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Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial
optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application
and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many
studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind
crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using
them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization
problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that
focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is
made, performing the normal distribution z-test.

1. Introduction

Genetic algorithms (GAs) are one of the most successful
metaheuristics for solving combinatorial optimization prob-
lems.Thanks to their easy application and good performance,
GAs have been used to solve many complex problems framed
in various fields, as, for example, transport [1, 2], software
engineering [3, 4], or industry [5, 6]. GAs were proposed
in 1975 by Holland [7], in an attempt to imitate the genetic
process of living organisms and the law of the evolution
of species. Anyway, their practical use to solve complex
optimization problems was shown later, by Goldberg [8] and
De Jong [9].

Throughout history, many researches have focused on the
study of genetic algorithms.These studies can be grouped into
3 different categories.

(i) Practical Applications of GAs. These studies focused
on the application of GAs for solving specific problems.
Among these three categories, this is the most common in
the literature. Two subcategories can be identified in this

first group of works: variations of a classic GA [10–12] or
hybridization of a GA with some other technique [13–15].

(ii) Development of New Operators. These researches present
new specific operators, such as crossover [16, 17] or mutation
functions [18, 19]. Normally, these operators are heuristic, and
they are applied to a particular problem, in which they get a
great performance.

(iii) Analysis of the Algorithm Behavior. These works focus
on the theoretical and practical analysis of GAs. This kind
of research analyzes, for example, behavioural characteristics
of the algorithm, as the convergence [20], or the efficiency
of certain phases of the algorithm, such as crossover [21, 22]
or mutation phases [23, 24], or the influence of adapting
some parameters, as the crossover and mutation probabil-
ity [25–27]. These works attempt to overcome the draw-
backs of traditional genetic algorithms and are the source
of new problem-solving techniques, such as the adaptive
genetic algorithms [28, 29] or the parallel genetic algorithms
[30, 31].
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In this paper a deep study on the influence of using
blind crossover operators in GAs for solving combinatorial
optimization problems is conducted. This study is developed
by means of a comparison between GAs with this kind of
operators and EAs based only on mutation operators. Thus,
this work could be framed into the third category. Previously,
other studies in the literature have had a similar purpose,
for example [32], where the authors tried to validate the
hypothesis that the crossover phase of genetic algorithms is
not efficient when it is applied to routing problems. In that
work, the authors develop several versions of the basic GA
with some blind crossover operators (e.g., order crossover
(OX) [33] or modified order crossover (MOX) [34]), and
they apply these techniques to the traveling salesmanproblem
[35]. Performances of these GAs are compared with the one
of an evolutionary algorithm (EA) based solely onmutations.
The comparison is based on the quality of the solution and
the runtime. Furthermore, the comparison also takes into
account the percentage of deviation from the average values
of each parameter.

On the other hand, in [22] the efficiency of six different
versions of the classic GA applied to the degree constrained
minimal spanning tree problem [36] is compared. Each
version has its own crossover function. In that work, the only
data shown for each version of the GA is the average value of
the results obtained, so, the comparison is performed based
only on this criterion. Moreover, the authors do not perform
the comparison of the results obtained by a conventional GA
and an EA. For this reason, with this study it is not possible
to quantify the real influence of the crossover phase in the
optimization capacity of a GA.

Together with the above studies, in the literature there are
many others that are not comparable with the study presented
in this paper. The main reason is that they are focused on
other types of problems [21] or because they analyzed only
the crossover process of a traditional GA [37–39].

The motivation of this work stems from the absence in
the literature of a study that proves objectively the efficiency
of using blind crossover operators in GAs for combinatorial
optimization problems. Although [32] focuses on this topic,
it is only applicable to routing problems, and it is only tested
with one problem, the TSP. In addition, the comparison of
the results done in [32] is not as deep as the one made in the
present work. On the other hand, as it has been mentioned,
the study presented in the abovementioned [22] is not truly
conclusive to prove the real influence of the crossover process
in a GA.

Therefore, the goal of this paper is to perform an objective
study on the efficiency of blind crossover operators in basic
GAs with respect to blindmutation operators in basic EAs. In
order to reach this goal, an exhaustive comparison between
different versions of genetic and evolutionary algorithms is
presented. This comparison includes the following criteria:
quality of the results, runtime, and convergence behavior of
each of the techniques reviewed. Furthermore, to perform a
reliable comparison of these results a statistical study ismade.
For this purpose, the normal distribution 𝑧-test is performed.
For the experimentation, four different problems have been
used: the traveling salesman problem (TSP), the capacitated

vehicle routing problem (CVRP) [40], the N-queens problem
(NQP), and the one-dimensional bin packing problem (BPP)
[41].

The rest of the paper is structured as follows. In Section 2
the description of the experimentation is presented. In
Section 3, the tests for the TSP are shown. After that,
the experiments performed with the CVRP (Section 4) are
displayed, followed by those conducted with the NQP and
BPP (Sections 5 and 6, resp.). Finally, thework is finishedwith
the conclusions of the study and further work (Section 7).

2. Description of the Experimentation

In this section a description of the experimentation is made.
First, in Section 2.1, the problems used for the tests are
introduced.Then, in Section 2.2, the details of the techniques
developed are described, including the functions of the
different steps of the algorithms. Finally, in Section 2.3 the
experimentation setup is presented.

2.1. Description of the Problems. For this study four different
combinatorial problems have been used. Two of them are
optimization problems of routing, the TSP and the CVRP.
In addition, to verify that the results of this study are valid
for other types of problems apart from the routing ones,
two constraint satisfaction problems have also been used in
the experimentation, the NQP and the BPP. These problems
were chosen because they are well known, and easy to
implement. In addition, they are easily replicable. In this way,
any researcher can perform these same tests, either to check
the results or to perform themwith other crossover functions
or different parameters.

The first problem used is the TSP. The TSP is one of
the most famous and widely studied problems throughout
history in operations research and computer science. It has
a great scientific interest, and it is used in a large number of
studies [42–44]. This problem can be defined on a complete
graph 𝐺 = (𝑉,𝐴) where 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} is the set

of vertexes which represents the nodes of the system, and
𝐴 = {(V

𝑖
, V
𝑗
) : V
𝑖
, V
𝑗

∈ 𝑉, 𝑖 ̸= 𝑗} is the set of arcs which
represents the interconnection between nodes. Each arc has
an associated distance cost 𝑑

𝑖𝑗
. The objective of the TSP is

to find a route that visits every customer once (and only
once), that is, a Hamiltonian cycle in the graph 𝐺, and that
minimizes the total distance traveled. In a formal way, the
TSP can be formulated as follows [45]:

Minimize𝑓 (𝑋) = ∑

𝑖=0

∑

𝑖 ̸=𝑗,𝑗=0

𝑑
𝑖𝑗
𝑥
𝑖𝑗
, ∀𝑖, 𝑗 ∈ 𝑉, (1)

where𝑥
𝑖𝑗
∈ {0, 1} , ∀ {𝑖, 𝑗} ∈ 𝐴, (2)

subject to constraints ∑

𝑖=0,𝑖 ̸=𝑗

𝑥
𝑖𝑗
= 1, ∀𝑗 ∈ 𝑉, (3)

∑

𝑗=0,𝑖 ̸=𝑗

𝑥
𝑖𝑗
= 1, ∀𝑖 ∈ 𝑉, (4)

∑

𝑖∈𝑆,𝑗∈𝑆,𝑖 ̸=𝑗

𝑥
𝑖𝑗
≥ 1, ∀𝑆 ⊂ 𝑉, (5)
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Figure 1: Example of TSP instance and possible solution.

where 𝑥
𝑖𝑗
in (2) a binary variable is 1 if the arc(𝑖, 𝑗) is used in

the solution. Furthermore,𝑉 is the set of nodes of the system
and𝑑
𝑖𝑗
is the distance between the nodes 𝑖 and 𝑗.The objective

function, (1), is the sum of all the arcs in the solution used;
that is, it is the total distance of the route. Constraints (3) and
(4) indicate that each node have to be visited and abandoned
only once, while the formula (5) guarantees the absence of
subtours and indicates that any subset of nodes 𝑆 has to be
abandoned at least 1 time. This restriction is vital, because it
avoids the presence of cycles.

Finally, all the solutions are encoded following the path
representation [46]. In this way, each individual𝑋 is encoded
by a permutation of numbers, which represents the path.
Figure 1(a) represents a possible 9-node instance of the TSP,
and Figure 1(b) represents a possible solution. This solution
would be encoded as𝑋 = (1, 2, 4, 6, 8, 9, 7, 5, 3), and its fitness
would be𝑓(𝑋) = 𝑑

12
+𝑑
24
+𝑑
46
+𝑑
68
+𝑑
89
+d
97
+𝑑
75
+𝑑
53
+𝑑
31
.

The second selected problem is the CVRP. Due to its
complexity and, above all, its applicability to real life, the
CVRP is also used inmany researches every year [47, 48]. For
the TSP, this problem can be defined on a complete graph.
In addition, the vertex V

0
represents the depot, and the rest

are the customers, each of them with a demand 𝑞
𝑖
. A fleet

of vehicles 𝐾 is available with a limited capacity 𝑄 for each
vehicle. The objective of the CVRP is to find a number of
routes with a minimum cost such that (i) each route starts
and ends at the depot, (ii) each client is visited exactly by one
route, and (iii) the total demand of the customers visited by
one route does not exceed the total capacity of the vehicle that
performs it [49].This problem could be formulated as follows
[40]:

Minimize 𝑓 (𝑋) = ∑

𝑖=0

∑

𝑖 ̸=𝑗,𝑗=0

𝑑
𝑖𝑗
𝑥
𝑖𝑗

∀𝑖, 𝑗 ∈ 𝑉, (6)

subject to constraints ∑

𝑖=0,𝑖 ̸=𝑗

𝑥
𝑖𝑗
= 1, ∀𝑗, (7)

∑

𝑗=0,𝑖 ̸=𝑗

𝑥
𝑖𝑗
= 1, ∀𝑖 ∈ 𝑉, (8)

∑

𝑖

𝑥
𝑖𝑗
≥ |𝑆| − V (𝑆) , {𝑆 : 𝑆 ⊆

𝑉

{1}

, |𝑆| ≥ 2} , (9)

∑

𝑖∈𝑆

𝑞
𝑖
𝑦
𝑟

𝑖
≤ 𝑄, ∀𝑟 ∈ 𝐾, (10)

where 𝑦
𝑟

𝑖
∈ {0, 1} , ∀𝑟 ∈ 𝐾, (11)

and 𝑥
𝑖𝑗
∈ {0, 1} , ∀ {𝑖, 𝑗} ∈ 𝐴; 𝑖 ̸= 𝑗. (12)

The formula (6) is the objective function, which is the
total distance traveled by all the routes. The variable (11) is a
binary variable which is 1 if the vehicle 𝑟 satisfies the demand
of the client 𝑖, and 0 otherwise. The binary variable (12) is 1
if the arc(𝑖, 𝑗) is used in the solution. Formulas (8) and (9)
ensure that every customer is visited by one route only and
exactly once. Finally, clause (9) serves to eliminate subtours,
where |𝑆| is the number of customers and 𝑟(𝑆) the minimum
number of vehicles to serve all. Finally, the restriction (10)
ensures that the sum of all the demands of a route does not
exceed the maximum vehicle capacity.

