barrier I). Let V1 and V2 be two disjoint sets of vertices such

that |V1| = bn
2
c + 1 and |V1| + |V2| = n. Let H1 be the 3-graph on V1 ∪ V2 such that H1[V1]

and H1[V2] are two complete 3-graphs. Then δ1(H1) ≥
(n

2
−2
2

)
= 1

4

(
n
2

)
+ o(n2).

We claim that H1 has no perfect Ka,b,c-tiling. Indeed, each copy of Ka,b,c must be

a subgraph of H1[V1] or H1[V2]. Since k ≥ 3, due to the choice of V1 and V2, we have

|V1| 6= |V2| mod k and therefore k cannot divide both |V1| and |V2|. Hence H1 has no perfect

Ka,b,c-tiling.

Construction 4.7 (Divisibility Barrier II). Suppose that Ka,b,c is of type d for some even d.

Let V1 and V2 be two disjoint sets of vertices such that |V1|+ |V2| = n and |V2| ∈ [n
2
−2, n

2
+2]

is odd, and gcd(a, b, c) - |V2| if gcd(a, b, c) > 1. Note that we can pick |V2| satisfying these

conditions because in the interval [n
2
−2, n

2
+2], there are at least two consecutive odd numbers,
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Figure 4.2. Divisibility barriers

therefore at least one of them is not divisible by gcd(a, b, c). Let H2 be the 3-graph on

V1 ∪ V2 whose edge set consists of all triples e such that |e ∩ V2| is even (0 or 2). Then

δ1(H2) = min{
(|V1|−1

2

)
+
(|V2|

2

)
, |V1|(|V2| − 1)} = 1

2

(
n
2

)
+ o(n2).

We claim that H2 has no perfect Ka,b,c-tiling. Consider a copy K ′ of Ka,b,c in H2. Since

every edge intersects V2 in an even number of vertices and K ′ is complete, no color class of

K ′ intersects both V1 and V2. Moreover, either 0 or 2 color classes of K ′ are subsets of V2.

Thus |V (K ′) ∩ V2| ∈ {0, a+ b, a+ c, b+ c}. If gcd(a, b, c) > 1, then |V (K ′) ∩ V2| is divisible

by gcd(a, b, c). Since gcd(a, b, c) - |V2|, there is no perfect Ka,b,c-tiling. Otherwise, either

a = b = c = 1 or gcd(b− a, c− b) is even. In either case, all of a+ b, a+ c and b+ c are even

and thus |V (K ′) ∩ V2| is even. Since |V2| is odd, H2 has no perfect Ka,b,c-tiling.

Construction 4.8 (Divisibility Barrier III). Suppose that Ka,b,c is of type d for some odd

d ≥ 3, let V1 and V2 be two disjoint sets of vertices such that |V1| + |V2| = n and |V1| ∈

[n
3
− 1, n

3
+ 1] and d - (|V1| − n

k
a). Let H3 be the 3-graph on V1 ∪V2 whose edge set consists of

all triples e such that |e ∩ V1| = 1. Then δ1(H3) = min{|V1|(|V2| − 1),
(|V2|

2

)
} = 4

9

(
n
2

)
+ o(n2).

We claim that H3 has no perfect Ka,b,c-tiling. Consider a copy K ′ of Ka,b,c in H3.

Similarly as in the previous case, exactly one color class of K ′ is a subset of V1, which

implies |V1 ∩ V (K ′)| ∈ {a, b, c}. Since gcd(b − a, c − b) = d, we have a ≡ b ≡ c mod d and

thus |V1 ∩ V (K ′)| ≡ a mod d. If H3 contains a perfect Ka,b,c-tiling K, then |V1| − n
k
a =
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Figure 4.3. Tiling barrier

|V (K)∩V1| − n
k
a ≡ 0 mod d, contradicting our assumption on |V1|. Hence H3 has no perfect

Ka,b,c-tiling.

Construction 4.9 (Tiling Barrier). Let α =
√

2− 1 and suppose that V is partitioned into

{v} ∪ V1 ∪ V2 ∪ V3 such that |V1| = |V2| = αn and |V | = n. Define a 3-graph F on V whose

edge set consists of all triples vxy with x ∈ V1, y ∈ V2 and all triples e in V1 ∪ V2 ∪ V3 such

that e ∩ V1 = ∅ or e ∩ V2 = ∅. Therefore, δ1(F ) = (6− 4
√

2)
(
n
2

)
+ o(n2) ≈ 0.343

(
n
2

)
.

It is easy to see that v is not contained in any copy of K2,2,2, and hence not contained

in any copy of Ka,b,c with a > 1. Therefore, F has no perfect Ka,b,c-tiling with a > 1.

Proof of Theorem 4.1 (lower bound). Given positive integers a ≤ b ≤ c and n ∈ kN, where

k = a+ b+ c, let t1 = t1(n,Ka,b,c) be the tiling threshold. By Constructions 4.4 and 4.5, we

have t1 ≥ (1− (1−a/k)2)
(
n
2

)
+o(n2) and t1 ≥ ((a+ b)2/k2)

(
n
2

)
+o(n2). Furthermore, assume

Ka,b,c has type d. First, by definition, d is even if and only if gcd(a, b, c) > 1 or a = b = c = 1

or d ≥ 2 is even, in this case by Construction 4.7, we have t1 ≥ 1
2

(
n
2

)
+o(n2). Second, assume

that d ≥ 3 is odd, then by Construction 4.8, we have t1 ≥ 4
9

(
n
2

)
+ o(n2). Finally assume

that d = 1. If a = 1, by Construction 4.6, we have t1 ≥ 1
4

(
n
2

)
+ o(n2). If a ≥ 2, then by

Construction 4.9, we have t1 ≥ (6− 4
√

2)
(
n
2

)
+ o(n2).
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4.3 Proof of the Absorbing Lemma

4.3.1 Preparation

We need a simple counting result, which, for example, follows from the result of Erdős

[23] on supersaturation. Given l1, . . . , lr ∈ N, let K
(r)
l1,...,lr

denote the complete r-partite

r-graph whose jth part has exactly lj vertices for all j ∈ [r].

Proposition 4.10. Given µ > 0, r,m, l1, . . . , lr ∈ N, there exists µ′ > 0 such that the

following holds for sufficiently large n. Let H be an r-graph on n vertices with a vertex

partition V1 ∪ · · · ∪ Vm. Suppose i1, . . . , ir ∈ [m] and H contains at least µnr edges e =

{v1, . . . , vr} such that v1 ∈ Vi1, . . . , vr ∈ Vir . Then H contains at least µ′nl1+···+lr copies of

K
(r)
l1,...,lr

whose jth part is contained in Vij for all j ∈ [r].

Given a 3-graph H, its shadow ∂H is the set of the pairs that are contained in at least

one edge of H. We need a recent result of Füredi and Zhao [31] on the shadows of 3-graphs.

Lemma 4.11. [31] Given a 3-graph H on n vertices, if δ1(H) ≥ d
(
n
2

)
where d ∈ [1

4
, 47−5

√
57

24
],

then |∂H| ≥ (4
√
d− 2d− 1)

(
n
2

)
.

The next lemma says that for any 3-graph, after a removal of a small portion of vertices

and edges, any two vertices with a positive codegree in the remaining 3-graph has a linear

codegree in H.

Lemma 4.12. Given ε > 0 and an n-vertex 3-graph H = (V,E), there exists a vertex set

V ′0 ⊆ V and a subhypergraph H ′ of H such that the following holds

(i) |V ′0 | ≤ 3εn,

(ii) degH′(v) ≥ degH(v)− ε
(
n
2

)
for any v ∈ V \ V ′0 ,

(iii) degH(S) > ε2n for any pair of vertices S ∈ ∂H ′.

Proof. If an edge e ∈ E(H) contains a pair S ∈
(
e
2

)
with degH(S) ≤ ε2n, then it is called

weak, otherwise called strong. Let H ′ be the subhypergraph of H induced on strong edges.
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Then (iii) holds. Let

V ′0 =

{
v ∈ V : v is contained in at least ε

(
n

2

)
weak edges

}
.

Then (ii) holds. Note that the number of weak edges in H is at most
(
n
2

)
ε2n. If |V ′0 | > 3εn,

then there are more than 3εn · ε
(
n
2

)
/3 =

(
n
2

)
ε2n weak edges in H, a contradiction. Thus (i)

holds.

We use the reachability arguments introduced by Lo and Markström [65, 66]. Given

β > 0, i ∈ N and two vertices u, v ∈ V (H), we call that u, v are (K, β, i)-reachable in H

if and only if there are at least βnik−1 (ik − 1)-sets W such that both H[{u} ∪ W ] and

H[{v}∪W ] contain K-factors. In this case, we call W a reachable set for u and v. A vertex

set A is (K, β, i)-closed in H if every two vertices in A are (K, β, i)-reachable in H. For

x ∈ V (H), let Ñβ,i(x) be the set of vertices that are (K, β, i)-reachable to x. Throughout

this section, we assume that K = Ka,b,c where a ≤ b ≤ c and k = a+ b+ c ≥ 3 and thus we

omit K from the notations and only say (β, i)-reachable and (β, i)-closed.

We use the following two results from [66].

Proposition 4.13. [66, Proposition 2.1] For β, ε > 0 and integers i′0 > i0, there exists

β′ > 0 such that the following holds for sufficiently large n. Given an n-vertex 3-graph H

and a vertex x ∈ V (H) with |Ñβ,i0(x)| ≥ εn, then Ñβ,i0(x) ⊆ Ñβ′,i′0
(x). In other words, if

x, y ∈ V (H) are (β, i0)-reachable in H and |Ñβ,i0(x)| ≥ εn, then x, y are (β′, i′0)-reachable in

H.

The following lemma is essentially [66, Lemma 4.2] 1.

Lemma 4.14. [66] Given ε > 0, there exists η > 0 such that the following holds for suffi-

ciently large n. For any n-vertex 3-graph H, two vertices x, y ∈ V (H) are (η, 1)-reachable if

the number of pairs S ∈ N(x) ∩N(y) with deg(S) ≥ εn is at least ε
(
n
2

)
.

1In fact, [66, Lemma 4.2] essentially shows that there are many copies of Kc,c,c+1 containing x and y both
in the part of size c+ 1. To obtain the result we need, one can get many copies of Ka,b,c+1 containing x and
y both in the part of size c + 1, by deleting vertices from each copy.
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4.3.2 Auxiliary Lemmas

We call an m-set A an absorbing m-set for a k-set S if A ∩ S = ∅ and both H[A] and

H[A ∪ S] contain K-factors. Denote by Am(S) the set of all absorbing m-sets for S.

Our proof of the Absorbing Lemma is based on the following lemma.

Lemma 4.15. Given 0 < η ≤ 1/(2k), β > 0, and i0 ∈ N, there exists α > 0 such that

the following holds for all sufficiently large integers n. Suppose H = (V,E) is an n-vertex

3-graph with the following two properties

(♦) For any v ∈ V , there are at least ηnk−1 copies of K containing it.

(4) There exists V0 ⊂ V with |V0| ≤ η2n such that V (H) \ V0 is (β, i0)-closed in H.

Then there exists a vertex set W with V0 ⊆ W ⊆ V and |W | ≤ ηn such that for any vertex

set U ⊆ V \W with |U | ≤ αn and |U | ∈ kZ, both H[W ] and H[U ∪W ] contain K-factors.

Proof. Let

η1 =
η

2

(
β

2

)k−1

and α =
η2

1

32i0k
.

There are two steps in our proof. In the first step, we build an absorbing family F1 that can

absorb any small portion of vertices in V \ V0. In the second step, we put the vertices in

V0 \ V (F1) into a family F2 of copies of K. Then V (F1 ∪ F2) is the desired absorbing set.

Fix a k-set S = {v1, v2, . . . , vk} ⊂ V \ V0. Let m = i0k
2 − i0k. We claim that there are

at least η1n
m absorbing m-sets for S, namely, |Am(S)| ≥ η1n

m. Indeed, we first find a k-set

S ′ = {v1, u2, . . . , uk} ⊂ V \ V0 such that S ′ ∩ S = {v1} and S ′ spans a copy of K. By (♦),

there are at least

ηnk−1 − (k − 1)nk−2 − η2nk−1 ≥ ηnk−1/2

choices for S ′. Since V \V0 is (β, i0)-closed, there are at least βni0k−1 reachable (i0k−1)-sets

Si for ui and vi for i = 2, . . . , k. Next we choose a collection of pairwise disjoint sets Si

for i = 2, . . . , k. Since in each step we need to avoid the vertices of S, S ′ and the previous

Si’s, which are at most m + k vertices, there are at least βni0k−1/2 choices for each Si. Let
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A = (S ′ \ {v1})∪
(⋃k

i=2 Si

)
, then |A| = m. We claim that both H[A] and H[A∪ S] contain

K-factors. Indeed, since for i = 2, . . . , k, each Si ∪ {ui} spans a copy of K, H[A] contains a

K-factor; since S ′ spans a copy of K and for i = 2, . . . , k, each Si ∪ {vi} spans a copy of K,

H[A ∪ S] contains a K-factor. Thus A is an absorbing m-set for S. In total, we get at least

η

2
nk−1

(
β

2
ni0k−1

)k−1

= η1n
m

such m-sets, thus |Am(S)| ≥ η1n
m.

