5 research outputs found

    The capacitated vehicle routing problem with soft time windows and stochastic travel times

    Get PDF
    A full multiobjective approach is employed in this paper to deal with a stochastic multiobjective capacitated vehicle routing problem (CVRP). In this version of the problem, the demand is considered to be deterministic, but the travel times are assumed to be stochastic. A soft time window is tied to every customer and there is a penalty for starting the service outside the time window. Two objectives are minimized, the total length and the time window penalty. The suggested solution method includes a non-dominated sorting genetic algorithm (NSGA) together with a variable neighborhood search (VNS) heuristic. It was tested on instances from the literature and compared to a previous solution approach. The suggested method is able to find solutions that dominate some of the previously best known stochastic multiobjective CVRP solutions

    Crossover vs. Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    Get PDF
    Since their first formulation, genetic algorithms (GA) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GA is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test

    Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    Get PDF
    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test
    corecore