In the case of CVRP, the path representation is also used
for the individuals encoding [50]. In this case, the routes are
also represented as a permutation of nodes. To distinguish
the routes of one solution, they are separated by zeros. In
Figure 2(a) an example of a CVRP is shown. On the other
hand, in Figure 2(b) a solution composed by three different
routes is depicted. On this occasion, this solution would be
encoded as 𝑋 = (3, 1, 5, 0, 2, 4, 0, 7, 9, 8, 6), and its fitness
would be 𝑓(𝑋) = 𝑑

03
+𝑑
31

+𝑑
15

+𝑑
50

+𝑑
02

+𝑑
24

+𝑑
40

+𝑑
07

+

𝑑
79

+ 𝑑
98

+ 𝑑
86

+ 𝑑
60
.

The third problem is the NQP. This problem is a general-
ization of the problem of putting eight nonattacking queens
on a chessboard [51], which was introduced by Bezzel in 1848
[52]. The NQP consists of placing 𝑁 queens on a 𝑁 × 𝑁

chess board, in order that they cannot attack each other; that
is, on every row, column, and diagonal, only one queen can
be placed. This problem is a classical combinatorial design
problem (constraint satisfaction problem), which can also
be formulated as a combinatorial optimization problem [53].
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Figure 2: Example of CVRP instance and possible solution.

Although NQP is often used as benchmarking problem, it
has also some real applications [54]. In this study, NQP has
been formulated as a combinatorial optimization problem,
where a solution 𝑋 is coded as a 𝑁-tuple (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
),

which is a permutation of the 𝑁-tuple (1, 2, . . . , 𝑁). Each 𝑞
𝑖

represents the row occupied by the queen positioned in the
𝑖th column. Using this representation, vertical and horizontal
collisions are avoided. Thus, the fitness function is defined as
the number of diagonal collisions along the board. 𝑖th and 𝑗th
queens collide diagonally if





𝑖 − 𝑞
𝑖





=






𝑗 − 𝑞
𝑗







∀𝑖, 𝑗 : {1, 2, . . . , 𝑁} ; 𝑖 ̸= 𝑗. (13)

The objective is to minimize the number of conflicts,
being zero the ideal fitness. An example of an individual for
a 6-queens chess board could be seen in Figure 3. According
to the encoding explained, the individual represented in this
figure would be encoded as 𝑋 = (2, 1, 4, 6, 5, 3). In addition,
its fitness would be 3, since there are three diagonal collisions
(2-1, 1–4, and 6-5). This same formulation has been widely
used in the literature [55, 56].

Finally, the last used problem is the BPP. In distribution
and production, the fact of packing items into boxes or bins
is a daily task. Depending on the shape and size of the items,
as well as the form and capacity of bins, a wide amount of
different packing problems can be formulated. The BPP is
one of the simplest problems in this field [41, 57], and it is
frequently used in the literature as benchmarking problem
[58–60]. The BPP consists in a set of items 𝐼 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑛
},

each with an associated size 𝑠
𝑖
and an infinite number of bins

𝐵 of an equal capacity 𝑞. The objective of the BPP is to pack
all the items into a minimum number of bins. Therefore, the
objective function is the number of bins, which has to be

Figure 3: Example of a 6 × 6 instance for the NQP.

minimized. In this way, given 𝑛 items and 𝑛 bins, the BPP can
be formulated as follows:

Minimize 𝑓 (𝑋) =

𝑛

∑

𝑖=0

𝑦
𝑖
, (14)

subject to constraints
𝑛

∑

𝑖=0

𝑥
𝑖𝑗
= 1, ∀𝑗 ∈ {1, . . . , 𝑛} , (15)

𝑛

∑

𝑗=0

𝑠
𝑖
𝑥
𝑖𝑗
≤ 𝑞, ∀𝑖 ∈ {1, . . . , 𝑛} , (16)

where𝑦
𝑖
∈ {0, 1} , ∀𝑖 ∈ {1, . . . , 𝑛} , (17)

and𝑥
𝑖𝑗
∈ {0, 1} , ∀ {𝑖, 𝑗} ∈ {1, . . . , 𝑛} , (18)
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(1) Initialization of initial population
(2) repeat
(3) Parents selection process
(4) Crossover phase
(5) Mutation phase
(6) Survivor selection process
(7) until termination criterion reached;
(8) Return the fitness of the best individual found

Algorithm 1: Pseudocode of all the GAs.

where 𝑥
𝑖𝑗
in (18) is a binary variable which is 1 if item 𝑗 is put

in bin 𝑖, and 𝑦
𝑖
is a variable which is 1 if bin 𝑖 is used.

In this study, the solutions of this problem are encoded as
a permutation of items. To count the number of bins needed
for one solution, the size of the items is accumulated in a
variable, 𝑠𝑢𝑚𝑆𝑖𝑧𝑒. When 𝑠𝑢𝑚𝑆𝑖𝑧𝑒 exceeds 𝑞, the number
of bins is increased in 1, and 𝑠𝑢𝑚S𝑖𝑧𝑒 is restarted. For
example, in a simple instance of 10 items, every item 𝑖

𝑥
has

a 𝑠
𝑖
= 𝑥 and 𝑞 =15. One possible solution could be 𝑋 =

{(1, 3, 5)(7)(9, 2, 4)(6, 8)(10)}, and its fitness would be 5.

2.2. General Description of the Developed Techniques. For
the experiments, nine different techniques have been imple-
mented and compared. The first six techniques (GA

1
, GA
2
,

GA
3
, GA
4
, GA
5
, and GA

6
) are conventional GAs with

different configurations. The remaining three techniques are
EAs (EA

1
, EA
2
, and EA

3
). The structure used for both

GAs is represented in Algorithm 1, and it is considered the
conventional one. On the other hand, the flowchart of the
EAs is the same, eliminating the parent selection process and
crossover phase.

The parametrization of the GAs has been made based
on the concepts outlined in many previous studies [61–63].
According to these researches, the crossover is considered
the main operator of genetic algorithms, while the mutation
is a secondary operation. In this way, GA

1
and GA

2
have a

crossover probability (𝑝
𝑐
) of 90% and a mutation probability

(𝑝
𝑚
) of 10%. In addition, GA

3
and GA

4
have a 𝑝

𝑐
= 75%

and 𝑝
𝑚

= 25%. Finally, GA
5
and GA

6
have 𝑝

𝑐
= 50% and

𝑝
𝑚

= 50%. On the other hand, all the EAs have a 𝑝
𝑐

=

0% and a 𝑝
𝑚
of 100%. For GA

1
, GA
2
, and EA

1
, an initial

population composed by 50 randomly created individuals is
used. Additionally, for GA

3
, GA
4
, and EA

2
, the population

has 75 individuals. Finally, for GA
5
, GA
6
, and EA

3
, a popu-

lation composed by 100 random created individuals is used.
In relation to the parents selection criteria, the well-known
binary tournament criteria has been used. Regarding the
survivor function, it is 50% elitist-random (whichmeans that
half of the population is composed by the best individuals,
and the remaining ones are selected at random). About the
ending criteria, the execution of each technique finisheswhen
there are 𝑛 + ∑

𝑛

𝑘=1
𝑖 generations without improvements in

the best solution found, where 𝑛 is the size of the problem
instance.

To perform a rigorous comparison between differ-
ent techniques, it is appropriate to use neutral operators

throughout the implementation of them. In other words,
heuristic operators that use characteristics of the problem
and optimize by themselves have to be avoided. Otherwise,
by using heuristic operators, the optimization capacity of the
technique is influenced by the performance of these opera-
tors, and it could not be possible to determine, objectively,
which is the real efficiency of the metaheuristic. In this paper,
this good practice has been followed in order to make a fair
comparison.

With respect to TSP, the well-known 2-opt [64] and the
insertion function (IF) [65] have been used as mutation
function. The first one is a classic operator which randomly
selects two arcs of the solution.Then, these edges are removed
from the route, and two new arcs are created, avoiding
subtours. On the other hand, the second operator selects
and extracts one random node of a solution and inserts it
in another random position. Regarding crossover functions,
the OX [33], order based crossover (OBX) [66], MOX [34],
and the half crossover (HX) [67] have been used.These same
mutation and crossover functions have been used for the
NQP and BPP.

The OX builds the children by choosing a subroute of
one of the parents and maintaining the order of the nodes
of the remaining parents. First, two cut points are randomly
selected, identical for both parents, and the segments between
the cut points are preserved in the children. Then, starting
from the second breakpoint, the remaining nodes are inserted
in the same order they appear in the other parent (starting
also from the second cut point), considering that the nodes
that have already been inserted have to be omitted. When
the end of the string is reached, it continues through the
beginning of this. An example of this type of crossover could
be as follows:

𝑃
1
= (12345678) → 𝑃

1
= (12 | 345 | 678)

→ 𝑂
1
= (∗∗ | 345 | ∗ ∗ ∗) → 𝑂

1
= (87 | 345 | 126) ,

𝑃
2
= (24687531) → 𝑃

2
= (24 | 687 | 531)

→ 𝑂
2
= (∗ ∗ 687 ∗ ∗∗) → 𝑂

2
= (45687123) .

(19)

In the OBX, some random positions are selected in a
parent tour. The order of the nodes in the selected positions
is imposed on the other parent. For example, considering
the same parents (𝑃

1
and 𝑃

2
) and supposing that the second,

third, and sixth positions are selected, the nodes placed in
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these positions have to be inserted in the same order in the
corresponding offspring. In this case, in 𝑃

2
these nodes are 4,

6, and 5, and they have to be inserted in the first child in this
same order. The rest of the route remains in the same order
and position as in 𝑃

1
:

𝑃
1
= (12345678) → 𝑂

1
= (123 ∗ ∗ ∗ 78)

→ 𝑂
1
= (12346578) .

(20)

The other child would be the next one, considering that
the nodes in the second, third, and sixth positions of 𝑃 are 2,
3, and 6:

𝑃
2
= (24687531) → 𝑂

2
= (∗4 ∗ 875 ∗ 1)

→ 𝑂
2
= (24387561) .