Now we build the family F1 by standard probabilistic arguments. Choose a family F

of m-sets in H by selecting each of the
(
n
m

)
possible m-sets independently with probability

p = η1n
1−m/(8m). Then by Chernoff’s bound, with probability 1 − o(1) as n → ∞, the

family F satisfies the following properties:

|F| ≤ 2p

(
n

m

)
≤ η1n

4m
and |Am(S) ∩ F| ≥ p|Am(S)|

2
≥ η2

1n

16m
, for all S ∈

(
V \ V0

k

)
. (4.2)

Furthermore, the expected number of pairs of m-sets in F that are intersecting is at most

(
n

m

)
·m ·

(
n

m− 1

)
· p2 ≤ η2

1n

64m
.

Thus, by using Markov’s inequality, we derive that with probability at least 1/2,

F contains at most
η2

1n

32m
intersecting pairs of m-sets. (4.3)

Hence, there exists a family F with the properties in (4.2) and (4.3). By deleting one

member of each intersecting pair and removing m-sets that are not absorbing sets for any k-

set S ⊆ V \V0, we get a subfamily F1 consisting of pairwise disjoint m-sets. Let W1 = V (F1)

and thus |W1| = |V (F1)| = m|F1| ≤ m|F| ≤ η1n/4. Since every m-set in F1 is an absorbing

m-set for some k-set S, H[W1] has a K-factor. For any k-set S, by (4.2) and (4.3) above we
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have

|Am(S) ∩ F1| ≥
η2

1n

16m
− η2

1n

32m
=

η2
1n

32m
. (4.4)

For any set U ⊆ V \ (V0 ∪W1) of size |U | ≤ αn and |U | ∈ kZ, it can be partitioned into

at most αn
k
k-sets. By the definition of F1, each k-set S has at least

η21n

32m
≥ αn

k
absorbing

sets in F1, thus each k-set can be greedily matched to a distinct absorbing set in F1. Hence,

H[U ∪W1] contains a K-factor.

In the second step, by (♦), we greedily build F2, a collection of copies of K that cover

the vertices in V0 \W1. Indeed, assume that we have built i < |V0 \W1| ≤ η2n copies of K.

Together with the vertices in W1, at most ki+ η1n/4 ≤ kη2n+ η1n/4 vertices have already

been covered by F . So for any vertex v ∈ V0 not yet covered, we find the desired copy of K

containing v by (♦), because (kη2n+ η1n/4) · nk−2 < ηnk−1.

Let W = V (F2) ∪W1, we get the desired absorbing set W with |W | ≤ kη2n+ η1n/4 <

ηn.

So it remains to show that (♦) and (4) hold in the 3-graph H. We first study the

property (♦). Throughout this subsection, let d0 = 6− 4
√

2 ≈ 0.343 and note that (4
√
d0−

2d0 − 1) + d0 = 1 because
√
d0 = 2−

√
2.

Lemma 4.16. For any γ > 0, there exists η > 0 such that the following holds for sufficiently

large n. Let H be an n-vertex 3-graph with δ1(H) ≥ (d0 +γ)
(
n
2

)
. Then each vertex v ∈ V (H)

is contained in at least ηnk−1 copies of K.

Proof. Let ε = γ/12. Let η be returned by Lemma 4.14 when γε2/2 plays the role of ε.

Suppose that n is sufficiently large and H is an n-vertex 3-graph with δ1(H) ≥ (d0 + γ)
(
n
2

)
.

We apply Lemma 4.12 on H and get V ′0 and H ′ satisfying (i) – (iii). Let H ′′ = H ′[V \ V ′0 ]

and n′ = |V \ V ′0 |. By Lemma 4.12 (ii), we have

δ1(H ′′) ≥ (d0 + γ)

(
n

2

)
− ε
(
n

2

)
− |V ′0 |(n− 2) > d0

(
n′

2

)
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because |V ′0 | ≤ 3εn. Since 1
4
< d0 <

47−5
√

57
24

≈ 0.385 and n′ ≥ (1− 3ε)n, Lemma 4.11 implies

that

∂H ′′ ≥ (4
√
d0 − 2d0 − 1)

(
n′

2

)
≥ (4

√
d0 − 2d0 − 1)(1− 6ε)

(
n

2

)
.

Since δ1(H) ≥ (d0 + γ)
(
n
2

)
, for every x ∈ V (H), we have

|NH(x) ∩ ∂H ′′| ≥
(
d0 + γ + (4

√
d0 − 2d0 − 1)− 6ε− 1

)(n
2

)
≥ γ

2

(
n

2

)
,

by the definitions of d0 and ε.

Fix x ∈ V (H) and note that every S ∈ NH(x) ∩ ∂H ′′ has degree at least ε2n in H.

Therefore, the number of (S, y) with S ∈ NH(x)∩ ∂H ′′ and y ∈ NH(S) is at least γ
2

(
n
2

)
· ε2n.

By averaging, there exists a vertex y such that

|NH(y) ∩NH(x) ∩ ∂H ′′| ≥ γε2
(
n

2

)
/2.

This means that x and y have at least γε2
(
n
2

)
/2 common neighbors with degree at least ε2n.

By Lemma 4.14, x and y are (η, 1)-reachable. Hence, there are at least ηnk−1 (k − 1)-sets

W such that H[{x} ∪W ] forms a copy of K.

Now we study the property (4). Following the approach in [38], given a 3-graph H, we

first find a partition of V (H) such that all but one part are (β, i)-closed in H and then study

the reachability between different parts. The following lemma provides such a partition.

Lemma 4.17. Given δ ≥ 1/4 and γ > 0, there exist constants 0 < β � ε� γ such that the

following holds for sufficiently large n. Let H be an n-vertex 3-graph with δ1(H) ≥ (δ+γ)
(
n
2

)
.

Then there is a partition P of V (H) into V0, V1, . . . , Vr such that

• |V0| ≤ 4εn,

• r ≤ b1/(δ + γ/2)c, and

• |Vi| ≥ ε2n and Vi is (β, 2b1/(δ+γ/2)c−1)-closed in H for all i ∈ [r].
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Proof. Let s = b1/(δ+ γ/2)c. Then we may choose ε > 0 such that
(
s+1

2

)
ε2/16 < (s+ 1)(δ+

γ/2)− 1. Let η be the constant returned from applying Lemma 4.14 with ε2/16 in place of

ε. Note that we may require η � ε because Lemma 4.14 is monotone, i.e., the conclusion

holds with η replaced by any 0 < η′ < η. Furthermore, let

1/n� β = βs−1 � · · · � β1 � β0 ≤ η, α � ε� γ, (s+ 1)(δ + γ/2)− 1 � 1/k.

Let H = (V,E) be an n-vertex 3-graph with δ1(H) ≥ (δ + γ)
(
n
2

)
. We apply Lemma 4.12 on

H and obtain V ′0 and H ′ satisfying (i) – (iii).

Given v ∈ V and 0 ≤ i ≤ s − 1, let Ñi(v) = Ñβi,2i(v) be the set of vertices in H

that are (β, i)-reachable to x (note that Ñi(v) may contains the vertices of V ′0). Throughout

this proof, we say 2i-reachable (respectively, 2i-closed) for (βi, 2
i)-reachable (respectively,

(βi, 2
i)-closed) for short.

Fix x ∈ V \ V ′0 , we claim that |Ñ0(x)| ≥ 3
4
ε2n. To see this, let

D =

{
v ∈ V : |NH′(v) ∩NH′(x)| ≥ ε2

16

(
n

2

)}
.

Since degH(p) > ε2n for any p ∈ ∂H ′, Lemma 4.14 implies that two vertices x, v ∈ V

are 1-reachable if |NH′(v) ∩ NH′(x)| ≥ ε2
(
n
2

)
/16. Therefore D ⊆ Ñ0(x). Let t be the

number of pairs (p, u) where p ∈ NH′(x) and u ∈ NH′(p). By Lemma 4.12 (iii), we have

t ≥ degH′(x) · ε2n. Note that if u /∈ D, the number of p ∈ NH′(x) such that u ∈ NH′(p) is

|NH′(v) ∩NH′(x)| < ε2

16

(
n
2

)
, and thus

degH′(x) ε2n ≤ t ≤ n · ε
2

16

(
n

2

)
+ |D| · degH′(x).

So we get |D| ≥ ε2n− ε2n
(
n
2

)
/(16 degH′(x)). Since x ∈ V \ V ′0 , by Lemma 4.12 (ii), we have

degH′(x) ≥ (δ + γ − ε)
(
n

2

)
≥ (δ + γ/2)

(
n

2

)
≥ 1

4

(
n

2

)
(4.5)
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because δ ≥ 1/4. Consequently, |Ñ0(x)| ≥ |D| ≥ 3
4
ε2n.

Since |Ñ0(x)| ≥ 3
4
ε2n, by Proposition 4.13 and the choice of βi’s, we know that Ñi(x) ⊆

Ñi+1(x) for all 0 ≤ i < s − 1 and all x ∈ V \ V ′0 , and if a set W ⊆ V \ V ′0 is 2i-closed in H

for some i ≤ s− 1, then W is 2s−1-closed in H.

Given a set S ⊆ V \ V ′0 of s+ 1 vertices, the Inclusion-Exclusion principle implies that

∑
x∈S

degH′(x)−
∑
x,y∈S

|NH′(x) ∩NH′(y)| ≤ |
⋃
x∈S

NH′(x)| ≤
(
n

2

)
.

By (4.5) and (s + 1)(δ + γ/2) − 1 >
(
s+1

2

)
ε2/16, there are two vertices x, y ∈ S such that

|NH′(x) ∩ NH′(y)| ≥ ε2

16

(
n
2

)
, so x, y are 1-reachable to each other. Consequently, if s = 1,

then V \ V ′0 is 1-closed and we get the desired partition P = {V ′0 , V \ V ′0}.

We may thus assume that s ≥ 2 and there are two vertices in V \ V ′0 that are not

2s−1-reachable to each other (otherwise we are done). Let r′ be the largest integer such that

there exist v1, . . . , vr′ ∈ V \V ′0 such that no pair of them are 2s+1−r′-reachable to each other.

Earlier arguments show that r exists and 2 ≤ r′ ≤ s. Fix such v1, . . . , vr′ ∈ V \ V ′0 . By

Proposition 4.13, we can assume that any two of them are not 2s−r
′
-reachable to each other.

Then Ñs−r′(vi), i ∈ [r′] satisfy the following properties.

(a) Any v ∈ (V \ V ′0) \ {v1, . . . , vr′} must be in Ñs−r′(vi) for some i ∈ [r′] – otherwise

{v, v1, . . . , vr′} contradicts the definition of r′.

(b) |Ñs−r′(vi) ∩ Ñs−r′(vj)| < αn for any i 6= j – otherwise there are at least

αn

(2s+1−r′k − 1)!
(βs−r′n

2s−r
′
k−1 − n2s−r

′
k−2)(βs−r′n

2s−r
′
k−1 − 2s−r

′
kn2s−r

′
k−2)

≥ βs+1−r′n
2s+1−r′k−1

reachable (2s+1−r′k − 1)-sets for vi, vj, contradicting the assumption that vi, vj are not

2s+1−r′-reachable to each other. Note that we get the lower bound of the number of

the reachable sets for vi, vj above by fixing one element w ∈ Ñs−r′(vi) ∩ Ñs−r′(vj), one

(s− r′)-reachable set S for vi and w (not containing vj), and then one (s− r′)-reachable
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set for vj and w (not intersecting {vi} ∪ S). Finally, it is divided by (2s+1−r′k − 1)! to

eliminate the effect of overcounting.

For i ∈ [r′], let Vi = (Ñs−r′(vi) ∪ {vi}) \ (V ′0 ∪
⋃
j∈[r′]\{i} Ñs−r′(vj)). We observe that Vi

is 2s−r
′
-closed for all i ∈ [r′]. Indeed, if there exist u1, u2 ∈ Vi that are not 2s−r

′
-reachable

to each other, then {u1, u2, v1, . . . , vr′} \ {vi} contradicts the definition of r′. Without loss

of generality, we may assume |V1| ≥ · · · ≥ |Vr′|. Let r be the largest integer i ∈ [r′] such

that |Vi| ≥ ε2n. Let V0 = V \ (
⋃

1≤i≤r Vi). Clearly V ′0 ⊆ V0. By (a) and (b), we have

|V0| ≤ |V ′0 |+
(
r′

2

)
αn+ r′ε2n ≤ 4εn. So P = {V0, V1, . . . , Vr} is the desired partition.