(21)

In the case of MOX, a random cut point is selected. This
cutpoint divides each parent into two sections. The nodes
placed on the left part of the cut point impose their position
on the other parent. Then, the remaining nodes are inserted
in the children in the same order that they appear in the
other parent. An example of theworkingway of this crossover
function could be as follows:

𝑃
1
= (1234 | 5678) → 𝑂

1
= (∗2 ∗ 4 ∗ 6 ∗ 8)

→ 𝑂
1
= (72543618) ,

𝑃
2
= (2468 | 7531) → 𝑂

2
= (24 ∗ ∗ ∗ ∗31)

→ 𝑂
2
= (24567831) .

(22)

The HX is a particular case of the traditional crossover,
in which the cut point is made always in the middle of the
path. In this way, first, a cut is made in the central position of
the parents. Then, the order of nodes placed in the left part
remains in the same order in the offspring. The remaining
nodes are added in the same position that they can be found
in the other parent. An example of the HX could be shown as
follows:

𝑃
1
= (1234 | 5678) → 𝑂

1
= (1234 ∗ ∗ ∗ ∗)

→ 𝑂
1
= (12346875) ,

𝑃
2
= (2468 | 7531) → 𝑂

2
= (2468 ∗ ∗ ∗ ∗)

→ 𝑂
2
= (24681357) .

(23)

On the other hand, for CVRP, the implemented crossover
functions are the short route crossover (SRX), the random
route crossover (RRX), and the large route crossover (LRX).
These operators are a particular case of the traditional
crossover, in which the cut point ismade always in themiddle
of the chromosome. The operation of the first of them is the
following: first of all, half of the routes (the shortest ones)
of one of the parents is inserted in the child. After that, the
nodes already selected are removed from the other parent,
and the remaining nodes are inserted in the child in the same
order (taking into account the vehicle capacity). Assuming

a 17-node instance (including the depot), an example could
be the following:

𝑃
1
= (1, 2, 3, 4, 0, 9, 10, 11, 12, 0, 13, 14, 15, 16, 0, 5, 6, 7, 8) ,

𝑃
2
= (1, 12, 6, 3, 0, 2, 4, 7, 11, 0, 5, 14, 16, 9, 0, 8, 13, 10, 15) .

(24)

The resulting offprings could be as follows:

𝑂
1
= (1, 2, 3, 4, 0, 9, 10, 11, 12, 0, 6, 7, 5, 14, 0, 16, 8, 13, 15) ,

𝑂
2
= (1, 12, 6, 3, 0, 2, 4, 7, 11, 0, 9, 10, 13, 14, 0, 15, 16, 5, 8) .

(25)

RRX works similar to the SRX. In this case, the routes
selected in the first step of the process are selected randomly,
instead of choosing the best ones. Finally, in the case of
LRX, the selected routes are the longest ones. Regarding the
mutation functions for CVRP, the vertex insertion function
(VIF) and the swapping function (SF) have been used. The
first one selects one random node from one randomly chosen
route of the solution. This node is extracted and inserted
in another randomly selected route, respecting the capacity
constraints. On the other hand, in the swapping function two
nodes are selected at random from two random routes to
swap their positions, respecting also the capacity constraints.

In order to make the experimentation more under-
standable, Table 1 summarizes the characteristics of the nine
algorithms used for all the problems.

2.3. Experimentation Setup. In this section the common
aspects in all the experimentations are introduced. To begin
with, all GA

1
, GA
2
, and EA

1
were run on an Intel Core i5 2410

laptop, with 2.30GHz and a RAM of 4GB. The rest of the
techniques were executed on an Intel Core i7 3930 com-
puter, with 3.20GHz and a RAM of 16GB. Java was used
as programming language. For every problem 10 different
instances have been used, and for each of them 50 runs have
been executed. For each experimentation, the average results,
average runtime (in seconds), and convergence behaviour
of every technique are shown. In addition, the standard
deviation of each of them is also shown. Furthermore, for
every problem three different experimentations have been
performed. In each experimentation, the performance of
one EA is compared with the one of two different GAs.
The three experimentations differ in the configuration of the
techniques.

Additionally, in order to make a fair and rigorous com-
parison, the normal distribution 𝑧-test has been performed
for all experiments. Thanks to this statistical test, it can be
shown whether the differences in the results obtained by
each technique are significant or not. The 𝑧 statistic has the
following form:

𝑧 =

𝑋EA − 𝑋GA

√(𝜎EA/𝑛EA) + (𝜎GA/𝑛GA)
, (26)

where 𝑋EA is the average of an EA, 𝜎EA is the standard
deviation of an EA,𝑋GAis the average of the other technique,
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Table 1: Summary of the characteristics of all the techniques developed.

Alg. Pop. 𝑝
𝑐

𝑝
𝑚

Crossover function
(TSP, BPP, NQP)

Mutation function
(TSP, BPP, NQP)

Crossover function
(CVRP)

Mutation function
(CVRP)

GA
1

50 90% 10% OX 2-opt SRX VIF
GA
2

50 90% 10% OBX 2-opt RRX VIF
EA
1

50 0% 100% No cross. 2-opt No cross. VIF
GA
3

75 75% 25% HX IF LRX SF
GA
4

75 75% 25% MOX IF SRX SF
EA
2

75 0% 100% No cross. IF No cross. SF
GA
5

100 50% 50% OBX 2-opt RRX VIF
GA
6

100 50% 50% OX 2-opt LRX VIF
EA
3

100 0% 100% No cross. 2-opt No cross. VIF

𝜎GAis the standard deviation of the other technique, 𝑛EA is the
sample size for an EA, and 𝑛GA is the sample size for the other
technique.

The 𝑧 value can be positive (+), neutral (∗), or nega-
tive (−). The positive value of 𝑧 indicates that the EA is
significantly better. In the opposite case, the EA obtains
substantially worse solutions. If 𝑧 is neutral, the difference
is not significant. The confidence interval has been stated at
95% (𝑧

0.05
= 1.96). Besides showing the symbolic value of

𝑧, its numerical value is also displayed. Thus, the difference
in results may be seen more easily. Finally, as it has been
mentioned that the 𝑧-test has been performed for the results
quality, runtime, and convergence behaviour.

3. Experimentation with the TSP

In this section the experimentationwith the TSP is shown.All
the instances have been picked from the well-known TSPLIB
benchmark [68]. In Table 2 the results and average runtimes
can be found. On the other hand, in Table 3 the convergence
behaviour of each technique is displayed. For this purpose,
the average number of generations needed to reach the final
solution is used. In Table 4 the results of the 𝑧-test are shown.

Several conclusions can be drawn by analyzing the results
shown. First of all, looking at Table 2 it can be seen that,
for the three experimentations, all the EAs perform better
than the other two techniques in all the instances. According
to Table 4, in the first experimentation, these differences
are significant only in two cases compared to GA

1
. On the

other hand, these improvements are significant in all but
one instance respect to GA

2
. In the second experimentation,

the EA
2
gets significantly better results in all the instances

compared with the GA
3
and in nine instances (out of ten)

compared with GA
4
. Finally, for the last experimentation,

the EA
3
significantly outperforms GA

5
in the 100% of the

instances and in the 60% (6 out of 10) regarding GAV6.
For this reason, taking into account that EAs never gets
worse results than the other two alternatives in the three
experiments, the following conclusion can be stated.

Conclusion 1. According to the experimentation performed,
the use of blind crossover operators in genetic algorithms

does not offer significant improvements in the results for the
TSP.

This conclusion could be explained in the following
way. The main purpose of the crossover phase is to obtain
new individuals making combinations of the existing ones.
Although these operations were designed for the exploitation
of the solution space, several studies in the literature discuss
this fact [39, 63]. On the other hand, as it has been shown
in several works before [69, 70], blind crossovers between
different individuals can be useful to make large jumps
along the solution space. For this reason, blind crossover
operators applied to the TSP contribute to increase the
exploration capability of the algorithm, instead of helping the
exploitation.

This way, it could be said that, for the TSP, using blind
crossovers helps a broad exploration of the solution space
but does not help to make an exhaustive search of promising
regions. This is so because it is improbable that the resulting
offspring from blind crossovers can improve their parents.
In addition, this fact is accentuated when the execution is
near to the convergence. To get a deeper search, the existence
of a function that makes little jumps in the solution space
becomes necessary. The mutation function can handle this
goal, and it can also contribute to perform a broad search of
promising regions [71, 72]. Thus, an EA can conduct a deep
and wide search, obtaining similar (or better) results to the
GAs.

Regarding the runtimes, the EAs also outperform their
corresponding algorithms in all the instances and experi-
mentations. In addition, in this case these improvements are
significant in all of the cases. Besides this, the differences in
the runtimes become wider as the size of the instance grows.
This is particularly important in real-time applications, where
the runtime is a key factor. For these reasons, the following
conclusion can be deduced.

Conclusion 2. In relation to the experimentation performed,
the use of blind crossover operators increases significantly the
execution time of an evolutionary algorithm applied to the
TSP.

This difference in runtime between the GAs and the EAs
can be easily explained, in the same manner as explained
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Table 2: Results and runtimes of the nine techniques applied to the TSP. For each instance, the results, average runtime, and their standard
deviations are shown.

TSP GA
1

GA
2

EA
1

Instance Results Time (s) Results Time (s) Results Time (s)
Instance Optimum Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.
St70 675 711.1 25.5 8.9 2.3 714.4 18.3 4.6 1.3 705.0 13.9 1.5 0.5
Eilon75 535 574.7 11.8 12.2 3.1 580.9 14.0 7.5 2.2 570.1 10.9 2.2 0.6
Eil76 538 575.6 11.4 13.0 3.0 586.1 13.1 6.7 1.9 574.0 11.2 2.0 0.7
KroA100 21282 22129.5 557.5 22.5 6.0 22376.5 546.5 14.3 4.3 22117.0 454.2 3.9 0.8
KroB100 22140 23133.2 561.3 24.5 5.6 23332.5 420.9 13.1 4.0 23098.1 401.6 4.0 0.8
KroC100 20749 21822.5 706.7 21.1 3.4 21924.4 479.2 15.4 4.4 21642.5 544.7 4.1 1.2
KroD100 21294 22347.9 573.2 24.4 7.5 22550.2 463.5 15.9 5.2 22239.8 383.4 4.2 1.0
Eil101 629 680.1 11.3 42.6 9.9 685.8 13.2 22.8 6.5 680.0 9.2 4.4 0.9
Pr107 44303 46282.2 1528.9 36.4 13.7 46470.5 1401.2 23.1 7.9 45587.8 936.4 5.8 1.8
Pr124 59030 60407.6 722.2 47.0 11.0 60678.3 1170.1 26.4 6.5 60384.6 927.8 7.5 1.2

Instance GA
3

GA4 EA2

St70 675 744.6 21.9 3.6 1.1 725.2 20.5 3.4 0.8 713.0 10.9 0.5 0.1
Eilon75 535 604.2 26.6 4.6 1.1 603.9 16.5 4.9 1.2 579.6 14.1 0.7 0.1
Eil76 538 619.5 19.9 4.8 0.9 597.5 26.1 5.4 1.1 583.7 8.5 0.7 0.1
KroA100 21282 22416.4 518.4 13.3 3.0 22375.6 533.5 10.0 2.6 22202.0 539.4 1.7 0.3
KroB100 22140 23425.4 421.7 11.8 2.6 23542.6 612.1 10.1 1.9 23024.2 458.9 1.7 0.3
KroC100 20749 22304.0 634.9 11.8 2.5 22302.1 733.7 10.2 3.3 21539.1 468.3 1.8 0.3
KroD100 21294 22592.3 434.4 13.0 2.6 22797.8 629.6 8.9 2.1 22370.8 525.3 1.6 0.2
Eil101 629 718.9 17.6 16.4 3.7 712.7 15.3 17.7 3.9 687.4 11.1 1.6 0.3
Pr107 44303 46810.9 1100.7 17.1 3.1 46661.2 1242.7 13.2 3.4 45319.4 694.5 2.4 0.5
Pr124 59030 61421.5 1500.9 27.1 6.1 61148.1 1286.2 18.0 3.0 60380.6 669.8 3.6 0.5

Instance GA5 GA6 EA3

St70 675 716.1 19.8 2.8 0.6 712.4 11.6 4.9 1.0 705.3 10.3 1.3 0.2
Eilon75 535 582.8 11.9 4.0 1.1 576.2 9.9 7.7 1.5 569.0 7.4 1.9 0.6
Eil76 538 582.0 12.9 4.0 1.2 576.5 13.4 8.5 2.7 572.7 10.3 1.8 0.3
KroA100 21282 22366.4 522.9 5.5 1.5 22279.4 614.0 13.9 5.7 21838.6 294.3 3.6 0.6
KroB100 22140 23123.7 371.7 7.0 2.8 23134.9 375.8 12.7 3.9 22964.2 529.3 3.6 0.5
KroC100 20749 22005.9 584.2 6.0 1.8 21718.2 456.8 10.7 2.4 21468.0 400.8 3.8 0.8
KroD100 21294 22404.3 317.7 7.7 2.6 22163.7 356.9 13.3 4.2 22039.1 441.6 3.5 0.5
Eil101 629 696.9 16.3 11.4 2.1 689.5 12.1 24.6 5.1 675.3 9.8 4.3 0.6
Pr107 44303 46276.0 1153.6 10.5 4.2 45542.7 1053.5 25.5 9.4 45145.4 590.4 4.9 1.2
Pr124 59030 60450.1 675.1 13.7 3.2 60020.6 564.1 26.7 8.3 59962.0 740.7 6.9 0.9

in the previous works [28]: comparing the working way
of the crossover and mutation operators, the former are
complex operations in which two individuals combine their
characteristics. On the other hand, a mutation is a small
modification of a chromosome and requires considerably less
time than the previous ones. Thereby, the fact that an EA
substitutes the crossover phase in exchange for performing
more mutations is perfectly reflected in runtime, giving a
great advantage to an EA in this aspect.

Finally, if the data presented in Table 3 is analyzed; first,
it can be seen that both GA

1
and GA

2
present a better

convergence behaviour compared to EA
1
. More specifically,

GA
1
is better than EA

1
in the 80% of the cases and GA

2

in all but one. In addition, comparing with the EA
1
, these

differences are significantly better for the GA
1
in 60% of

the instances, while in 30% they are not significant. In

the remaining cases, the differences are substantially better
for the EA

1
. Regarding GA

2
, these data are, respectively,

60%, 40%, and 0%. Regarding the second experimentation,
GA
4
shows a significantly better convergence behaviour than

EA
2
in the 100% of the instances. On the other hand, the

GA
3
outperforms EA

2
in the 60% on the cases, with these

differences being significant in four instances (out of 10). By
the way, EA

2
significantly outperforms GA

3
in two instances.

Finally, regarding the last experimentation, the GA
5
and GA

6

present a substantially better convergence in the 90%and 80%
of the instances, respectively. In the remaining instances, the
EA
3
shows a nonsignificant better performance. Taken into

account all these data, the following conclusion can be drawn.

Conclusion 3. Considering these tests conducted for the
TSP, the algorithms that use blind crossover operators
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Table 3: Convergence behaviour of the nine techniques applied to the TSP.

TSP GA
1

GA
2

EA
1

Instance Avg. St.d. Avg. St.d. Avg. St.d.
St70 6093.1 1530.5 5590.7 2192.0 6162.6 1530.5
Eilon75 7920.3 2715.6 7279.4 2761.5 8439.5 5852.9
Eil76 8248.8 2663.1 6635.9 2481.2 7461.0 1900.5
KroA100 9568.5 3549.2 9980.5 3831.0 12345.7 2404.4
KroB100 10419.9 3158.8 10090.6 3655.4 13775.1 3594.4
KroC100 9224.9 3853.9 9686.7 3364.6 13614.0 3623.4
KroD100 9495.2 3736.6 9901.1 3919.0 13086.0 3855.8
Eil101 18646.2 5144.4 15209.5 5494.0 15003.4 3936.2
Pr107 13115.3 6858.9 12489.0 5737.5 18683.9 6795.6
Pr124 13662.3 4851.2 11033.7 4303.2 18917.7 4239.8
Instance GA

3
GA4 EA2

St70 4400.2 1446.8 2431.6 770.6 3895.7 677.8
Eilon75 4868.1 1342.0 3123.5 940.5 4575.0 4712.5
Eil76 4954.5 1098.8 3352.6 922.7 4712.5 1269.3
KroA100 8382.2 2206.6 7714.8 3258.0 8682.8 2441.2
KroB100 7341.8 1863.3 6516.6 2593.8 9087.0 1879.9
KroC100 8304.0 1034.9 3100.2 1299.2 9824.8 1881.3
KroD100 8183.0 1886.2 7005.9 2796.8 8798.4 1485.5
Eil101 10241.1 2563.7 7260.9 1876.6 8744.9 2062.3
Pr107 8986.3 2021.3 4540.6 1455.5 12741.4 3343.7
Pr124 11880.6 2304.7 9462.5 3687.2 15258.5 2877.1
Instance GA5 GA6 EA3

St70 4188.5 1503.2 4748.8 1500.6 6134.2 1136.0
Eilon75 5792.6 2290.8 7020.5 1952.7 8631.4 2727.7
Eil76 7618.1 2425.2 7637.6 3274.4 7521.0 2056.8
KroA100 3316.9 2245.0 7032.5 4883.1 11817.8 2574.5
KroB100 5491.8 4151.6 5950.4 3318.7 11619.8 2321.5
KroC100 3928.9 2597.3 4360.2 2136.4 12817.6 3363.8
KroD100 6494.7 3838.2 6484.9 3566.6 11216.1 2434.8
Eil101 10718.5 2877.3 14500.3 5100.6 14450.1 2938.9
Pr107 6753.0 4931.3 12775.2 11806.8 16436.2 5161.2
Pr124 6387.7 3342.2 8251.1 4914.7 18022.6 3610.0

demonstrate a better convergence behaviour, needing less
generations to find their final solution.

This improvement in the convergence behaviour can be
explained as follows. As mentioned above, blind crossover
operators can be a great help to make a broad exploration of
the solution space. Comparing with the mutation functions,
a blind crossover can make more sudden jumps in the
solution space. On the other hand, mutations are simple
operations which move along the solution space little by
little, conducting small jumps. For this reason and depending
on the problem complexity, with the crossover functions a
broader and faster exploration can be made, and the final
solution can be found in less generations.

Furthermore, as has been mentioned above, mutations
are an excellent option to explore the solution space. In
addition, as can be seen in the results shown in Table 2,
mutations can also take care of the exploitation capacity of

the technique. So, using them, similar (or better) solutions
can be found.

In conclusion, all the GAs converge faster than their
corresponding EA. Thus, comparing with the EAs, all the
versions of the GA need less generations to reach the
final solution. Anyway, this fact does not mean a better
performance. As can be seen in the results presented, the EAs
obtain similar or significantly better results for all the TSP
instances (needing a substantially smaller runtime).

4. Experimentation with the CVRP

In this section the experimentation with the CVRP is dis-
played. In this case, instances have been picked from the
CVRP set of Christofides and Eilon (http://neo.lcc.uma.es
/vrp (Last update: January 2013)). In Table 5 the results and
average runtime can be found. Moreover, the convergence
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Table 4: 𝑧-test for TSP. “+” indicates that EA is better. “−” depicts that it is worse. “∗” indicates that the difference between the two algorithms
is not significant (at 95% confidence level).

TSP EA1 versus GA1 EA1 versus GA2

Instance Results Convergence Time Results Convergence Time
St70 ∗ (1.46) ∗ (−0.19) + (21.61) + (4.76) ∗ (−1.51) + (14.99)
Eilon75 + (2.00) ∗ (−0.56) + (22.02) + (4.30) ∗ (−1.26) + (16.53)
Eil76 ∗ (0.69) ∗ (1.70) + (24.85) + (4.93) ∗ (−1.86) + (16.53)
KroA100 ∗ (0.12) − (−4.58) + (21.72) + (2.58) − (−3.69) + (16.48)
KroB100 ∗ (0.36) − (−4.95) + (25.63) + (2.84) − (−5.08) + (15.57)
KroC100 ∗ (1.42) − (−5.86) + (28.95) + (2.74) − (−5.61) + (17.57)
KroD100 ∗ (1.10) − (−4.72) + (18.89) + (3.64) − (−4.09) + (15.73)
Eil101 ∗ (0.05) + (3.97) + (26.94) + (2.56) ∗ (0.21) + (19.56)
Pr107 + (2.73) − (−4.07) + (15.56) + (3.70) − (−4.92) + (14.90)
Pr124 ∗ (0.13) − (−5.76) + (25.15) ∗ (1.39) − (−9.92) + (20.12)
Instance EA2 versus GA3 EA2 versus GA4

St70 + (9.13) + (2.23) + (25.43) + (3.71) − (−10.08) + (19.84)
Eilon75 + (5.77) ∗ (0.42) + (24.66) + (7.91) − (−2.13) + (24.96)
Eil76 + (11.61) ∗ (1.01) + (30.08) + (3.55) − (−6.12) + (32.01)
KroA100 + (2.02) ∗ (−0.64) + (22.42) ∗ (1.61) ∗ (−1.68) + (27.20)
KroB100 + (4.55) − (−4.66) + (30.87) + (4.55) − (−5.60) + (27.28)
KroC100 + (6.85) − (−5.00) + (17.92) + (6.19) − (−20.79) + (28.08)
KroD100 + (2.29) ∗ (−1.81) + (24.46) + (3.68) − (−4.00) + (30.91)
Eil101 + (10.70) + (3.10) + (29.10) + (9.46) − (−3.89) + (28.19)
Pr107 + (8.10) − (−6.76) + (22.22) + (6.66) − (−15.90) + (33.10)
Pr124 + (4.47) − (−6.47) + (33.47) + (3.74) − (−8.76) + (27.14)
Instance EA3 versus GA5 EA3 versus GA5