We need some definitions from [51]. Fix an integer r > 0, let H be a 3-graph and

let P = {V0, V1, . . . , Vr} be a partition of V (H). The index vector iP(S) ∈ Zr of a subset

S ⊂ V (H) with respect to P is the vector whose coordinates are the sizes of the intersections

of S with each part of P except V0, i.e., iP(S)Vi = |S ∩Vi| for i ∈ [r]. We call a vector i ∈ Zr

an s-vector if all its coordinates are nonnegative and their sum equals s. Given µ > 0,

a 3-vector v is called a µ-robust edge vector if at least µ|V (H)|3 edges e ∈ E(H) satisfy

iP(e) = v. A k-vector v is called a µ-robust K-vector if at least µ|V (H)|k copies K ′ of K in

H satisfy iP(V (K ′)) = v. Let IµP(H) be the set of all µ-robust edge vectors and let IµP,K(H)

be the set of all µ-robust K-vectors. Let LµP,K(H) be the lattice generated by the vectors

of IµP,K(H), in other words, LµP,K(H) consists of all linear combinations of the vectors of

IµP,K(H).

Given a partition P , 0 < µ < 1 and a µ-robust edge vector i, Proposition 4.10 implies

that there exists µ′ > 0 such that the edges with index vector i form at least µ′nk copies

of K with certain index vectors. For example, when r = 2 and (1, 2) ∈ IµP(H), we have

(a, b+ c), (b, a+ c) and (c, a+ b) ∈ Iµ
′

P,K(H) for some µ′ > 0. For j ∈ [r], let uj ∈ Zr be the

jth unit vector, namely, uj has 1 on the jth coordinate and 0 on other coordinates.

Given a partition P = {V0, V1, . . . , Vr} of V (H) provided by Lemma 4.17, the following

lemma shows that V (H) \ V0 is closed if uj − ul ∈ Lµ
′

P,K(H) for all 1 ≤ j < l ≤ r.
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Lemma 4.18. Given integers r, i0 and constants ε, β, µ′ > 0, there exists β′ > 0 and an

integer i′0 > 0 such that the following holds for sufficiently large n. Let H be a 3-graph with

a partition P = {V0, V1, . . . , Vr} such that for each j ∈ [r], |Vj| ≥ ε2n and Vj is (β, i0)-closed

in H for some β > 0 and integer i0. If uj − ul ∈ Lµ
′

P,K(H) for all 1 ≤ j < l ≤ r and some

µ′, then V (H) \ V0 is (β′, i′0)-closed in H.

Proof. We call a set I of k-vectors in Zr base if all uj − ul, 1 ≤ j < l ≤ r, can be written as

linear combinations of the vectors in I, namely, there exist aj,lv ∈ Z such that

uj − ul =
∑
v∈I

aj,lv v. (4.6)

For example, the set of all k-vectors in Zr is a base. We denote by C(r, k, I) the largest

|aj,lv | over all v ∈ I and 1 ≤ j < l ≤ r and let C(r, k) = maxC(r, k, I) among all bases I.

Given integers r, i0 and constants ε, β, µ′ > 0, let n be sufficiently large and in particular,

1/n� 1/C(r, k).

We claim that for any 1 ≤ j < l ≤ r, any xj ∈ Vj and any xl ∈ Vl are (βj,l, ij,l)-reachable

for some βj,l > 0 and some ij,l ≥ i0. Once this is done, since |Ñβ,i0(v)| ≥ |Vj| − 1 ≥ ε2n/2

for any j ∈ [r] and v ∈ Vj, we can apply Proposition 4.13 with ε2/2 in place of ε and

i′0 = max{ijl} and derive that any xj ∈ Vj and any xl ∈ Vl are (β̃, i′0)-reachable for some

β̃ > 0. For the same reason, any two vertices in Vj, j ∈ [r], are (β′′, i′0)-reachable for some

β′′ > 0. We thus conclude that any two vertices of V (H) \ V0 are (β′, i′0)-reachable with

β′ = min{β̃, β′′}.

Below we prove the claim for j = 1 and l = 2. By our assumption, there are nonnegative

integers pv, qv, v ∈ Iµ
′

P,K(H), such that

u1 − u2 =
∑

v∈Iµ
′
P,K(H)

(pv − qv)v i.e.,
∑

v∈Iµ
′
P,K(H)

qvv + u1 =
∑

v∈Iµ
′
P,K(H)

pvv + u2. (4.7)

By comparing the sums of all the coordinates from two sides of either equation in (4.7), we
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obtain that ∑
v∈Iµ

′
P,K(H)

pv =
∑

v∈Iµ
′
P,K(H)

qv

Denote this constant by C and thus C ≤ |Iµ
′

P,K(H)|C(r, k) ≤
(
k+r−1
r−1

)
C(r, k) < µ′n/(4k), as

n is sufficiently large. For each v ∈ Iµ
′

P,K(H), we select pv + qv vertex-disjoint copies of K

with index vector v that do not contain x1 or x2, and form two disjoint families Kp and

Kq, where Kp consists of pv copies of K with index vector v for all v ∈ Iµ
′

P,K(H), and Kq

consists of qv vertex-disjoint copies of K with index vector v for all v ∈ Iµ
′

P,K(H). Note

that |V (Kp)| = |V (Kq)| = kC. When we select any copy of K, we need to avoid at most

2kC vertices, which are incident to at most 2kCnk−1 ≤ µ′nk/2 copies of K. Therefore, the

number of choices of these copies is at least (µ′nk/2)2C .

By (4.7), we have iP(V (Kq)) + u1 = iP(V (Kp)) + u2. Fix two vertices x′1 ∈ V (Kp) ∩ V1

and x′2 ∈ V (Kq)∩V2. Let V (Kp)\{x′1} = {y1, . . . , ykC−1} and V (Kq)\{x′2} = {y′1, . . . , y′kC−1}

such that for i ∈ [kC−1], yi and y′i are from the same part of P and thus are (β, i0)-reachable

to each other. We next select a reachable (i0k − 1)-set Si for each yi, y
′
i, i ∈ [kC − 1] such

that all these (i0k− 1)-sets are vertex disjoint and also disjoint from V (Kp ∪Kq)∪ {x1, x2}.

Since in each step we need to avoid at most (kC − 1)(i0k − 1) + 2kC + 2 vertices, there are

at least β
2
ni0k−1 choices for each Si. Finally, since x1 and x′1 and respectively, x2 and x′2 are

(β, i0)-reachable, we pick two vertex-disjoint reachable (i0k − 1)-sets Sx1 , Sx2 for them such

that they are also disjoint from all S1, . . . , SkC−1 and V (Kp∪Kq)∪{x1, x2}. Since in each step

we need to avoid at most (kC−1)(i0k−1)+2kC+2+ i0k−1 vertices, there are also at least

β
2
ni0k−1 choices for each of Sx1 , Sx2 . We claim that A :=

⋃
i∈[kC−1] Si∪Sx1 ∪Sx2 ∪V (Kp∪Kq)

is a reachable (i0k
2C + kC + i0k − 1)-set for x1 and x2. Indeed, H[A ∪ {x1}] contains a K-

factor because all of H[Si∪{yi}] for i ∈ [kC−1], H[Sx1∪{x1, x
′
1}] and Kq contain K-factors;

H[A∪{x2}] contains a K-factor because all of H[Si∪{y′i}] for i ∈ [kC−1], H[Sx2 ∪{x2, x
′
2}]

and Kp contain K-factors. There are at least

(
µ′

2
nk
)2C (

β
2
ni0k−1

)kC+1

(i0k2C + kC + i0k − 1)!
=

(
µ′

2

)2C (
β
2

)kC+1

(i0k2C + kC + i0k − 1)!
ni0k

2C+kC+i0k−1
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such reachable sets. We thus obtain the desired β1,2 =
(
µ′

2

)2C (
β
2

)kC+1
/(i0k

2C+kC+i0k−1)!

and i1,2 = i0kC + C + i0.

4.3.3 Proof of Lemma 4.3

The following simple fact will be used later for finding linear combinations of robust

K-vectors.

Fact 4.19. Let a, b, c ∈ Z. If gcd(a, b, c) = 1 and gcd(b− a, c− b) is odd, then gcd(a+ b, a+

c, b+ c) = 1.

Proof. Let l = gcd(a + b, a + c, b + c). Then l | (b − a) and l | (c − b) and consequently

l | gcd(b − a, c − b). Thus l is odd. On the other hand, l | 2(a + b + c). Since l is odd, it

follows that l | (a+ b+ c). Consequently, l | a, l | b and l | c, which implies l | gcd(a, b, c) = 1,

namely, l = 1.

Proof of Lemma 4.3. Fix δ ≥ f(a, b, c) and γ > 0. Let η = η(γ) be the constant returned by

Lemma 4.16. In addition, assume that η ≤ min{1/(2k), γ/4, µ′1/2}, where µ′1 is the constant

returned by Proposition 4.10 with inputs µ = 1/8, l1 = b, and l2 = c. Let i0 = 2b1/(δ+γ/2)c−1.

Let β � ε � γ be the constants returned by Lemma 4.17, and assume that ε ≤ η2/4. We

pick 0 < µ � ε and let µ′ the constant returned by Proposition 4.10 with µ, l1 = a, l2 = b,

and l3 = c. We apply Lemma 4.18 with β, i0 and µ′ and get β′ and i′0. Finally, we apply

Lemma 4.15 with β′, η and i′0, and get α > 0.

Let n be sufficiently large and let H be a 3-graph on n vertices such that δ1(H) =

(δ + γ)
(
n
2

)
. It suffices to verify the assumptions (4) and (♦) in Lemma 4.15 – Lemma 4.15

thus provides the desired vertex set W (here |W | ≤ ηn ≤ γn/4).

If δ1(H) ≥ (6−4
√

2+γ)
(
n
2

)
, then (♦) holds by Lemma 4.16. Otherwise by the definition

of f(a, b, c), we know that a = 1 and δ1(H) ≥ (1
4

+ γ)
(
n
2

)
, then by Proposition 4.10, there

are at least µ′1(n− 1)b+c ≥ ηnk−1 copies of K
(2)
b,c in the link graph2 of each vertex of H (thus

2Given a 3-graph H and a vertex v ∈ V (H), the link graph is defined as the graph with the vertex set
V (H) \ {v} and the edge set {S \ {v} : v ∈ S, S ∈ E(H)}.
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(♦) holds).

In the rest of the proof we verify (4) in cases depending on the type of K. We first

apply Lemma 4.17 to H and obtain a partition P = {V0, V1, . . . , Vr} of V (H) such that

|V0| ≤ 4εn ≤ η2n, r ≤ b1/(δ + γ/2)c, |Vi| ≥ ε2n and Vi is (β, i0)-closed in H for all i ∈ [r].

In particular, r = 1 when d = gcd(b − a, c − b) is even (and δ ≥ 1
2
); r ≤ 2 if d ≥ 3 is odd

(and δ ≥ 4
9
); r ≤ 3 if d = 1 (and δ ≥ 1

4
).

We are done if r = 1. When r ≥ 2, we consider µ-robust edge vectors in H with respect

to the partition P . By Lemma 4.18, it suffices to verify the assumption in Lemma 4.18, that

is, (1,−1) ∈ Lµ
′

P,K(H) when r = 2 and respectively, (1,−1, 0), (1, 0,−1), (0, 1,−1) ∈ Lµ
′

P,K(H)

when r = 3. For convenience, write

t1 = (a, b+ c), t2 = (b, a+ c), t3 = (c, a+ b), t4 = (a+ b+ c, 0)

and

t′i = (a+ b+ c, a+ b+ c)− ti for 1 ≤ i ≤ 4.

Claim 4.20. For any partition P ′ = {V0, V
′, V ′′} of V (H) with |V0| ≤ 4εn and |V ′′|, |V ′| ≥

ε2n, we have (1, 2) or (2, 1) ∈ I3µ
P ′ (H).

Proof. Without loss of generality, assume that |V ′| ≤ n/2. Fix v ∈ V ′. We observe that v is

contained in at least εn2 crossing edges (those with index vector (1, 2) or (2, 1)) – otherwise

δ1(H) ≤
(
n/2
2

)
+ εn2 + |V0|n < (1

4
+ γ)

(
n
2

)
, contradicting our assumption on δ1(H). Hence

v is in at least εn2/2 edges with index vector (1, 2) or εn2/2 edges with index vector (2, 1).

Without loss of generality, assume that at least half of the vertices in V ′ are in at least εn2/2

edges with index vector (1, 2). Thus the number of edges with index vector (1, 2) is at least

1
2
ε2n · εn2/2 ≥ 3µn3 as µ� ε. This means that (1, 2) ∈ I3µ

P ′ (H).

Case 1: K is of type d ≥ 3 with d odd.

In this case, δ1(H) ≥ (4
9

+ γ)
(
n
2

)
. Thus r = 2 and P = {V0, V1, V2}. By Claim 4.20,

without loss of generality, assume that (1, 2) ∈ IµP(H). If IµP(H) = {(1, 2)}, then assume
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that |V2| = pn for some 0 < p < 1. The number of edges with index vector (1, 2) is at most

|V1|
(
|V2|
2

)
< (1− p)p2n3/2 ≤ 4

9
· n

3

6
,

where equality holds when p = 2/3. Thus, e(H) ≤ 4
9
n3

6
+ 3µn3 + |V0|n2 < 4

9

(
n
3

)
+ 5εn3 (where

3µn3 bounds the number of edges with other index vectors), contradicting our assumption

on δ1(H). Therefore, |IµP(H)| ≥ 2 and there are 3 possibilities: IµP(H) ⊇ {(1, 2), (3, 0)},

IµP(H) ⊇ {(1, 2), (0, 3)} and IµP(H) ⊇ {(1, 2), (2, 1)}. By Proposition 4.10,

Iµ
′

P,K(H) ⊇ {t1, t2, t3, t4} or Iµ
′

P,K(H) ⊇ {t1, t2, t3, t
′
4} or Iµ

′

P,K(H) ⊇ {t1, t2, t3, t
′
1, t
′
2, t
′
3},

respectively. If {t1, t2, t3, t4} ⊆ Iµ
′

P,K(H),

t4− t1 = (b+ c,−(b+ c)), t4− t2 = (a+ c,−(a+ c)), t4− t3 = (a+ b,−(a+ b)) ∈ Lµ
′

P,K(H).