St70 + (3.42) − (−7.30) + (16.77) + (3.23) − (−5.20) + (24.96)
Eilon75 + (6.96) − (−5.63) + (11.85) + (4.11) − (−3.39) + (25.38)
Eil76 + (3.98) ∗ (0.21) + (12.57) ∗ (1.58) ∗ (0.21) + (17.43)
KroA100 + (6.21) − (−17.59) + (8.31) + (4.57) − (−6.12) + (12.7)
KroB100 + (1.74) − (−9.10) + (8.45) ∗ (1.85) − (−9.89) + (16.36)
KroC100 + (5.36) − (−14.78) + (7.89) + (2.91) − (−15.00) + (19.28)
KroD100 + (4.74) − (−7.34) + (11.21) ∗ (1.55) − (−7.74) + (16.38)
Eil101 + (8.03) − (−6.41) + (22.98) + (6.44) ∗ (0.06) + (27.85)
Pr107 + (6.16) − (−9.59) + (9.06) + (2.32) − (−2.00) + (15.37)
Pr124 + (3.44) − (−16.72) + (14.46) ∗ (0.44) − (−11.33) + (16.77)

behaviour is shown in Table 6. Finally, Table 7 displays the
statistical 𝑧-test performed for the CVRP.

The conclusions that can be drawn looking at these tables
are similar to thosementioned in the previous section. In this
case, regarding the quality of the results, and according to
the data shown in Table 5, EA

1
outperforms GA

1
in 80% of

the instances and GA
2
in all of them. In addition, looking

at Table 7 these improvements are significant in the 60% of
the cases compared to GA

1
. On the other hand, 30% the

differences are not significant, and in the remaining ones
EA
1
gets substantially worse results. Regarding GA

2
, these

percentages are, respectively, 90%, 10%, and 0%.
Furthermore, EA

2
performs better than GA

3
in the

90% of the instances and GA
4
in the 80%. In the case of

GA
3
, the EA

2
obtains significantly better results in nine

instances. In the remaining instance, GA
3
outperforms EA

2

but not substantially. Moreover, EA
2
improves significantly

GA
4
in the 50% of the instances. In addition, in the 40%

these improvements are not substantially. Additionally, in the
remaining instances, EA

2
gets significantly worse results.

Finally, regarding the third experimentation, EA
3
outper-

forms GA
5
and GA

6
in 80% of the cases. In addition, these

improvements are significant in the 60% of the instances
regarding both versions of the GAs. On the other hand, EA

3

gets worse results in the 20% of the instances in relation to
bothGAs, but these differences are not substantial in any case.

With all this, the following finding can be stated.
Conclusion 4. According to the tests conducted for theCVRP,
the use of blind crossover operators does not offer significant
improvements in the results.
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Table 5: Results and runtime of the nine techniques applied to the CVRP. For each instance, the results, average runtime, and their standard
deviations are shown.

CVRP GA1 GA2 EA1

Instance Results Time (s) Results Time (s) Results Time (s)
Instance Optimum Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.
En22k4 375 389.0 9.8 1.8 0.5 410.9 23.2 2.5 1.1 404.8 19.5 1.1 0.3
En23k3 569 622.7 28.9 2.1 0.9 629.9 41.6 2.3 1.0 602.7 30.8 1.6 0.6
En30k3 534 559.6 29.2 3.9 1.2 582.7 43.3 5.0 2.0 545.8 41.6 2.0 0.7
En33k4 835 907.4 31.9 6.0 1.8 932.8 30.6 7.0 2.3 911.9 24.9 2.2 0.7
En51k5 521 641.0 38.3 13.8 5.4 694.3 53.4 18.2 7.9 628.4 37.4 4.5 1.4
En76k7 682 850.0 45.7 44.4 16.4 899.5 63.3 55.1 16.5 822.3 42.9 10.0 3.3
En76k8 735 920.6 59.3 40.9 19.1 952.2 44.6 52.3 17.5 886.9 37.6 8.3 2.8
En76k14 1021 1186.9 35.6 33.4 14.0 1219.6 47.4 38.1 12.6 1171.0 36.2 6.5 2.2
En101k8 815 1061.4 54.8 107.5 33.9 1110.9 71.6 126.3 35.3 1016.7 49.9 15.7 5.1
Pr101k14 1071 1320.0 46.5 88.1 29.6 1370.7 73.1 114.9 34.3 1270.6 41.4 14.8 4.6

Instance GA3 GA4 EA2

En22k4 375 388.0 14.8 1.6 0.4 386.1 10.3 2.3 0.4 392.8 13.9 0.8 0.1
En23k3 569 622.5 31.1 2.7 1.1 615.7 37.9 2.5 1.2 601.8 38.4 0.9 0.2
En30k3 534 608.1 58.0 3.3 1.3 557.6 18.3 4.0 1.0 547.0 28.9 1.4 0.4
En33k4 835 917.0 24.9 3.4 1.3 901.3 29.2 3.1 1.0 903.4 23.7 1.2 0.4
En51k5 521 716.0 50.1 8.6 2.8 631.7 34.3 8.5 3.2 623.9 31.1 2.4 0.9
En76k7 682 847.8 48.5 35.1 13.5 835.4 56.3 26.0 10.8 809.6 40.8 4.8 1.5
En76k8 735 914.8 54.4 32.4 13.9 895.2 37.9 24.4 7.0 870.2 54.4 5.1 1.5
En76k14 1021 1198.9 46.1 24.3 8.7 1188.8 45.1 33.8 10.5 1167.9 28.8 4.5 1.9
En101k8 815 1034.2 57.8 86.9 24.3 1021.6 72.9 67.2 26.0 1007.0 49.4 8.0 2.1
Pr101k14 1071 1309.8 51.0 75.6 16.7 1288.5 45.3 59.3 25.0 1253.2 36.5 8.7 2.4

Instance GA5 GA6 EA3

En22k4 375 400.2 29.6 1.9 0.3 411.8 31.0 1.9 0.4 390.4 15.0 1.7 0.2
En23k3 569 604.2 37.8 2.9 0.8 608.9 32.8 2.9 1.2 613.5 40.9 2.1 0.8
En30k3 534 550.6 37.9 3.4 1.3 573.5 42.0 4.0 1.8 549.8 36.2 2.0 0.9
En33k4 835 914.9 33.3 3.8 1.4 904.8 24.7 3.9 1.4 901.2 24.8 1.6 0.3
En51k5 521 655.9 43.9 7.9 3.6 668.0 52.6 9.3 3.2 636.9 41.2 4.9 1.6
En76k7 682 833.1 42.0 23.2 8.1 821.8 38.5 28.8 9.5 815.2 29.2 7.7 3.7
En76k8 735 907.3 31.9 23.0 6.2 908.0 30.3 24.3 7.3 895.1 29.5 8.3 2.5
En76k14 1021 1188.3 43.8 19.0 8.3 1171.3 23.9 22.6 7.6 1178.1 32.5 7.5 3.0
En101k8 815 1001.4 57.2 71.9 23.9 1031.2 53.7 59.6 17.7 1006.9 57.7 14.1 4.8
Pr101k14 1071 1309.8 55.3 44.3 14.0 1320.0 47.2 48.2 19.2 1285.2 53.9 12.3 4.6

This conclusion can be explained in the same way
that Conclusion 1 was explained in Section 3. Regarding
the runtime, as in TSP, all the EAs need less time than
their corresponding GAs in all the instances, with these
improvements being significant in all of the cases for the
first two experimentations. In the third experimentation,
the differences are substantial in the 90% of the instances.
In addition, as in the previous problem, these differences
become higher as the size of the instance grows. For this
reason, the following conclusion can be deduced.
Conclusion 5. In the same way as with the TSP, the use
of crossover phase for the CVRP increases significantly the
execution time of an evolutionary algorithm.

The reasons of this increase in the runtime are the
same as those explained in the previous section for the TSP.

Anyway, regarding the convergence behaviour, the results
displayed in Table 6 are different in relation to the previously
studied problem. Analyzing these outcomes it can be
observed how the EAs show better convergence behaviour
in all the instances and experimentations. Additionally, these
improvements are significant in 80% of the cases compared
to GA

2
and GA

3
, in 70% regarding GA

2
, GA
4
, and GA

6
, and

in 60% compared to GA
5
. This means that the EAs reach

the final solution in less generations than the other alter-
natives. The following finding can be extracted from these
observations.

Conclusion 6. Contrary to what happens for the TSP and
according to the experimentation conducted, the use of
blind crossover operators does not improve the convergence
behaviour of an evolutionary algorithm applied to the CVRP.
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Table 6: Convergence behaviour of the nine techniques applied to the CVRP.

CVRP GA1 GA2 EA1

Instance Avg. St.d. Avg. St.d. Avg. St.d.
En22k4 3020.9 2216.7 5099.3 4273.6 2358.7 1874.9
En23k3 6717.1 5062.1 6162.3 4303.3 5813.9 3771.3
En30k3 9392.5 4583.3 9204.8 4963.3 7926.0 4872.9
En33k4 11042.1 4743.8 11628.4 5454.5 4614.0 3104.7
En51k5 15848.3 6991.7 18453.5 9183.2 10387.4 4816.7
En76k7 31420.8 13044.2 39220.3 14444.4 19357.7 7601.9
En76k8 27460.1 14326.1 36647.7 14385.6 16032.6 7197.8
En76k14 20042.1 10435.7 23084.1 8948.0 12133.8 6145.9
En101k8 51525.9 17393.5 55627.8 15426.4 25925.0 8783.4
Pr101k14 39834.9 14442.8 47396.1 14656.6 21276.6 6997.8
Instance GA3 GA4 EA2

En22k4 3227.0 2286.6 2551.0 1395.4 2352.9 1384.5
En23k3 8341.3 4495.1 5519.0 4585.9 4128.9 2740.6
En30k3 7837.7 5142.3 7806.9 3114.9 7668.0 3385.8
En33k4 6563.4 4333.6 6919.3 3760.7 4606.3 3169.3
En51k5 10472.0 5002.5 14226.3 7316.2 9727.1 5062.7
En76k7 27919.0 12521.7 25863.9 12369.9 19385.4 7286.1
En76k8 26178.2 13442.7 23249.8 7909.5 19027.0 7234.8
En76k14 16498.5 9190.2 16464.2 7082.0 11310.7 6886.4
En101k8 48219.9 15013.7 42115.4 17572.3 27595.8 8480.1
Pr101k14 38812.3 10129.9 33882.8 16091.8 23878.2 7960.6
Instance GA5 GA6 EA3