Since K is of type d ≥ 3 and d is odd, Fact 4.19 implies that gcd(b + c, a + c, a + b) = 1

and hence (1,−1) = x(t4 − t1) + y(t4 − t2) + z(t4 − t3) ∈ Lµ
′

P,K(H) for some integers x, y, z.

Otherwise {t1, t2, t3, t
′
4} ⊆ Iµ

′

P,K(H) or {t1, t2, t3, t
′
1, t
′
2, t
′
3} ⊆ Iµ

′

P,K(H), it is easy to see that

in either case

(a,−a), (b,−b), (c,−c) ∈ Lµ
′

P,K(H).

Since gcd(a, b, c) = 1, we conclude that (1,−1) ∈ Lµ
′

P,K(H).

Case 2: K is of type 1 and r = 2.

By Claim 4.20, without loss of generality, assume that (1, 2) ∈ IµP(H). By Proposition

4.10, we have

t1, t2, t3 ∈ Iµ
′

P,K(H),

and thus

t2 − t1 = (b− a, a− b), t3 − t2 = (c− b, b− c) ∈ Lµ
′

P,K(H).

Since Ka,b,c is of type 1, namely, gcd(b− a, c− b) = 1, we conclude that (1,−1) ∈ Lµ
′

P,K(H).
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Case 3: K is of type 1 and r = 3.

If (1, 2, 0) ∈ IµP(H), then the arguments in Case 2 show that (1,−1, 0) ∈ Lµ
′

P,K(H). If we

also have (0, 1, 2) ∈ IµP(H), then (0, 1,−1) ∈ Lµ
′

P,K(H). Consequently (1, 0,−1) ∈ Lµ
′

P,K(H),

and we are done. In general, let T be the set of all vectors with three coordinates 0, 1, 2 (in

any order). If

IµP(H) contains any two members of T not having 0 on the same coordinate, (4.8)

then the arguments above show that (1,−1, 0), (0, 1,−1), (1, 0,−1) ∈ Lµ
′

P,K(H).

We claim that (4.8) holds if (1, 1, 1) /∈ IµP(H). In fact, we prove a stronger statement:

for each i ∈ [3], there is a member of T in IµP(H) whose ith coordinate is positive. Fix

i ∈ [3]. By applying Claim 4.20 to P ′ = {V0, Vi, Vi+1 ∪ Vi+2} (the addition is modulo 3),

we may assume that at least 3µn3 edges have index vector (1, 2) with respect to P ′. Since

(1, 1, 1) /∈ IµP(H), at most µn3 of these edges have index vector (1, 1, 1) with respect to P .

Thus, there exists j 6= i such that at least µn3 of these edges intersect Vj with two vertices.

This proves the desired statement.

What remains is the case when (1, 1, 1) ∈ IµP(H). In this case, by Proposition 4.10,

(a, b, c), (b, a, c), (a, c, b), (b, c, a), (c, a, b), (c, b, a) ∈ Iµ
′

P,K(H).

This implies (y,−y, 0), (0, y,−y), (y, 0,−y) ∈ Lµ
′

P,K(H) for all y ∈ {b − a, c − b}. Since

gcd(b− a, c− b) = 1, we derive that (1,−1, 0), (0, 1,−1), (1, 0,−1) ∈ Lµ
′

P,K(H).

4.4 Proof of the Almost Tiling Lemma

4.4.1 The Weak Regularity Lemma and cluster hypergraphs

We first introduce the Weak Regularity Lemma for 3-graphs, a straightforward extension

of Szemerédi’s regularity lemma for graphs [84].

Let H = (V,E) be a 3-graph and let V1, V2, V3 be mutually disjoint non-empty subsets
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of V . We denote the number of edges with one vertex in each Vi, i ∈ [3] by e(V1, V2, V3), and

the density of H with respect to (V1, V2, V3) by

d(V1, V2, V3) =
e(V1, V2, V3)

|V1||V2||V3|
.

The triple (V1, V2, V3) of mutually disjoint subsets V1, V2, V3 ⊆ V is called (ε, d)-regular for

ε > 0 and d ≥ 0 if

|d(A1, A2, A3)− d| ≤ ε

for all triples of subsets Ai ⊆ Vi, i ∈ [3], satisfying |Ai| ≥ ε|Vi|. The triple (V1, V2, V3) is

called ε-regular if it is (ε, d)-regular for some d ≥ 0. By definition, if Ai ⊆ Vi, i ∈ [3], has

size |Ai| ≥ p|Vi| for some p ≥ ε, then (A1, A2, A3) is (ε/p, d)-regular.

Let H = (V,E) be an n-vertex 3-graph, a partition of V into V0, V1, . . . , Vt is called an

(ε, t)-regular partition if

(i) |V1| = |V2| = · · · = |Vt| and |V0| ≤ εn,

(ii) for all but at most ε
(
t
3

)
sets {i, j, l} ∈

(
[t]
3

)
, the triple (Vi, Vj, Vl) is ε-regular.

We call V1, . . . , Vt clusters. Given an (ε, t)-regular partition P = {V0, V1, V2, . . . , Vt} and

d > 0, the cluster hypergraph R = R(ε, d,P) is defined as the 3-graph whose vertices are

clusters V1, . . . , Vt and {Vi, Vj, Vl} forms an edge of R if and only if (Vi, Vj, Vl) is ε-regular

and d(Vi, Vj, Vl) ≥ d.

The following is a simple corollary of the Weak Regularity Lemma; it shows that the

cluster hypergraph inherits the minimum degree of the original hypergraph. Since its proof

is the same as that of [9, Proposition 15], we omit the proof.

Proposition 4.21. [9] For 0 < ε < d � δ and t0 ≥ 0 there exist T and n2 such that

the following holds. Suppose H is a 3-graph on n > n2 vertices with δ1(H) ≥ δ
(
n
2

)
. Then

there exists an (ε, t)-regular partition P with t0 < t < T such that the cluster hypergraph

R = R(ε, d,P) satisfies δ1(R) ≥ (δ − ε− d)
(
t
2

)
.
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Next we show that every regular triple can be almost perfectly tiled by copies of Ka,b,c

provided the sizes of its three parts is somewhat balanced.

Proposition 4.22. Let a ≤ b ≤ c be integers, 0 < 2ε ≤ d, and m be sufficiently large.

Suppose (V1, V2, V3) is (ε, d)-regular, |V1| ≤ |V2| ≤ |V3| = m, and

|V1|
a
≥ |V2|

b
≥ |V3|

c
. (4.9)

Then there is a Ka,b,c-tiling on V1 ∪ V2 ∪ V3 covering all but at most c
a
ε(|V1| + |V2| + |V3|)

vertices.

Proof. We will greedily pick vertex-disjoint K1, K2, . . . , Ks until |Vi \
⋃s
`=1 V (K`)| < εm for

some i ∈ [3], where each K` is a copy of Ka,b,c or Kk,k,k by the algorithm described below.

This gives rise to a Ka,b,c-tiling because each copy of Kk,k,k consists of three vertex-disjoint

copies of Ka,b,c. Our algorithm is as follows. For i ∈ [3], let U0
i = Vi. For j ∈ [s], let

{
U j

1 , U
j
2 , U

j
3

}
=

{
Vi \

j⋃
`=1

V (K`) : i ∈ [3]

}
such that |U j

1 | ≤ |U
j
2 | ≤ |U

j
3 |,

and U j = U j
1 ∪U

j
2 ∪U

j
3 . In other words, U j

1 , U
j
2 , U

j
3 are the subsets of V1, V2, V3 obtained from

removing the vertices of K1, . . . , Kj and arranged in the ascending order of size. Suppose

that we have already found K1, . . . , Kj and |U j
1 | ≥ εm. We let Kj+1 be a copy of Kk,k,k from

U j if

|U j
3 | − |U

j
1 | ≤ c− a; (4.10)

otherwise we let Kj+1 be a copy of Ka,b,c with a vertices from U j
1 , b vertices from U j

2 , and

c vertices from U j
3 . In either case this is possible because |U j

i | ≥ εm for i ∈ [3]; by the

regularity, we have d(U j
1 , U

j
2 , U

j
3 ) ≥ d− ε ≥ ε and

e(U j
1 , U

j
2 , U

j
3 ) ≥ ε|U j

1 ||U
j
2 ||U

j
3 | ≥ ε4m3.
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By Proposition 4.10, we can find a copy of Kk,k,k or Ka,b,c from U j. The algorithm terminates

when |U s
1 | < εm. We need to show that |U s| ≤ c

a
ε(|V1|+ |V2|+ |V3|). By (4.9), |V1|+ |V2|+

|V3| ≥ k
c
m and thus c

a
ε(|V1|+ |V2|+ |V3|) ≥ k

a
εm. So it suffices to show that |U s| ≤ k

a
εm.

First, assume that (4.10) holds for some 0 ≤ j < s. In this case Kj+1
∼= Kk,k,k and

|U j+1
3 | − |U j+1

1 | = |U j
3 | − |U

j
1 | ≤ c− a.

Therefore K`
∼= Kk,k,k for all ` > j and consequently |U s

3 | − |U s
1 | ≤ c − a. Since |U s

1 | < εm,

it follows that |U s| < 3εm + 2(c − a). If a = c, then |U s| ≤ 3εm = k
a
εm and we are done.

Otherwise k
a
≥ 3 + 1

a
. Since m is large enough, it follows that |U s| < (3 + 1

a
)εm ≤ k

a
εm, as

desired.

Second, assume that (4.10) fails for all 0 ≤ j < s. We claim that for all 0 ≤ j ≤ s,

|U j
1 |
a
≥ |U

j
2 |
b
≥ |U

j
3 |
c
. (4.11)

This suffices because |U s
1 | < εm and (4.11) with j = s together imply that |U s| ≤ (1 + b

a
+

c
a
)|U s

1 | < k
a
εm.

Let us prove (4.11) by induction. The j = 0 case follows from (4.9) and the assumption

|V1| ≤ |V2| ≤ |V3|. Suppose that (4.11) holds for some j ≥ 0. By our algorithm, Kj+1 is

a copy of Ka,b,c with a vertices from U j
1 , b vertices from U j

2 , and c vertices from U j
3 . Let

Ũ j
i = U j

i \ V (Kj+1) for i ∈ [3] and thus |Ũ j
1 |/a = |U j

1 |/a − 1, |Ũ j
2 |/b = |U j

2 |/b − 1 and

|Ũ j
3 |/c = |U j

3 |/c− 1. By the inductive hypothesis,

|Ũ j
1 |
a
≥ |Ũ

j
2 |
b
≥ |Ũ

j
3 |
c
. (4.12)

Since |U j
i | ≥ εm ≥ b+ c for all i ∈ [3],

b2 − a2 ≤ (b− a)|U j
1 | ≤ b|U j

2 | − a|U
j
1 |
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and

c2 − b2 ≤ (c− b)|U j
2 | ≤ c|U j

3 | − b|U
j
2 |

which implies that

|Ũ j
2 |
a
≥ |Ũ

j
1 |
b
, and

|Ũ j
3 |
b
≥ |Ũ

j
2 |
c
. (4.13)

Now we separate cases according to the order of |Ũ j
1 |, |Ũ

j
2 | and |Ũ j

3 |. Since |Ũ j
3 |− |Ũ

j
1 | =

|U j
3 | − |U

j
1 | − (c− a) > 0, we only have three cases.

Case 1. |Ũ j
1 | ≤ |Ũ

j
2 | ≤ |Ũ

j
3 |. Then (4.11) for j + 1 follows from (4.12) immediately.

Case 2. |Ũ j
2 | ≤ |Ũ

j
1 | ≤ |Ũ

j
3 |. Together with (4.12) and (4.13), we derive that

|Ũ j
2 |
a
≥ |Ũ

j
1 |
b
≥ |Ũ

j
2 |
b
≥ |Ũ

j
3 |
c
.

Case 3. |Ũ j
1 | ≤ |Ũ

j
3 | ≤ |Ũ

j
2 |. Together with (4.12) and (4.13), we derive that

|Ũ j
1 |
a
≥ |Ũ

j
2 |
b
≥ |Ũ

j
3 |
b
≥ |Ũ

j
2 |
c
.

This implies that (4.11) holds for j + 1 and we are done.

When a = b = c, the proof of Lemma 4.2 is a standard application of the regularity

method. This was given implicitly in [53] and stated as [66, Lemma 4.4] without a proof.

For completeness, we include the proof here.