En22k4 2368.5 1464.5 2175.0 1989.2 1554.5 1313.2
En23k3 6543.4 4060.4 7632.6 5486.8 6300.8 2979.3
En30k3 8121.9 4806.2 8707.9 5987.3 7977.2 5820.4
En33k4 7586.2 4555.1 7107.0 4242.0 4942.9 1917.0
En51k5 10322.0 7118.3 11619.2 5673.0 9013.9 4690.5
En76k7 21857.2 8862.2 23312.1 9214.4 15688.0 9329.0
En76k8 19507.3 6989.5 19086.4 7402.4 14941.9 4849.8
En76k14 12945.4 7692.4 14955.9 6730.7 10477.0 5971.6
En101k8 44202.0 16688.4 42967.6 11510.6 27313.3 9049.3
Pr101k14 23547.1 9207.9 24205.8 12040.8 17700.1 7241.0

This change in the behavior of the EA compared to that
observed for the previous problems can be justified as follows.
Crossover operators are complex functions that combine the
characteristics of two individuals of the population. These
functions are easy to design and implement if the problem
has not many constraints (e.g., TSP and NQP). Anyway, if
the problem has a complex formulation or its restrictions
are numerous, the development of a crossover function can
be very hard. For this reason, many operators designed for
this type of problems include problem dependent heuristics
[73, 74], or they do not consider some of the constraints of the
problem [75, 76]. In any case, these operators are difficult to
implement and understand, and they increase considerably
the complexity of the algorithm and its runtime.

Thus, blind operators are rarely used in solving these
complex problems. In addition, their performance is usually
not good. An evidence of this last statement is shown in
this study: all GA techniques that prioritize the use of blind

crossover operators are outperformed by the technique that
gives more importance to the mutation phase, in terms of
exploration and exploitation.

5. Experimentation with the NQP

In this section the experimentation with the NQP is detailed.
The characteristics of the nine techniques implemented are
the same as the algorithms used for the TSP. In Table 8 the
results and average runtime can be found. The name of each
instance describes the number of queens and the size of the
chessboard. In this case, the optimum of each instance is
not shown, since it is known that it is 0 for all of them.
In addition, Table 9 displays the convergence behaviour of
each algorithm. On the other hand, the 𝑧-test made for this
problems is shown in Table 10.

The conclusions that can be drawn analyzing these tables
are similar to those obtained in previous sections. First
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Table 7: 𝑧-test for CVRP. “+” indicates that EA is better. “−” depicts that it is worse. “∗” indicates that the difference between the two
algorithms is not significant (at 95% confidence level).

CVRP EA1 versus GA1 EA1 versus GA2

Instance Results Convergence Time Results Convergence Time
En22k4 − (−5.09) ∗ (1.61) + (7.96) ∗ (1.41) + (4.15) + (8.64)
En23k3 + (3.35) ∗ (1.01) + (2.76) + (3.71) ∗ (0.43) + (3.99)
En30k3 ∗ (1.91) ∗ (1.55) + (9.45) + (4.33) ∗ (1.30) + (9.88)
En33k4 ∗ (−0.78) + (8.01) + (13.24) + (3.73) + (7.90) + (13.69)
En51k5 ∗ (1.65) + (4.54) + (11.63) + (7.14) + (5.50) + (12.09)
En76k7 + (3.12) + (5.64) + (14.47) + (7.14) + (8.60) + (18.90)
En76k8 + (3.42) + (5.03) + (11.89) + (7.90) + (9.06) + (17.45)
En76k14 + (2.20) + (4.61) + (13.36) + (5.76) + (7.13) + (17.44)
En101k8 + (4.26) + (9.29) + (18.86) + (7.63) + (11.83) + (21.88)
En101k14 + (5.60) + (8.17) + (17.26) + (8.42) + (11.37) + (20.43)
Instance EA2 versus GA3 EA2 versus GA4

En22k4 ∗ (−1.67) + (2.31) + (13.71) − (−2.73) ∗ (0.71) + (25.72)
En23k3 + (2.96) + (5.65) + (11.38) ∗ (1.83) ∗ (1.83) + (9.29)
En30k3 + (6.66) ∗ (0.19) + (9.87) + (2.19) ∗ (0.21) + (17.06)
En33k4 + (2.80) + (2.57) + (11.43) ∗ (−0.33) + (3.32) + (12.47)
En51k5 + (11.04) ∗ (0.74) + (14.90) ∗ (1.19) + (3.57) + (12.97)
En76k7 + (4.26) + (4.16) + (15.77) + (2.62) + (3.19) + (13.74)
En76k8 + (4.09) + (3.31) + (13.80) + (2.66) + (2.78) + (19.06)
En76k14 + (4.03) + (3.19) + (15.72) + (2.76) + (3.68) + (19.41)
En101k8 + (2.52) + (8.45) + (22.87) ∗ (1.17) + (5.26) + (16.04)
En101k14 + (6.38) + (8.19) + (28.03) + (4.29) + (3.94) + (14.24)
Instance EA3 versus GA5 EA3 versus GA6

En22k4 + (2.08) + (2.92) + (3.92) + (4.39) ∗ (1.84) + (3.16)
En23k3 ∗ (−1.18) ∗ (0.34) ∗ (1.87) ∗ (−0.62) ∗ (1.50) ∗ (1.47)
En30k3 ∗ (0.10) ∗ (0.13) + (6.26) + (3.02) ∗ (0.61) + (7.02)
En33k4 + (2.33) + (3.78) + (10.86) ∗ (0.72) + (3.28) + (11.35)
En51k5 + (2.23) ∗ (1.08) + (5.38) + (3.29) + (2.50) + (8.69)
En76k7 + (2.47) + (3.39) + (12.30) ∗ (0.96) + (4.11) + (14.63)
En76k8 + (1.98) + (3.79) + (15.54) + (2.15) + (3.31) + (14.66)
En76k14 ∗ (1.32) ∗ (1.79) + (9.21) ∗ (−1.19) + (3.51) + (13.06)
En101k8 ∗ (−0.47) + (6.29) + (16.76) + (2.17) + (7.56) + (17.54)
En101k14 + (2.25) + (3.52) + (15.35) + (3.44) + (3.27) + (12.85)

of all, as can be seen in Table 8, the EAs obtain better
results than their corresponding GAs in all but one of the
instances. In the remaining case (8-queens instance), they
get the same outcomes. In addition, these improvements are
significant in 90% of the instances compared to GA

1
, GA
2
,

GA
3
, GA
4
, and GA

6
, with the 8-queens instance being the

only where the differences are not significant. Additionally,
these improvements are substantial in the 80% of the cases
regarding GA

5
, being not significant in the remaining 20%.

For these reasons, Conclusions 1 and 4 are also applicable for
the NQP.

The same happens with runtime. The EAs are never
overcomed by any of the genetic algorithms used, obtain-
ing significantly better runtimes in 90% and 60% of cases
regarding GA

1
and GA

2
, in 80% of the instances compared

to GA
3
and GA

4
, and in 60% and 80% in relation to GA

5

andGA
6
, respectively.Therefore, Conclusions 2 and 5 are also

applicable for this problem.
Finally, regarding the convergence behaviour, the results

obtained are more similar to those seen for the TSP. Looking
at the data displayed in Table 8, the EA

1
has a better

convergence behaviour in 40% of the instances and the GA
1

and GA
2
in the other 60%. According to Table 10, comparing

to GA
1
, the differences in the results are significantly better

for the EA
1
in 20% of the instances and significantly worse

in 30% of them. In the remaining cases the differences are
not substantial. On the other hand, comparing to GA

2
, these

percentages are, respectively, 30%, 20%, and 50%.
Regarding the second experimentation, the EA

2
gets

a better convergence compared to GA
3
and GA

4
in the

40% of the instances. In the remaining 60%, the EA
2
has

been overcomed by at least one of the GAs. Regarding
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Table 8: Results and runtime of the nine techniques applied to the NQP. For each instance, the results, average runtime, and their standard
deviations are shown.

NQP GA1 GA2 EA1

Instance Results Time (s) Results Time (s) Results Time (s)
Instance Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.
8-queens 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.0
20-queens 1.6 0.8 0.1 0.1 1.5 0.7 0.1 0.1 0.8 0.5 0.1 0.0
50-queens 6.6 1.6 0.6 0.1 6.4 1.6 0.3 0.1 5.1 1.4 0.3 0.1
75-queens 13.7 2.2 0.8 0.3 13.1 2.5 0.7 0.4 9.2 2.3 0.6 0.1
100-queens 15.4 2.3 6.2 1.5 15.2 2.6 4.7 1.3 11.5 2.3 2.9 0.7
125-queens 25.5 3.4 5.2 1.5 24.3 3.6 3.9 1.2 17.0 3.1 3.6 0.8
150-queens 32.0 3.9 9.5 3.4 27.7 3.9 7.6 2.2 21.9 3.2 6.6 1.4
200-queens 43.2 5.9 69.9 7.9 38.2 4.5 38.0 8.1 26.6 3.9 32.5 7.9
250-queens 56.4 7.1 63.8 19.8 52.1 5.2 45.5 12.5 38.0 5.3 42.5 10.7
300-queens 69.9 7.9 123.3 41.3 65.2 6.5 109.5 25.6 45.6 5.3 94.6 19.3
Instance GA3 GA4 EA2

8-queens 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1
20-queens 1.4 1.0 0.1 0.1 1.3 0.8 0.1 0.1 0.8 0.6 0.1 0.1
50-queens 5.9 1.8 0.2 0.1 5.6 1.3 0.2 0.1 4.6 1.5 0.1 0.1
75- queens 10.9 2.1 0.7 0.1 10.0 2.5 0.8 0.1 8.7 1.6 0.5 0.1
100-queens 14.7 3.3 2.2 0.6 15.3 2.8 1.8 0.5 12.1 2.0 1.5 0.3
125-queens 19.8 2.9 4.2 1.1 18.3 2.7 4.8 1.1 17.2 2.5 3.1 0.5
150-queens 23.7 3.7 8.1 2.7 22.2 3.2 9.3 2.0 21.3 3.0 5.8 1.0
200-queens 33.3 4.4 26.7 7.2 30.4 4.3 27.1 6.1 26.9 4.8 18.7 4.0
250-queens 43.5 5.6 52.6 12.0 41.6 5.2 56.4 13.1 37.1 4.5 44.8 9.1
300-queens 57.8 5.7 98.6 33.6 50.4 6.5 118.6 28.5 45.9 4.9 77.6 19.7
Instance GA5 GA6 EA3

8-queens 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0
20-queens 1.3 0.6 0.1 0.1 1.1 0.5 0.1 0.1 0.8 0.6 0.1 0.1
50-queens 5.2 1.6 0.2 0.1 4.9 1.2 0.2 0.1 4.2 1.4 0.1 0.1
75-queens 10.0 2.0 0.9 0.1 8.7 1.9 0.8 0.1 7.6 2.3 0.6 0.1
100-queens 12.7 2.7 2.6 0.3 13.4 2.6 2.5 0.6 11.8 2.1 2.1 0.4
125-queens 17.8 2.1 6.3 0.9 15.6 3.1 5.1 1.0 14.4 2.7 4.7 1.0
150-queens 21.2 4.3 8.2 2.7 21.2 2.7 8.6 1.9 19.5 3.3 7.7 1.6
200-queens 30.3 3.5 28.6 3.9 30.5 3.8 25.8 5.3 27.0 4.2 22.9 5.0
250-queens 36.9 3.7 59.1 11.6 36.2 3.0 62.5 10.9 32.1 4.1 52.8 10.0
300-queens 46.7 7.0 93.5 21.9 46.9 4.6 111.3 27.2 42.5 6.6 89.7 16.8

the GA
3
, the differences are not significant in the 60% of

the cases. In addition, the EA
2
has showed a substantial

better convergence behaviour in 30% of the instances. In the
remaining 10% the GA

3
has significantly outperformed the

behaviour of EA
2
. On the other hand, compared to GA

4
,

these percentages are different, being 50%, 10%, and 40%,
respectively.

In relation to the third experimentation, the EA
3
has

shown a better convergence than GA
5
and GA

6
in the 20% of

the cases, being overcomed in the remaining 80%. Compared
to GA

5
, the difference in the behaviour is not significant

in the 70% of the cases. Furthermore, they are substantially
better for the GA in the remaining 30%. On the other
hand, the EA

3
has significantly improved the convergence

of GA
6
in the 10% of the instances. In addition, in the 40%

of the cases the differences are not substantial. Ultimately,
in the remaining 50%, GA

6
has shown a significant better

convergence behaviour.
For this reason, the following finding can be drawn.

Conclusion 7. According to the tests conducted, the use of
blind crossover operators in the development of genetic
algorithms for the NQP entails an improvement in the
convergence behavior of the technique.

The NQP is a problem with a simple formulation. For
this reason, the convergence behaviour of the GAs is much
better than the one shown for the CVRP, since the crossover
phase helps the exploration capacity of the technique. In this
way, the results obtained in this aspect are similar to those
obtained for the TSP.



The Scientific World Journal 15

Table 9: Convergence behaviour of the nine techniques applied to the NQP.

NQP GA1 GA2 EA1

Instance Avg. St.d. Avg. St.d. Avg. St.d.
8-queens 3.3 3.2 4.9 4.6 2.8 2.9
20-queens 36.9 26.2 37.9 28.3 39.1 21.8
50-queens 210.0 126.6 191.3 112.3 151.9 71.4
75-queens 183.4 98.8 195.6 93.5 224.8 89.0
100-queens 818.0 385.7 791.7 333.7 575.8 255.8
125-queens 589.1 202.6 599.7 217.8 578.9 173.9
150-queens 636.0 290.9 788.1 299.1 723.1 209.1
200-queens 1181.6 417.3 1560.7 563.6 1854.1 606.3
250-queens 1649.7 615.9 1717.2 564.3 1853.6 567.6
300-queens 2279.4 897.3 2402.7 843.5 2821.7 683.3
Instance GA3 GA4 EA2

8-queens 3.0 1.8 2.1 1.3 1.8 1.2
20-queens 18.5 10.3 18.2 8.9 23.9 10.9
50-queens 128.0 54.3 131.2 48.4 116.0 38.1
75-queens 207.4 82.0 176.6 65.7 210.7 74.3
100-queens 416.3 208.9 252.7 112.3 346.7 105.9
125-queens 511.7 187.0 451.1 151.0 462.4 105.8
150-queens 712.5 292.0 654.1 190.8 614.1 159.1
200-queens 1363.1 458.5 1351.0 345.4 1208.5 330.6
250-queens 1714.2 480.1 1461.5 433.2 1827.3 432.4
300-queens 2465.8 948.1 2222.1 636.2 2250.8 675.3
Instance GA5 GA6 EA3

8-queens 1.6 1.2 2.3 1.5 1.4 1.1
20-queens 21.2 9.1 21.7 6.8 21.1 10.8
50-queens 89.2 42.4 80.0 31.4 91.6 38.1
75-queens 154.3 65.1 159.0 55.3 172.3 65.8
100-queens 240.8 89.4 315.4 124.2 325.2 102.9
125-queens 329.8 98.8 420.3 127.1 569.5 145.9
150-queens 590.2 254.0 484.4 164.0 672.8 199.4
200-queens 847.0 237.5 903.6 250.1 1193.7 337.6
250-queens 1344.2 399.0 1491.5 329.7 1470.1 360.6
300-queens 1974.5 975.1 1829.6 567.3 2137.0 492.9

6. Experimentation with the BPP

In this section the experimentation with the BPP is shown.
The characteristics of the nine techniques developed are the
same as the ones used for the TSP. In Table 11 the results and
average runtime can be found. Each instance has been picked
from the Scholl/Klein benchmark (http://www.wiwi.uni-
jena.de/entscheidung/binpp/index.htm.). These cases are
named 𝑁𝑥𝐶𝑦𝑊𝑧 𝑎, where 𝑥 is 2 (100 items), 3 (200 items),
or 4 (500 items); 𝑦 is 1 (capacity of 100), 2 (capacity of 120),
and 3 (capacity of 150); 𝑧 is 1 (items size between 1 and
100) and 2 (items size between 20 and 100); 𝑎 is A or B as
benchmark indexing parameter. Additionally, Table 12 shows
the convergence behaviour of each technique. Furthermore,
the 𝑧-test made for the BPP is shown in Table 13.

The conclusions that can be obtained in this case are very
similar to those drawn for theNQP. As can be seen in Table 11,
the EAs obtain better or same (in two cases only) results in the

100% of the instances, being significantly better in the 90% of
the cases. Therefore, Conclusions 1 and 4 can be also applied
for this problem. Regarding runtimes, as already seen in
the previous experimentations, all the EAs outperform their
corresponding GAs. In this case, the EAs obtain significantly
better runtimes in the 100% of the instances. In this way,
Conclusions 2 and 5 are also valid for the BPP.

Concerning the convergence behavior, the results
obtained are similar to those obtained for the NQP. The EAs
have a better convergence in the 43.33% cases (13 out of 30),
while the GAs perform better in the remaining 56.67%. In
addition, comparing to GA

1
, the differences are significantly

better for the EA
1
in 10% (1 out of 10) of the cases and

significantly worse in 20% (2 out of 10). In the remaining 7
instances these differences are insignificant. Furthermore,
regarding GA

2
, these percentages are 30%, 0%, and 70%,

respectively. In relation to the second experimentation, the
EA
2
shows a substantial better behaviour in 10% of the
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Table 10: 𝑧-test forNQP. “+” indicates that EA is better. “−” depicts that it is worse. “∗” indicates that the difference between the two algorithms
is not significant (at 95% confidence level).

NQP EA1 versus GA1 EA1 versus GA2

Instance Results Convergence Time Results Convergence Time
8-queens ∗ (0.00) ∗ (0.80) ∗ (0.00) ∗ (1.41) + (2.70) ∗ (0.00)
20-queens + (5.08) ∗ (−0.57) + (15.00) + (5.07) ∗ (−0.75) + (6.32)
50-queens + (4.76) + (2.84) + (10.00) + (4.03) + (2.10) + (2.16)
75-queens + (9.60) − (−2.19) + (4.14) + (7.88) ∗ (−1.58) ∗ (1.06)
100-queens + (8.23) + (3.69) + (13.04) + (7.37) + (3.63) + (7.82)
125-queens + (12.98) ∗ (0.26) + (6.30) + (10.85) ∗ (0.52) ∗ (1.10)
150-queens + (13.86) ∗ (1.71) + (5.40) + (13.86) ∗ (1.25) + (2.61)
200-queens + (16.48) − (−6.45) + (23.56) + (13.64) − (−2.50) + (3.39)
250-queens + (14.54) ∗ (−1.72) + (6.67) + (14.54) ∗ (1.20) ∗ (1.29)
300-queens + (18.06) − (−3.39) + (4.44) + (16.47) − (−2.72) + (3.27)
Instance EA2 versus GA3 EA2 versus GA4

8-queens ∗ (0.00) + (3.92) ∗ (0.00) ∗ (0.00) ∗ (1.19) ∗ (0.00)
20-queens + (3.63) − (−2.54) ∗ (0.00) + (3.53) − (−2.81) ∗ (0.00)
50-queens + (3.93) ∗ (1.27) + (5.00) + (3.56) ∗ (1.74) + (5.00)
75-queens + (5.89) ∗ (−0.21) + (10.00) + (3.09) − (−2.43) + (15.00)
100-queens + (4.76) + (2.09) + (7.37) + (6.57) − (−4.30) + (3.63)
125-queens + (4.80) ∗ (1.61) + (6.43) + (2.11) ∗ (−0.43) + (9.94)
150-queens + (3.56) + (2.09) + (5.64) + (1.45) ∗ (1.13) + (11.06)
200-queens + (6.94) ∗ (1.93) + (6.86) + (3.84) + (2.10) + (8.14)
250-queens + (6.29) ∗ (−1.23) + (3.66) + (4.62) − (4.22) + (5.14)
300-queens + (11.19) ∗ (1.30) + (3.81) + (3.92) ∗ (−0.21) + (8.36)
Instance EA3 versus GA5 EA3 versus GA6

8-queens ∗ (0.00) ∗ (0.86) ∗ (0.00) ∗ (0.00) + (3.42) ∗ (0.00)
20-queens + (4.16) ∗ (0.05) ∗ (0.00) + (2.71) ∗ (0.33) ∗ (0.00)
50-queens + (3.32) ∗ (−0.29) + (5.00) + (2.68) ∗ (−1.66) + (5.00)
75-queens + (5.56) ∗ (−1.37) + (15.00) + (2.60) ∗ (−1.09) + (10.00)
100-queens ∗ (1.86) − (−4.37) + (7.07) + (3.38) − (−0.42) + (3.92)
125-queens + (7.02) − (−9.61) + (8.40) + (2.06) − (−5.45) + (2.00)
150-queens + (2.21) ∗ (−1.80) ∗ (1.12) + (2.81) − (−5.15) + (2.56)
200-queens + (4.26) − (−5.93) + (6.35) + (4.36) − (−4.88) + (2.81)
250-queens + (6.14) ∗ (−1.65) + (2.90) + (5.70) ∗ (0.30) + (4.63)
300-queens + (3.06) ∗ (−1.05) ∗ (0.97) + (3.86) − (−2.89) + (4.77)

instances and substantially worse behaviour in 25%. In the
rest of the instances, the differences are not substantial.
Finally, for the third experimentation these percentages are,
respectively, 20%, 40%, and 40%.Thereby, looking at Table 13
it can be said that Conclusion 7 is also applicable for the BPP.