Proof of Lemma 4.2 when a = b = c. Let 0 < 4ε = d � min{γ, α} and t0 = 1/ε. Suppose

T and n2 are the parameters returned by Proposition 4.21 with δ = 5/9 + γ. Let H be

a 3-graph on n vertices with δ1(H) ≥ (5
9

+ γ)
(
n
2

)
for some sufficiently large n ≥ n2. We

apply Proposition 4.21 and obtain an (ε, t)-regular partition P with t0 < t < T and a cluster

hypergraph R = R(ε, d,P) satisfying δ1(R) ≥ (5
9

+ γ − ε − d)
(
t
2

)
. Suppose that t ≡ r mod

3 for some r ∈ {0, 1, 2}. Let R′ be the induced subgraph of R on clusters Vr+1, . . . , Vt each
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of size n/t ≥ n/T . Then δ1(R′) ≥ δ1(R) − 2t ≥
(

5
9

+ γ
2

) (
t
2

)
. We apply [36, Theorem 6] 3

to R′ and get a perfect matching M . For each edge e = {Vi, Vj, Vl} ∈ M , Proposition 4.22

provides a Ka,b,c-tiling that covers all but at most ε(|Vi|+ |Vj|+ |Vl|) vertices of Vi ∪ Vj ∪ Vl.

The union of these Ka,b,c-tilings covers all but at most

|V0|+ ε(|V1|+ |V2|+ · · ·+ |Vt|) + 2|V1| ≤ 2εn+ 2n/t ≤ 4εn ≤ αn

vertices of V (H), as desired.

We assume that a < c in the next two subsections.

4.4.2 Fractional homomorphic tilings

To obtain a large Ka,b,c-tiling in H when a < c, we follow the idea of Buß, Hàn and

Schacht [9] considering a fractional homomorphism from Ka,b,c to the cluster hypergraph R.

Let us first define a fractional hom(Ka,b,c)-tiling (hom(K)-tiling for short).

Definition 4.23. Given a 3-graph H = (V,E), a function h : V × E → [0, 1] is called a

fractional hom(K)-tiling of H if

(1) h(v, e) = 0 if v 6∈ e,

(2) h(v) =
∑

e∈E h(v, e) ≤ 1,

(3) for every e ∈ E there exists a labeling e = uvw such that h(u, e) ≤ h(v, e) ≤ h(w, e)

and

h(u, e)

a
≥ h(v, e)

b
≥ h(w, e)

c
.

Given e = uvw ∈ E, we simply write h(u, v, w) = (h(u, e), h(v, e), h(w, e)) and given a

constant λ, we write λ(x1, x2, x3) = (λx1, λx2, λx3). We denote by hmin the smallest non-

3We may alternatively use the exact result in [53, 63].
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zero value of h(v, e) and by w(h) the (total) weight of h:

w(h) =
∑

(v,e)∈V×E

h(v, e).

For example, suppose that the vertex classes of K are X, Y, Z with |X| = a, |Y | = b

and |Z| = c. We obtain a fractional hom(K)-tiling h by letting h(x, y, z) = ( 1
bc
, 1
ac
, 1
ab

) for

every xyz ∈ E(K) with x ∈ X, y ∈ Y, z ∈ Z. Then w(h) = k (the largest possible) and

hmin = 1
bc

. We later refer to ( 1
bc
, 1
ac
, 1
ab

) as the standard weight of an edge of K and refer to

the function mentioned above as the standard weight function on K.

The following proposition shows that a fractional hom(K)-tiling in the cluster hyper-

graph can be “converted” to an integer K-tiling in the original hypergraph.

Proposition 4.24. Let 1 ≤ a ≤ b ≤ c be integers. Suppose ε, φ > 0, d ≥ 2ε/φ, t ∈ Z, and n

is sufficiently large. Let H be a 3-graph on n vertices with an (ε, t)-regular partition P and

a cluster hypergraph R = R(ε, d,P). Suppose that there is a fractional hom(K)-tiling h of

R with hmin ≥ φ. Then there exists a K-tiling of H that covers at least (1− 2cε/φ)w(h)n/t

vertices.

Proof. LetR′ be the subhypergraph ofR consisting of the hyperedges e = uvw ∈ E(R′) with

h(u, e), h(v, e), h(w, e) ≥ hmin ≥ φ. For each u ∈ V (R′), let Vu be the corresponding cluster

of H. Since P is an (ε, t)-regular partition, all the clusters have size ` for some ` ≥ (1−ε)n/t.

In each Vu we find disjoint subsets V e
u of size h(u, e)` for all e ∈ E(R′) with u ∈ e – this is

possible because
∑

e∈E(R′) h(u, e) ≤ 1. Note that every edge e = uvw ∈ E(R′) corresponds

to an (ε, d′)-regular triple (Vu, Vv, Vw) for some d′ ≥ d. Hence for every e = uvw ∈ E(R′),

(V e
u , V

e
v , V

e
w) is (ε/φ, d′)-regular with at least φ` ≥ (1− ε)φn/t vertices in each part. Because

of Definition 4.23 (3) and assumption d ≥ 2ε/φ, we can apply Proposition 4.22 and obtain

a K-tiling covering at least

(
1− c

a
· ε
φ

)
h(e)` ≥ (1− cε/φ)h(e)(1− ε)n

t
≥ (1− 2cε/φ)h(e)

n

t
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vertices of Vu ∪ Vv ∪ Vw, where h(e) = h(u, e) + h(v, e) + h(w, e). Repeating this to all

hyperedges of R′, we obtain a K-tiling that covers at least

∑
uvw∈E(R′)

(1− 2cε/φ)h(e)
n

t
= (1− 2cε/φ)w(h)

n

t

vertices of H.

Suppose H is a 3-graph satisfying the assumptions of Lemma 4.2 and R is the reduced

graph found by Proposition 4.21. By Proposition 4.24, if the reduced graph R has a large

K-tiling, so does H. The core of the proof of Lemma 4.2 says that if a maximum K-tiling

in R is not large enough, then we improve it fractionally, which also gives a large K-tiling

in H by Proposition 4.24. The following two propositions show how we improve the tiling

fractionally.

Given a copy K1 of K and two vertices u, u′ /∈ V (K1), let L1(K1, u, u
′) denote the family

of all 3-graphs on {u, u′} ∪ V (K1) whose edge set contains E(K1) and at least a + 1 triples

uu′v with v ∈ V (K1).

Proposition 4.25. Let 1 ≤ a ≤ b ≤ c be integers with a < c and k = a+ b+ c. Let K1 be a

copy of Ka,b,c and let u, u′ /∈ V (K1) be two vertices. For any 3-graph L ∈ L1(K1, u, u
′), there

is a fractional hom(K)-tiling h of L with w(h) ≥ k + 1
abc

and hmin ≥ 1
bc2

.

Proof. Let the vertex classes of K1 be X, Y, Z with |X| = a, |Y | = b, and |Z| = c. Since

deg(uu′) ≥ a+ 1 = |X|+ 1, we have N(uu′, Y ∪ Z) 6= ∅.

If there exists z ∈ N(uu′, Z), then we pick x ∈ X and y ∈ Y and assign weights

h(z, u, u′) = ( 1
bc
, 1
ac
, 1
ab

),

h(x, y, z) =

(
1

bc
− a

bc2
,

1

ac
− 1

c2
,

1

ab
− 1

bc

)
=
c− a
abc2

(a, b, c) ,

and assign the standard weight to all other edges of K1. Then h is a fractional hom(K)-tiling

of L with w(h) = k + 1
ab

+ 1
ac
− a

bc2
− 1

c2
≥ k + 1

abc
and hmin = c−a

bc2
≥ 1

bc2
.
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Otherwise N(uu′, Z) = ∅, then there exists y ∈ N(uu′, Y ). First assume a < b. We

assign h(y, u, u′) = ( 1
bc
, 1
ac
, 1
ab

),

h(x, y, z) =

(
1

bc
− a

b2c
,

1

ac
− 1

bc
,

1

ab
− 1

b2

)
=
b− a
ab2c

(a, b, c)

for some x ∈ X and z ∈ Z, and the standard weight to all other edges. Then h is a fractional

hom(K)-tiling with w(h) = k + 1
ab

+ 1
ac
− a

b2c
− 1

b2
≥ k + 1

abc
and hmin = b−a

b2c
≥ 1

bc2
. Second,

we assume a = b. By the degree condition, we have N(uu′, X) 6= ∅. Pick x ∈ N(uu′, X) and

z ∈ Z. By assigning h(x, u, u′) = h(y, u, u′) = h(x, y, z) = ( 1
2ac
, 1

2ac
, 1

2a2
) and the standard

weight to all other edges, we get a fractional hom(K)-tiling with w(h) = k+ 1
a2

+ 1
ac
− 1

2a2
≥

k + 1
abc

and hmin = 1
2ac
≥ 1

bc2
as c ≥ 2.

Given two vertex-disjoint copies K1, K2 of K and a vertex u 6∈ V (K1) ∪ V (K2), let

L2(K1, K2, u) denote the family of all 3-graphs on {u} ∪ V (K1) ∪ V (K2) whose edge set

contains E(K1) ∪ E(K2) and at least max{a2 + 2a(b + c), (a + b)2} + 1 triples uvw with

v ∈ V (K1) and w ∈ V (K2).

The following proposition shows that any 3-graph L ∈ L2(K1, K2, u) has a hom(K)-

tiling with weight greater than 2k. In its proof we assign weights to an edge as follows.

Suppose 0 < λ ≤ 1, then (a
c
λ, b

c
λ, λ) satisfies (3) in Definition 4.23. Furthermore, given

µ1, µ2 ≥ 0 such that a
c
λ + µ1 ≤ b

c
λ ≤ λ − µ2, then (a

c
λ + µ1,

b
c
λ, λ − µ2) satisfies (3) in

Definition 4.23 as well.

Proposition 4.26. Let 1 ≤ a ≤ b ≤ c be integers with a < c and k = a + b + c. Let

K1, K2 be two vertex-disjoint copies of K and let u /∈ V (K1) be a vertex. For any 3-graph

L ∈ L2(K1, K2, u), there exists a fractional hom(K)-tiling of L with w(h) ≥ 2k + 1
abc2

and

hmin ≥ 1
bc2

.

Proof. For i = 1, 2, let the vertex classes of Ki be Xi, Yi, Zi with |Xi| = a, |Yi| = b, and

|Zi| = c. Let Lu be the link graph of u in L, that is, Lu is a bipartite graph with edges

between X1 ∪ Y1 ∪ Z1 and X2 ∪ Y2 ∪ Z2. Then Lu satisfies the following properties.
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(i) Since degL(u) ≥ a2 + 2a(b+ c) + 1, Lu must have an edge not incident to X1 ∪X2.

(ii) Since degL(u) ≥ (a+ b)2 + 1, Lu must have an edge incident to Z1 ∪ Z2.

Write λ = 1
abc

. Our proof is now divided into cases based on the values of a, b and c.

Case 1. b < c.

First we assume that there is z1z2 ∈ Lu for z1 ∈ Z1 and z2 ∈ Z2. Let xi ∈ Xi,

yi ∈ Yi for i = 1, 2. In this case let h(u, z1, z2) = (λ, λ, λ) and h(x1, y1, z1) = h(x2, y2, z2) =

( 1
bc
, 1
ac
, 1
ab
−λ). Other edges of K1 or K2 receive the standard weight ( 1

bc
, 1
ac
, 1
ab

). (For the rest

of the proof, any edge of K1 or K2 not specified receives the standard weight.) Therefore

we get a fractional hom(K)-tiling of L with w(h) = 2k + λ and hmin = λ. We thus assume

Lu[Z1, Z2] = ∅ and proceed in two subcases.

Case 1.1. a < b < c. We first assume that there exists z1y2 ∈ Lu for z1 ∈ Z1 and y2 ∈ Y2.

Let xi ∈ Xi for i = 1, 2, y1 ∈ Y1 and z2 ∈ Z2. In this case we let h(y2, z1, u) = (a
c
λ, b

c
λ, λ),

h(x1, y1, z1) = ( 1
bc
, 1
ac
, 1
ab
− b

c
λ), and h(x2, y2, z2) = ( 1

bc
, 1
ac
− a

c
λ, 1

ab
− a

b
λ). So we get a fractional

hom(K)-tiling of L with w(h) = 2k + (1− a
b
)λ ≥ 2k + 1

b
λ and hmin = a

c
λ.

We thus assume that Lu[Z1, Y2] = ∅ and by symmetry, Lu[Y1, Z2] = ∅. By (i), it follows

that Lu[Y1, Y2] 6= ∅. By (ii), without loss of generality, assume that Lu[Z1, X2] 6= ∅. Suppose

y1y2, z1x2 ∈ Lu with y1 ∈ Y1, y2 ∈ Y2, z1 ∈ Z1 and x2 ∈ X2. Let x1 ∈ x1 and z2 ∈ Z2. We let

h(y1, y2, u) = ( b
c
λ, b

c
λ, λ), h(x2, u, z1) = (a

c
λ, b

c
λ, λ), h(x1, y1, z1) =

(
1
bc
, 1
ac
− b

c
λ, 1

ab
− λ
)
, and

h(x2, y2, z2) =
(

1
bc
− a

c
λ, 1

ac
− b

c
λ, 1

ab
− λ
)
. So we get a fractional hom(K)-tiling of L with

w(h) = 2k + b
c
λ and hmin = a

c
λ.

Case 1.2. a = b < c. We first assume that both Lu[Z1, X2] 6= ∅ and Lu[Z1, Y2] 6= ∅.

Suppose z1x2, z
′
1y2 ∈ Lu with z1, z

′
1 ∈ Z1, x2 ∈ X2 and y2 ∈ Y2 (we may have z1 = z′1). We

assign the weights h(z1, x2, u) = h(z′1, y2, u) = (a
c
λ, a

c
λ, λ). If a ≥ 2, then pick x1, x

′
1 ∈ X1,

y1, y
′
1 ∈ Y1 and z2 ∈ Z2. We assign h(x1, y1, z1) = h(x′1, y

′
1, z
′
1) =

(
1
ac
, 1
ac
, 1
a2
− a

c
λ
)

and

h(x2, y2, z2) =
(

1
ac
− a

c
λ, 1

ac
− a

c
λ, 1

a2
− λ
)
. Otherwise a = 1 and c ≥ 2. Pick x1 ∈ X1, y1 ∈ Y1
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Figure 4.4. Lu in the last subcase of Case 1.2.

and z2 ∈ Z2. We assign

h(x1, y1, z1) = h(x′1, y
′
1, z
′
1) =


(

1
ac
, 1
ac
, 1
a2
− 2a

c
λ
)

if z1 = z′1,(
1
ac
, 1
ac
, 1
a2
− a

c
λ
)

if z1 6= z′1.

(note that if z1 = z′1 then x1y1z1 and x′1y
′
1z
′
1 are the same edge) and h(x2, y2, z2) =(

1
ac
− a

c
λ, 1

ac
− a

c
λ, 1

a2
− λ
)
. In all cases we get a fractional hom(K)-tiling of L with w(h) =

2k + λ and hmin = a
c
λ.

We may thus assume that at least one of Lu[Z1, X2] and Lu[Z1, Y2] is empty, and by

symmetry, at least one of Lu[X1, Z2] and Lu[Y1, Z2] is empty. Since a = b, Xi and Yi (i = 1, 2)

play the same role. Without loss of generality, assume that Lu[Z1, Y2] = Lu[Y1, Z2] = ∅.

Furthermore, we observe that Lu[Z1, X2] 6= ∅ and Lu[X1, Z2] 6= ∅ – otherwise, as Lu[Z1, Z2] =

∅, it follows that degL(u) ≤ 4a2 + ac < a2 + 2a(b+ c), a contradiction.

Suppose z1x2, x1z2 ∈ Lu, where z1 ∈ Z1, x2 ∈ X2, x1 ∈ X1, z2 ∈ Z2. By (i), there

exists y1y2 ∈ Lu, where y1 ∈ Y1, y2 ∈ Y2 (see Figure 1). We assign the weights h(u, x2, z1) =

h(u, x1, z2) = h(y1, y2, u) = (a
c
λ, a

c
λ, λ) and h(x1, y1, z1) = h(x2, y2, z2) = ( 1

ac
− a

c
λ, 1

ac
−

a
c
λ, 1

a2
− λ). This gives a fractional hom(K)-tiling of L with w(h) = 2k + λ + 2a

c
λ and

hmin = a
c
λ. Note that h(u) = 2a

c
λ+λ = 2a+c

a2c2
≤ 1 because a ≥ 1 and c ≥ 2. Thus this weight

assignment is possible.

Case 2. a < b = c.
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Since b = c, Yi and Zi (i = 1, 2) play the same role. Thus by (i), without loss of

generality, assume that there exists z1z2 ∈ Lu for z1 ∈ Z1 and z2 ∈ Z2. Furthermore,

generalizing (ii), we know that there must be an edge incident to Y1 ∪ Y2 and without loss

of generality, say that edge is incident to Y1. We now proceed with three cases.

Case 2.1. There exists y1x2 ∈ Lu where y1 ∈ Y1 and x2 ∈ X2. Pick x1 ∈ X1, y2 ∈ Y2 and

zi ∈ Zi for i = 1, 2. We assign h(u, z1, z2) = (λ, λ, λ), h(x2, y1, u) = (a
c
λ, λ, λ), h(x1, y1, z1) =(

1
c2
, 1
ac
− λ, 1

ac
− λ
)
, and h(x2, y2, z2) =

(
1
c2
− a

c
λ, 1

ac
− λ, 1

ac
− λ
)
. Thus, we get a fractional

hom(K)-tiling of L with w(h) = 2k + λ and hmin = a
c
λ.

Case 2.2. There exists y1y2 ∈ Lu where y1 ∈ Y1 and y2 ∈ Y2. Pick xi ∈ Xi and zi ∈ Zi

for i = 1, 2. We assign the weights h(u, z1, z2) = h(u, y1, y2) = (λ, λ, λ) and h(x1, y1, z1) =

h(x2, y2, z2) =
(

1
c2
, 1
ac
− λ, 1

ac
− λ
)

and get a fractional hom(K)-tiling of L with w(h) =

2k + 2λ and hmin = λ.

Case 2.3. There exists y1z
′
2 ∈ Lu where y1 ∈ Y1 and z′2 ∈ Z2 (it is possible to have

z2 = z′2). Pick z1 ∈ Z1. We assign the weights h(z2, u, z1) = h(z′2, u, y1) = (a
c
λ, λ, λ).

Pick x1 ∈ X1, x2 ∈ X2 and distinct y2, y
′
2 ∈ Y2, which is possible as b > a ≥ 1. Let

h(x1, y1, z1) =
(

1
c2
, 1
ac
− λ, 1

ac
− λ
)

and h(x2, y2, z2) = h(x2, y
′
2, z
′
2) =

(
1
c2
, 1
ac
− a

c
λ, 1

ac
− a

c
λ
)
.

Thus, we get a fractional hom(K)-tiling of L with w(h) = 2k + 2λ − 2a
c
λ ≥ 2k + 2

c
λ and

hmin = a
c
λ.

In all cases we obtain a fractional hom(K)-tiling with w(h) ≥ 2k + λ
c

= 2k + 1
abc2

and

hmin ≥ a
c
λ = 1

bc2
.

4.4.3 Proof of Lemma 4.2 when a < c

Let H be a 3-graph on n vertices. Given 0 ≤ β ≤ 1, a K-tiling of H is called β-deficient

if it covers all but at most βn vertices of V (H).

Proposition 4.27. Given 0 < d ≤ 3/5 and β, ρ > 0, there exists an n0 such that the

following holds. If every 3-graph H on n > n0 vertices with δ1(H) ≥ d
(
n
2

)
has a β-deficient

K-tiling, then every 3-graph H ′ on n′ > max{n0, 5} vertices with δ1(H ′) ≥ (d− ρ)
(
n′

2

)
has a

(β + 2kρ)-deficient K-tiling.
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Proof. Let H ′ be a 3-graph on n′ vertices with δ1(H ′) ≥ (d − ρ)
(
n′

2

)
. By adding a set A of

2ρn′ new vertices and all the triples of V (H ′) ∪ A that intersect A as edges, we obtain a

3-graph H on n = n′ + 2ρn′ vertices. Thus

δ1(H) = δ1(H ′) + 2ρn′(n′ − 1) +

(
2ρn′

2

)
≥ (d− ρ)

(
n′

2

)
+ 4ρ

(
n′

2

)
+

(
2ρn′

2

)
.

Note that 3ρ
(
n′

2

)
≥ 2dρn′2 because d ≤ 3/5 and n′ ≥ 5. Thus, δ1(H) ≥ d

(
n′

2

)
+ 2dρn′2 +

d
(

2ρn′

2

)
= d

(
n
2

)
. By assumption, H has a β-deficient K-tiling. After removing at most 2ρn′

copies of K that intersect A, we obtain a (β + 2kρ)-deficient K-tiling of H ′.

Proof of Lemma 4.2 when a < c. Since a < c, we have k ≥ 4. Let δ = max{1 −

( b+c
k

)2, (a+b
k

)2}. Since a ≤ b ≤ c, it follows that δ ≤ max{5/9, 4/9} = 5/9. Without

loss of generality, assume that 0 < γ ≤ min{3/5 − δ, 2δ, a/(3k)}. Assume for a contradic-

tion that there is an α such that for all n0 there is some 3-graph H on n > n0 vertices

with δ1(H) ≥ (δ + γ)
(
n
2

)
but which does not contain an α-deficient K-tiling. Let α0 be the

supremum of all such α.

Let ε� γα0. By the definition of α0, there is an integer n0 such that

all 3-graphs H on n > n0 vertices with δ1(H) ≥ (δ + γ)

(
n

2

)
have an (α0 + ε)-deficient K-tiling.

(4.14)

We may also assume that n0 is sufficiently large so that we can apply Proposition 4.10 with

r = 3, m = 1, l1 = a, l2 = b, l3 = c on 3-graphs of order at least α0n0/2. Our goal is to show

that there exists an n1 such that all 3-graphs H on n > n1 vertices with δ1(H) ≥ (δ + γ)
(
n
2

)
have an (α0 − ε)-deficient K-tiling, thus contradicting the definition of α0.

Let n2 and T by returned from Proposition 4.21 with inputs ε, d = 2bc2ε, t0 =

max{n0, k/ε}. Let n1 = max{n0, n2} and let H be a 3-graph on n > n1 vertices with

δ1(H) ≥ (δ+γ)
(
n
2

)
. We assume that H does not contain an (α0− ε)-deficient K-tiling – oth-

erwise we are done. After applying Proposition 4.21 to H with the constants chosen above,

we get an (ε, t)-regular partition P with t0 < t < T and a cluster hypergraph R = R(ε, d,P)
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on t > t0 vertices with δ1(R) ≥ (δ+γ−(2bc2+1)ε)
(
t
2

)
. By (4.14) and assumption δ+γ ≤ 3/5,

we can apply Proposition 4.27 and obtain an (α0 + ε + 2k(2bc2 + 1)ε)-deficient K-tiling of

R. LetM = {K1, K2, . . . , Km} be a largest K-tiling in R and let U be the set of uncovered

vertices.

Claim 4.28. Let h be a fractional hom(K)-tiling of R with hmin ≥ 1
bc2

. Then w(h) <

(1− α0 +
√
ε/2)t ≤ mk +

√
εt.

Proof. We know that |U | ≤ (α0 + ε+ 2k(2bc2 + 1)ε)t ≤ (α0 + 5kbc2ε)t. As ε� 1, it follows

that

mk +
√
εt ≥ (1− α0 − 5kbc2ε)t+

√
εt ≥ (1− α0 +

√
ε/2)t.

So it suffices to show that w(h) < (1 − α0 +
√
ε/2)t. Suppose this is not the case. By

Proposition 4.24, there is a K-tiling of H that covers at least

(
1− 2bc3ε

)
w(h)

n

t
≥
(
1− 2bc3ε

)
(1− α0 +

√
ε/2)t

n

t
≥ (1− α0 + ε)n

vertices (as ε� 1). Therefore it is an (α0−ε)-deficientK-tiling, contradicting our assumption

on H.

In the rest of the proof we will derive a contradiction to Claim 4.28. Immediately Claim

4.28 implies that

|U | ≥ α0

2
t (4.15)

otherwiseM gives a fractional hom(K)-tiling h with w(h) = mk ≥ (1− α0/2)t ≥ (1− α0 +
√
ε/2)t, as ε� α0.

Let E3 = {e ∈ E(R) : e ⊆ U} and E2 = {e ∈ E(R) : |e ∩ U | = 2}.

Claim 4.29. |E3| ≤ γ
(|U |

3

)
/2 and |E2| ≤ δ

(|U |
2

)
mk.

Proof. By (4.15) and Proposition 4.10, we have |E3| ≤ γ
(|U |

3

)
/2, as otherwise there exists a

copy of K in U , contradicting the maximality of M.
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Suppose, to the contrary, that |E2| > δ
(|U |

2

)
mk. Recall that L1(K1, u, u

′) is the family

of all 3-graphs on {u, u′} ∪ V (K1) whose edge set contains E(K1) and at least a + 1 triples

uu′v with v ∈ V (K1), where K1 is a copy of K and u, u′ /∈ V (K1). Let A be the set of all

triples iuu′, i ∈ [m], u 6= u′ ∈ U such that uu′ is adjacent to at least a + 1 vertices in Ki,

in other words, R[V (Ki) ∪ {u, u′}] ∈ L1(Ki, u, u
′). Let A0 be a largest matching in A. By

the maximality of A0, for any i ∈ [m] \ V (A0) and any u 6= u′ ∈ U \ V (A0), at least k − a

vertices of Ki are not adjacent to uu′. Counting the number of non-edges e 6∈ E(R) with

|e ∩ U | = 2, we have

(k − a)(m− |A0|)
(
|U | − 2|A0|

2

)
≤
(
|U |
2

)
mk − |E2| < (1− δ)

(
|U |
2

)
mk.

Since (1− δ)k ≤ ( b+c
k

)2k = (k−a)2

k
, it follows that

(m− |A0|)
(
|U | − 2|A0|

2

)
≤ k − a

k
m

(
|U |
2

)
. (4.16)

We claim that |A0| ≥ γα0m. Indeed, (4.15) implies that |U | ≥ α0t/2 ≥ α0mk/2 ≥ 2α0m

(as k ≥ 4). If |A0| < γα0m, then m− |A0| ≥ (1− γα0)m and |U | − 2|A0| ≥ |U | − 2γα0m ≥

(1− γ)|U |. Thus (4.16) implies that

k − a
k

m

(
|U |
2

)
≥ (1− γα0)m

(
(1− γ)|U |

2

)
> (1− γα0)(1− 2γ)m

(
|U |
2

)
> (1− 3γ)m

(
|U |
2

)

contradicting γ ≤ a
3k

. Now let A′ ⊆ A0 be of size γα0m. By Proposition 4.25, for each

member ofA′, there is a fractional hom(K)-tiling h′ ofR[V (Ki)∪{u, u′}] with w(h′) ≥ k+ 1
abc

and h′min ≥ 1
bc2

. This gives rise to a fractional hom(K)-tiling h of R with hmin ≥ 1
bc2

and

w(h) ≥ mk + γα0m/(abc).

To complete the proof, we need a lower bound for m. Recall that δ1(R) ≥ (1−
(
b+c
k

)2
+

γ − (2bc2 + 1)ε)
(
t
2

)
. Thus if |U | > b+c

k
t, then

(|U |
2

)
≥ ( b+c

k
)2
(
t
2

)
− t and

δ1(R[U ]) ≥ δ1(R)−
(
t

2

)
+

(
|U |
2

)
> (γ − (2bc2 + 1)ε)

(
t

2

)
− t ≥ γ

2

(
t

2

)
,
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where the last inequality holds because t ≥ t0 ≥ 1/ε. This implies that |E3| > 1
3
|U |γ

(
t
2

)
/2 >

γ
(|U |

3

)
/2, contradicting the first part of Claim 4.29. Therefore |U | ≤ b+c

k
t and |V (M)| =

mk ≥ a
k
t, which gives m ≥ a

k2
t. The fractional hom(K)-tiling h of R thus satisfies

w(h) ≥ mk +
γα0m

abc
≥ mk +

γα0t

k2bc
> mk +

√
εt,

as ε� γα0, contradicting Claim 4.28.

Let T be the set of all triples uij, u ∈ U , i 6= j ∈ [m] such that there are at least δk2 +1

edges uvw of R with v ∈ V (Ki) and w ∈ V (Kj). Recall that given two vertex-disjoint

copies K1, K2 of K and a vertex u 6∈ V (K1) ∪ V (K2), L2(K1, K2, u) denotes the family of

all 3-graphs on {u} ∪ V (K1) ∪ V (K2) whose edge set contains E(K1) ∪ E(K2) and at least

max{a2 + 2a(b + c), (a + b)2} + 1 triples uvw with v ∈ V (K1) and w ∈ V (K2). Note that

δk2 + 1 = max{a2 + 2a(b+ c), (a+ b)2}+ 1, and thus each triple uij in T corresponds to a

member of L2(Ki, Kj, u). Let T0 be a largest matching in T .

Claim 4.30. |T0| ≥ γα0

6k
t.

Proof. We first derive a lower bound for |T | by considering
∑

u∈U degR(u). Note that the

edges of R intersecting U may contain one, two or three vertices in U . Moreover, we can

partition the edges uxy of R with u ∈ U and x ∈ V (Ki), y ∈ V (Kj) (so exactly one vertex

in U) into three classes: such edges with i = j, which is bounded above by
(
k
2

)
m|U |; the

edges with i 6= j and uij /∈ T , bounded above by δk2|U |
(
m
2

)
; and the edges with i 6= j and

uij ∈ T , bounded above by k2|T |. Thus, we get

|U |δ1(R) ≤
∑
u∈U

degR(u) ≤ 3|E3|+ 2|E2|+
(
k

2

)
m|U |+ δk2|U |

(
m

2

)
+ k2|T |.
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By Claim 4.29, it follows that

|U |δ1(R) ≤ |U |
(
γ

2

(
|U |
2

)
+ δ|U |mk +

(
k

2

)
m+ δk2

(
m

2

))
+ k2|T |

≤ |U |
(
δ

(
|U |
2

)
+ δ|U |mk + δk2

(
m

2

)
+

(
k

2

)
m

)
+ k2|T | as γ ≤ 2δ

≤ |U |
(
δ

(
t

2

)
+
kt

2

)
+ k2|T |.

On the other hand, δ1(R) ≥ (δ + γ − (2bc2 + 1)ε)
(
t
2

)
. Using t ≥ k/ε and ε � γ, we derive

that k2|T | ≥ |U | · γ
2

(
t
2

)
or |T | ≥ γ

2k2

(
t
2

)
|U |.

By the maximality of T0, all triples of T are covered by V (T0). Given some uij ∈ T0,

the number of triples of T containing u is at most
(
m
2

)
and the number of triples containing

at least one of i, j is at most 2(m − 1)|U |. Also, since mk − k + |U | = t − k, we get that

(mk − k)|U | ≤ (t− k)2/4. Thus, we get

|T | ≤ 2|T0|(m− 1)|U |+
(
m

2

)
|T0| ≤

|T0|
k

(
t

2

)
+
|T0|
k2

(
t

2

)

because (m − 1)|U | = (mk − k)|U |/k ≤ (t − k)2/(4k) ≤
(
t
2

)
/(2k). Together with |T | ≥

γ
2k2

(
t
2

)
|U |, we derive that |T0| ≥ γ|U |

2k+2
≥ γα0t

6k
using (4.15).

For every uij ∈ T0, Proposition 4.26 provides a fractional hom(K)-tiling h of R[{u} ∪

V (Ki)∪ V (Kj)] with w(h) ≥ 2k+ 1
abc2

and hmin ≥ 1
bc2

. Furthermore, for every Ki ∈M with

i 6∈ V (T0), we assign the standard weight on Ki. Hence, the union of all these fractional

hom(K)-tilings gives a fractional hom(K)-tiling of R with hmin ≥ 1
bc2

and

w(h) ≥
(

2k +
1

abc2

)
|T0|+ k(m− 2|T0|) = mk +

1

abc2
|T0| ≥ mk +

√
εt,

as ε� γα0, contradicting Claim 4.28. This completes the proof of Lemma 4.2.
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4.5 Summary

In this part, we investigate the minimum vertex degree conditions for tiling complete

3-partite 3-graphs K. Our result is best possible, up to the error term γn2. We remark that

in some cases (e.g., K = K1,1,t for t ≥ 2) it seems possible to remove the error term and

obtain exact results – this was done for K1,1,2 in [15, 44]. In general, in order to obtain an

exact result, we need to have a stability version of the almost tiling lemma or a stability

version of the absorbing lemma, together with an analysis of the 3-graphs that look like

extremal examples. (See Part 6.)
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PART 5

STRONG EDGE COLORING

5.1 Introduction

Recall that the strong edge chromatic number of G, usually denoted by χ′s(G), is the

minimum number of colors in a strong edge-coloring of G. In this part, inspired by papers of

Anderson [5] and Cranston [14], we want to get an upper bound for strong edge chromatic

number of graphs with maximum degree ∆. The girth of a graph is the length of the shortest

cycle. We prove that a ∆-regular graph G with girth at leat 5 has a strong edge-coloring

that uses 2∆2 − 3∆ + 2 colors. By applying this algorithm to graphs with maximum degree

5, we obtain a strong edge-coloring using 37 colors.

Our main results are as follows.

Theorem 5.1. If G is a graph with maximum degree ∆ and girth at least 5, then G has a

strong edge-coloring that uses 2∆2 − 3∆ + 2 colors.

Theorem 5.2. If G is a graph with maximum degree ∆ = 5, then G has a strong edge-

coloring that uses 37 colors.

For the rest of this part, we will prove Theorem 5.1 in Section 5.2, and give an outline

of proof for Theorem 5.2.

5.2 Graphs with Maximum Degree ∆: Proof of Theorem 5.1

We refer to the color classes as the integers started from 1. A greedy coloring strategy

is to use the least color class that is not forbidden from use on an edge at the time the

edge is colored, i.e., when coloring an edge e = xy, we need to forbid the colors that are

already used by the edges incident to x or y, as well as the colors by the edges having an

end-vertex adjacent to x or y. Define the neighborhood of e as the set of edges that are
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incident to e, or has an end-vertex adjacent to some end-vertex of e, denoted by N(e). Then

|N(e)| ≤ 2∆(∆− 1). Let F (e) be the set of colors occurring on edges of N(e); edges of N(e)

that are still uncolored do not contribute to F (e), therefore |F (e)| ≤ |N(e)| ≤ 2∆(∆− 1).

Our aim is to find an order of the edges in which we can color the edges of G one by

one. Let v be an arbitrary vertex of G. For i = 0, 1, 2, .., let Di be the set of vertices of

distance i from v and we call Di distance class i. So D0 = {v}. For any edge e of G, its

distance denoted as dv(e) is the smallest distance among end-vertices of e. We say an edge

order is compatible with vertex v if e1 precedes e2 in the order only when dv(e1) ≥ dv(e2).

Intuitively, we color all the edges in distance class i+ 1 before we color any edge in distance

class i.

The following is an observation for graphs with maximum degree ∆.

Lemma 5.3. If G is a graph with maximum degree ∆, then G has a strong edge-coloring

that uses 2∆2 − 3∆ + 1 colors except that it leaves those edges incident to a single vertex.

Proof. Let v be a vertex of G. Greedily color the edges in an order that is compatible

with v. If e is an edge not incident to v, then dv(e) ≥ 1, and an end-vertex x of e with

x ∈ Dd(e) will be adjacent to a vertex u in Dd(e)−1. When we color e, none of the ∆ edges

incident to u has yet been colored, so at most 2∆2 − 3∆ edges of N(e) have been colored,

i.e |F (e)| ≤ 2∆2 − 3∆. Hence, we get a strong edge-coloring that uses 2∆2 − 3∆ + 1 colors

except that it leaves those edges incident to v.

Now we are ready to prove Theorem 5.1 in two cases: G is not regular, and G is

∆-regular with girth at least 5

Case 1: G is not regular.

In this case, we get a even stronger result as follows.

Lemma 5.4. Any graph with maximum degree ∆ that has a vertex with degree at most ∆−1

has a strong edge-coloring that uses 2∆2 − 3∆ + 1 colors.

Proof. Let v be the vertex with degree at most ∆ − 1. Greedily color the edges in an

order that is compatible with v, by Lemma 5.3 we get a partial strong edge-coloring using
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2∆2 − 3∆ + 1 except leaving those edges incident to v. Let ei be the edge incident to v,

|N(ei)| ≤ 2∆2− 3∆, where i = 1, 2, . . . ,∆− 1. We can color those edges incident to v in the

order e1, e2, e3, ..., e∆−1, and |F (e1)| ≤ 2∆2 − 3∆−∆ + 2, |F (e2)| ≤ 2∆2 − 3∆−∆ + 3, . . . ,

|F (e∆−1)| ≤ 2∆2 − 3∆, so there are colors available for each edge incident to v.

Case 2: G is ∆-regular with girth at least 5.

In this case, we need to prove the following lemma.

Lemma 5.5. Any ∆-regular graph with girth at least 5 has a strong edge-coloring that uses

2∆2 − 3∆ + 2 colors.

Before proving Lemma 5.5, we first do some observations. Let v be a vertex of G. We

want to greedily color the edges in an order that is compatible with v. By Lemma 5.3, we

get a partial strong edge-coloring that uses 2∆2 − 3∆ + 1 colors except that it leaves those

edges incident to v. To finish the proof, we need to consider the local structure of those

uncolored edges incident to v. By adding one more color class, we release ∆ colors available

to be greedily assigned to those edges incident to v.

Let D1, D2 be the vertex distance classes of v with distance 1 and 2, respectively. Since

the girth is at leat 5, there are no induced edges within D1, and any two distinct vertices in

D1 don’t have common neighbor in D2. Let E[D1, D2] be the set of edges which have one

end in D1 and the other end in D2.

Proposition 5.6. By recoloring, we can assign the same color (say color α) to ∆ edges of

E[D1, D2].

Proof. Let D1 = w1, w2, ..., w∆. For i = 1, 2, 3, . . . ,∆, wi has ∆ − 1 neighbors in D2, and

denote the set of these neighbors as Wi. Since there is no triangle in G, wi ∪Wi induces a

K1,∆−1. Now we give some observations as follows:

a. Wi ∩Wj = ∅, for any i 6= j.

b. no induced edges within D1 .
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Figure 5.1. ∆ edges of E[D1, D2] receive the same color α

c. no induced edges within each Wi, i = 1, 2, 3, . . . ,∆ .

d. |N(u) ∩Wj| ≤ 1 for any u ∈ Wi where i 6= j and i, j = 1, 2, 3, . . . ,∆.

Let N2(u) := N(u) ∩ D2 for any u ∈ D2. Our goal is to find an induced matching in

E[D1, D2] with size ∆ and assign new color α to them. It is sufficient to find an independent

set V0 of size ∆ consisting of exactly one vertex from each Wi where i = 1, 2, 3, . . . ,∆.

Case 1. |N2(u)| ≤ 1 for any u in D2. If |N2(u)| = 0 for any u in D2, i.e., there is

no edge in D2, then we can choose ∆ edges in E[D1, D2] by choosing one vertex from each

Wi, i = 1, 2, 3, . . . ,∆. If there exists u ∈ D2 such that |N2(u)| = 1, note that the set of edges

in D2 is an induced matching. We choose a vertex with one neighbor in D2, say it is from

W1, denoted as v1. Suppose the only neighbor of v1 in D2 is from W2, then we can choose one

vertex from W2 which is not adjacent to v1, denoted as v2. This is possible since W1∩W2 = ∅.

Consider the only neighbor of v2 in D2, if it is not in W1, we may assume N2(v2) ⊂ W3, then

we choose one vertex from W3 which is different from this neighbor, denoted as v3; otherwise

we can arbitrarily choose one vertex from W3 with ∆ choices. Continue this process, and

each step we have at least ∆− 1 choices. So we get a vertex subset V0 ⊂ D2 of size ∆ such

that E[D1, V0] is an induced matching.

Case 2. There exists a vertex u in D2 such that |N2(u)| ≥ 2. Let v1, v2 ∈ N2(u), and

suppose u ∈ W∆, v1 ∈ W1, v2 ∈ W2. It is obvious that v1, v2 are nonadjacent otherwise there
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is a triangle. Let V1 = {v1}, we will choose vertices sequentially as follows:

If we already have Vk−1 = {v1, v2, . . . , vk−1}, then choose vk ∈ Wk \ N2(Vk−1) and let

Vk = Vk−1 ∪ {vk}. This process is possible since |Wk| = ∆− 1 and |Wk ∩N2(Vk−1)| ≤ k − 1

because of observation (d), we get |Wk ∩N2(Vk−1)| ≥ (∆− 1)− (k− 1) ≥ 1 when k ≤ ∆− 1.

When k = ∆, since N2(v1, v2) ∩ W∆ = {u}, we have |W∆ \ N2(V∆−1)| ≤ (∆ − 1) − 1 =

∆− 2 < |W∆|. So we choose v∆ ∈ W∆ and let V0 = Vk−1 ∪ v∆, and E[D1, V0] is an induced

matching.

Proof of Lemma 5.5. First by Lemma 5.3, we get a partial strong edge-coloring π with 2∆2−

3∆ + 1 colors except that it leaves those edges incident to some vertex v. Now consider the

local structure within 2 distance classes from v, by Proposition 5.6, we can assign a new color

α to ∆ edges in E[D1, D2] and release those colors used by these ∆ edges in π. By greedily

assign these released color to those ∆ edges incident to v, we obtain a strong edge-coloring

that uses 2∆2 − 3∆ + 2 colors.

5.3 Graphs with ∆ = 5

Lemma 5.3 with ∆ = 5 provides a partial strong edge-coloring with 36 colors. So we

only need to consider the local structure within distance 2 from a single vertex v. When

the girth of the graph is at least 5, Theorem 5.2 can be obtained from Lemma 5.5 since

2∆2−3∆+2 = 37 with ∆ = 5. When there exists a vertex with degree less than 5, Theorem

5.2 is true by Lemma 5.4. Therefore the remaining cases are the 5-regular graphs with the

girth at most 4.

G is 5-regular with girth 3.

We have the following lemma.

Lemma 5.7. If G is a 5-regular graph with girth 3, then G has a strong edge-coloring that

uses 37 colors.

Proof. Start from a triangle {v1, v2, v3} with edges c1 = v1v2, c2 = v2v3, c3 = v3v1, First by

Lemma 5.3, we get a partial strong edge-coloring using 36 colors with the edges incident to
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v1 uncolored. Now release the colors used by the edges incident to v2 and edges incident to

v3, and we have 12 uncolored edges. Assign colors to all the edges incident to the triangle

first and then the edges on the triangle. Since any edge e incident to the triangle, we have

|N(e)| = 39, and |F (e)| ≤ 39 − 3 < 37, we can greedily color it. For i = 1, 2, 3, |N(ci)| =

35, |F (ci)| ≤ 35 < 37, we can also greedily color c1, c2, c3.

G is 5-regular with girth 4.

Lemma 5.8. If G is a 5-regular graph with girth 4, then G has a strong edge-coloring that

uses 37 colors.

Proof. Let G be a 5-regular graph with girth 4. Let v be a vertex on a 4-cycle of G. Color

the edges in an order compatible with v, by Lemma 5.3, we get a partial strong edge-coloring

with 36 colors.

Let ei = vwi and Wi = N(wi) ∩ D2 where i = 1, 2, 3, 4, 5. Suppose w1 and w2 have a

common neighbor in D2. Because girth is 4, we have D1 is independent. Observation:

(a) Since |N(ei)| = 40 − |E(D1 \ {wi},Wi)|, if |E(D1 \ {wi},Wi)| ≥ 4 then we can

greedily color ei where i = 1, . . . , 5.

(b) |D2| ≥ 7. Otherwise, we can greedily color ei where i = 1, . . . , 5.

Since |F (ei)| ≤ 39 − 4 = 35 for i = 1, 2 and |F (ei)| ≤ 40 − 4 = 36 when i = 3, 4, 5,

we’ll have a similar argument with the proof of Lemma 5.5 to show that we can reassign a

new color to 3 edges in E(D1, D2), otherwise the neighborhood of ei where i = 1, 2, 3, 4, 5 is

small enough for us to greedily color it. If we have at least three Wi that contains vertices

with no neighbor in D2 ∪Wi \ {wi}, then we can choose an induced matching in E(D1, D2)

of size at least three. Otherwise we have the following cases.

Case 1. There are two Wi, say W4,W5 that contains vertices with no neighbor in

D2∪Wi \{wi}. Choose v4 ∈ W4, v5 ∈ W5 such that N(vi)∩ (D2∪Wi \{wi}) = ∅ for i = 4, 5.

So we only need to choose one vertex vi ∈ Wi for some i = 1, 2, 3 such that w4v4, w5v5, wivi

form an induced matching. If such vertex does not exist, then any v ∈ ∪3
i=1Wi, v is adjacent

to w1 or w2. Because w1 and w2 have a common neighbor in D2, we have | ∪5
i=3 Wi| ≤ 6.
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Therefore, |E(D1 \ {wi},Wi)| ≥ 4 for each i = 1, 2, 3.

Case 2. There is oneWi, sayW5 that contains vertices with no neighbor inD2∪Wi\{wi},

and choose one such vertex as v5. By observation (b), we have at least one vertex v ∈ D2 ⊂

W5, say v ∈ W4, then v5w5 and vw4 is an induced matching. Following the same argument

in Case 1, we either find an induced matching of size 3 or |E(D1 \ {wi},Wi)| ≥ 4 for each

i ∈ [5].

Case 3. There is no Wi that contains vertices with no neighbor in D2∪Wi\{wi}. Let v be

the common neighbor of w1 and w2 inD2. If v is adjacent to all wi, then |E(D1\{wi},Wi)| ≥ 4

for each i = 1, . . . , 5. We may assume v is not adjacent to w5. Since wi has at most 3

neighbors in W5 for i = 1, 2, we have either v is adjacent to at least one vertex in W5 or at

least one of w1, w2 is adjacent to any vertex in W5. In either case, we can find an induced

matching of size 3 in E(D1, D2) otherwise |E(D1 \ {wi},Wi)| ≥ 4 for each i ∈ [5].

5.4 Summary

In this part, we provide an algorithm to find a strong edge-coloring using 2∆2− 3∆ + 2

colors in graphs with maximum degree ∆ and girth at least 5. With the help of this algorithm,

we get a strong edge-coloring with 37 colors for graphs with maximum degree 5. As for our

knowledge, this is the best upper bound known for ∆ = 5. However, by Conjecture 1.4,

every graph with maximum degree 5 has a strong edge-coring using 29. We are still far from

finishing this journey in finding strong chromatic numbers.
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PART 6

CONCLUSION REMARKS

In Part 2, we provide the partite minimum codegree condition for (almost) perfect

matchings in k-partite k-graphs. So far we show that a k-partite k-graph with each part of

size n, three sufficiently large partite minimum codegrees and sum of all partite codegrees

at least n − 1 has a matching of size at least n − 1. If we only have two sufficiently large

partite minimum codegrees, we encounter the divisibility barriers and the clarity of these

divisibility barriers would be the key to tackle this problem.

In Part 3, we investigate the minimum vertex degree conditions for tiling complete 3-

partite 3-graphs K. Our result is best possible, up to the error term γn2. We remark that in

some cases (e.g., K = K1,1,t for t ≥ 2) it seems possible to remove the error term and obtain

exact results – this was done for K1,1,2 in [15, 44]. In general, in order to obtain an exact

result, we need to have a stability version of the almost tiling lemma or a stability version

of the absorbing lemma, together with an analysis of the 3-graphs that look like extremal

examples. In many cases, when analyzing extremal examples, we need to know ex1(n,K),

the vertex-degree Turán number for K, which is a challenging question in general. (The

generalized Turán number of exd(n, F ) of an r-graph F is the smallest integer t such that

every r-graph H of order n with δd(H) ≥ t+ 1 contains a copy of F .)

When proving the lower bound of Theorem 4.1, we introduced the covering barrier. In

general, given an r-graph F , let cd(n, F ) denote the minimum integer c such that every r-

graph H of order n with δd(H) ≥ c has the property that every vertex of H is covered by some

copy of F . When F is a graph, it is not hard to see that c1(n, F ) = (1−1/(χ(F )−1)+o(1))n:

the lower bound follows from the (χ(F )− 1)-partite Turán graph, and the upper bound can

be derived after applying the Regularity Lemma to V (H)\{v} for an arbitrary vertex v (see
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[?] for details). Given an r-graph F , trivially

exd(n, F ) < cd(n, F ) ≤ td(n, F ). (6.1)

We know that c1(n, F ) = ex1(n, F ) + o(n) for all 2-graphs F . Construction 4.9 and Lem-

ma 4.16 together show that c1(n,Ka,b,c) = (6 − 4
√

2 + o(1))
(
n
2

)
if 2 ≤ a ≤ b ≤ c, while

Theorem 4.1 shows that t1(n,Ka,b,c) = (6 − 4
√

2 + o(1))
(
n
2

)
for certain a, b, c (for example,

K2,3,6). This shows that the upper bound for cd(n, F ) in (6.1) could be asymptotically tight

as well. For small 3-graphs F , determining c2(n, F ) seems easier than determining ex2(n, F )

or t2(n, F ) (known as two difficult problems) – see [?] for recent progress.

Let us give the following constructions of space barriers for complete r-partite r-graph

tilings for arbitrary r.

Construction 6.1. Fix positive integers i < r and a1 ≤ · · · ≤ ar. Let s = a1 + · · ·+ ar and

Hi be an n-vertex r-graph with V (Hi) = Ai ∪Bi and |Ai| = (a1 + · · ·+ ai)n/s− 1 such that

E(Hi) consists of all r-tuples containing at least i vertices of Ai.

To see why Hi does not contain a Ka1,...,ar -factor, we observe that for each copy of

Ka1,...,ar , at least i color classes of it are subsets of Ai, and thus at least a1 + · · · + ai

vertices of it are in Ai. Since |Ai| < (a1 + · · · + ai)n/s, there is no Ka1,...,ar -factor of

Hi. Thus the minimum d-degree threshold for (almost) perfect Ka1,...,ar -tiling is at least

maxi∈[r−1] δd(Hi). Note that δd(Hr−d+1) = 0 since any d-set in Br−d+1 has degree zero. Thus,

maxi∈[r−1] δd(Hi) = maxi∈[r−d] δd(Hi). This means that there are r − d space barriers, e.g.,

there is only one construction for the (r − 1)-degree case, and there are two constructions

for the vertex degree threshold in 3-graphs.

Since our main idea of proving Lemma 4.2 (see also [43]) is to analyze the bipartite link

graph of any uncovered vertex on two existing copies of K in the partial tiling, new ideas

are needed to attack the general vertex degree tiling problem. On the other hand, this also

means that it is possible to extend our result to tiling r-partite r-graphs under minimum

(r − 2)-degree, provided a corresponding absorbing lemma.
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Another direction to strengthen the result of this paper is to study the minimum vertex

degree conditions for non-complete 3-partite 3-graphs. Clearly if F is a spanning subgraph of

Ka,b,c then t1(n, F ) ≤ t1(n,Ka,b,c). Note that there may be more than one choice of Ka,b,c that

contains F as a spanning subgraph. It seems not clear whether t1(n, F ) = min t1(n,Ka,b,c),

where the minimum is over all Ka,b,c that contain F as a spanning subgraph.
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[33] T Gowers. A new proof of szemerédi’s theorem. Geometric and Functional Analysis,

11(3):465–588, 2001.



101

[34] T. Gowers. Hypergraph regularity and the multidimensional szemerédi theorem. Annals
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[63] D. Kühn, D. Osthus, and A. Treglown. Matchings in 3-uniform hypergraphs. J. Combin.

Theory Ser. B, 103(2):291–305, 2013.
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