7. Conclusions and Further Work

In this paper a study on the influence of using blind crossover
operators in genetic algorithms applied to combinatorial
optimization problem has been conducted. For this pur-
pose, four different well-known combinatorial optimization
problems have been used, the traveling salesman problem
(TSP), the capacitated vehicle routing problem (CVRP),
the N-queens problems (NQP), and the one-dimensional
bin packing problem (BPP). For each problem, 10 different
instances have been selected, making a total set of 40 cases.

In the experimentation done, the performance of six classic
genetic algorithms, each with a different crossover function,
has been compared with the one of the three evolutionary
algorithms.

In general, regarding the results, the EAs obtain better
results in 94.16% of the cases (113 out of 120). In addition,
comparing with the GA variants, these improvements are
significant in the 81.25%of the cases (195 out of 240). In 17.91%
of the cases (43 out of 240) these differences are insignificant,
and in the remaining 0.84% (2 out of 240) one GA obtains
substantially better results than its corresponding EA. For
these reasons, we have the following.
Conclusion 8. Regarding the results and applicability to the
experimentation performed, it is concluded that the use of
blind crossover operators in genetic algorithms for solving
combinatorial optimization problems provides no significant
improvement in the results.
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Table 11: Results and runtimes of the nine techniques applied to the BPP. For each instance, the results, average runtime, and their standard
deviations are shown.

BPP GA1 GA2 EA1

Instance Results Time (s) Results Time (s) Results Time (s)
Instance Optimum Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.
N2C1W1 A 48 53.4 0.7 0.35 0.12 53.7 0.7 0.08 0.03 53.1 0.7 0.02 0.01
N2C1W1 B 49 54.3 0.7 0.29 0.08 54.4 0.8 0.09 0.02 53.3 0.5 0.02 0.01
N3C2W2 A 107 121.4 1.5 1.84 0.33 121.8 1.4 0.47 0.16 120.2 1.3 0.07 0.02
N3C2W2 B 105 117.7 1.8 1.93 0.54 118.2 2.2 0.39 0.20 116.7 1.1 0.06 0.03
N3C3W1 A 66 73.9 0.8 1.48 0.42 73.6 0.8 0.42 0.18 73.2 0.9 0.07 0.03
N3C3W1 B 71 80.4 0.9 1.46 0.37 79.8 0.7 0.46 0.24 79.2 0.9 0.06 0.02
N4C1W1 A 240 277.9 2.4 7.79 2.90 275.4 2.4 5.84 1.85 273.4 1.7 0.37 0.12
N4C1W1 B 262 300.4 3.2 7.48 3.12 298.8 1.4 5.93 2.15 295.8 2.2 0.45 0.21
N4C1W1 C 241 277.9 2.6 7.67 2.69 276.8 2.7 6.15 2.05 273.6 1.6 0.49 0.18
N4C2W1 A 210 245.8 2.9 7.08 2.41 244.8 2.1 6.02 1.99 242.6 1.9 0.51 0.24

Instance GA3 GA4 EA2

N2C1W1 A 48 53.2 0.9 0.37 0.10 53.4 0.8 0.06 0.02 52.8 0.6 0.01 0.01
N2C1W1 B 49 54.0 0.5 0.25 0.12 54.1 0.7 0.08 0.02 53.5 0.6 0.01 0.01
N3C2W2 A 107 121.0 1.3 1.93 0.41 122.0 1.5 0.51 0.19 120.4 1.5 0.06 0.02
N3C2W2 B 105 117.4 1.5 2.12 0.77 117.9 1.9 0.40 0.22 116.8 1.0 0.05 0.01
N3C3W1 A 66 74.2 1.0 1.82 0.57 73.3 0.5 0.58 0.21 73.0 0.6 0.08 0.02
N3C3W1 B 71 80.1 0.7 1.39 0.28 79.5 1.1 0.49 0.32 78.9 1.0 0.06 0.03
N4C1W1 A 240 276.3 2.7 7.91 2.49 274.3 2.1 6.12 2.09 273.5 1.4 0.43 0.26
N4C1W1 B 262 299.8 3.4 8.27 3.93 299.4 1.8 6.29 2.77 295.3 2.0 0.51 0.28
N4C1W1 C 241 278.2 2.9 8.93 3.00 277.1 2.2 7.00 2.22 272.9 1.9 0.68 0.25
N4C2W1 A 210 245.2 3.1 8.11 2.91 245.1 2.1 5.99 2.42 242.9 2.1 0.89 0.32

Instance GA5 GA6 EA3

N2C1W1 A 48 52.9 0.8 0.41 0.09 52.7 0.9 0.21 0.12 52.7 0.6 0.02 0.01
N2C1W1 B 49 53.8 0.7 0.31 0.12 53.5 0.7 0.32 0.11 52.8 0.7 0.02 0.01
N3C2W2 A 107 119.2 1.1 1.95 0.77 120.1 1.6 1.84 0.70 118.9 1.1 0.08 0.03
N3C2W2 B 105 117.2 1.9 1.99 0.71 117.4 2.7 1.72 0.81 116.4 1.4 0.09 0.04
N3C3W1 A 66 73.8 0.7 2.11 0.70 72.8 0.9 2.21 1.00 72.8 0.7 0.10 0.03
N3C3W1 B 71 80.1 1.2 2.01 0.54 78.4 1.1 1.87 0.91 78.1 0.5 0.12 0.04
N4C1W1 A 240 278.1 2.8 7.89 2.71 276.0 2.8 6.84 2.08 273.5 1.9 0.47 0.12
N4C1W1 B 262 298.4 3.7 8.21 3.03 297.1 2.1 6.94 2.72 295.1 2.8 0.53 0.32
N4C1W1 C 241 277.1 2.2 9.00 3.09 275.9 2.4 8.95 2.71 273.0 2.1 0.81 0.37
N4C2W1 A 210 242.4 3.1 8.15 3.12 244.1 2.6 7.99 2.40 241.7 1.5 0.97 0.42

In relation to the runtime, the EAs need less time than
their corresponding GAs in all of the instances. In addition,
these improvements are substantial in 92.91%of the cases (223
out of 240). These data suggest the following finding.

Conclusion 9. In relation to runtime and according to the
experimentation performed, the use of blind crossover oper-
ators in genetic algorithms substantially increases the execu-
tion time of the technique, without providing an improve-
ment in results.

Regarding the convergence behaviour, the GAs show bet-
ter performance than the EAs.This means that they need less
generations/iterations to find their final solution. Anyway,
this fact does not entail better results, or less runtime, as
has been mentioned in Conclusions 8 and 9. What it really

involves is a greater exploration capacity of the technique.
Additionally, this fact is subject to the problem, that is, being
treated and being more effective if the problem has an easy
formulation. For the experimentation conducted, the EAs
show better convergence behaviour in 45.83% of the cases
(55 out of 120). Moreover, the statistical test conducted shows
that, for simple formulation problems (TSP, NQP, and BPP),
the EAs have a significantly better convergence in 12.77% (23
of 180) of the cases. On the other hand, in 41.66% (75 out
of 180) of the comparisons, the GAs are substantially better.
In the remaining 45.57% the differences are not remarkable.
For the CVRP, as has been seen in Section 4, the EAs show a
significantly better convergence in the 71.66% (43 out of 60)
of the cases. As a result of this, the following finding can be
deduced.
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Table 12: Convergence behaviour of the nine techniques applied to the BPP.

BPP GA1 GA2 EA1

Instance Avg. St.d. Avg. St.d. Avg. St.d.
N2C1W1 A 134.4 85.0 143.8 76.8 128.7 88.8
N2C1W1 B 64.8 24.6 112.8 81.4 86.9 34.7
N3C2W2 A 332.1 144.1 384.9 153.7 301.2 185.7
N3C2W2 B 356.4 116.7 345.1 128.0 314.8 111.0
N3C3W1 A 298.7 102.4 310.8 117.0 332.1 98.6
N3C3W1 B 366.0 176.8 410.2 218.4 385.8 158.4
N4C1W1 A 1542.3 312.7 1569.7 583.9 1328.6 586.9
N4C1W1 B 1663.4 497.8 1682.4 597.7 1538.7 486.8
N4C1W1 C 1364.8 599.4 1473.1 757.2 1499.4 584.7
N4C2W1 A 1340.0 573.0 1495.5 674.6 1616.4 473.5
Instance GA3 GA4 EA2

N2C1W1 A 151.7 80.8 132.2 81.2 112.7 90.7
N2C1W1 B 87.4 43.1 95.6 42.2 100.3 56.1
N3C2W2 A 232.7 101.8 299.4 81.4 285.7 91.3
N3C2W2 B 371.5 120.7 301.4 114.7 350.0 103.3
N3C3W1 A 312.8 136.9 358.7 136.2 299.5 77.0
N3C3W1 B 351.7 146.2 400.7 187.4 411.4 101.3
N4C1W1 A 1501.1 304.7 1499.0 608.9 1482.4 499.9
N4C1W1 B 1452.8 531.5 1577.3 519.0 1490.2 503.1
N4C1W1 C 1612.7 671.4 1579.0 676.3 1535.8 555.3
N4C2W1 A 1315.8 500.4 1399.4 741.2 1584.4 463.9
Instance GA5 GA6 EA3

N2C1W1 A 114.0 73.4 100.4 57.1 142.7 90.4
N2C1W1 B 81.4 21.1 71.8 27.4 95.7 43.8
N3C2W2 A 300.2 112.4 327.1 99.7 350.2 198.7
N3C2W2 B 376.4 132.4 355.4 140.5 299.4 134.5
N3C3W1 A 280.7 139.5 273.0 113.6 350.7 102.7
N3C3W1 B 481.8 241.5 451.9 223.4 371.4 188.0
N4C1W1 A 1427.0 299.9 1500.2 531.5 1286.7 499.7
N4C1W1 B 1701.8 513.8 1759.0 642.3 1612.0 500.1
N4C1W1 C 1310.8 524.3 1210.4 571.8 1571.0 611.4
N4C2W1 A 1274.0 497.9 1379.6 573.4 1527.1 511.7

Conclusion 10. Finally, regarding the convergence behaviour
and according to the experimentation performed, the study
concludes that the use of blind crossover operators in genetic
algorithms for solving combinatorial optimization prob-
lems with simple formulation entails a better convergence
behaviour of the technique, needing less generations to obtain
the final solution. Anyway, this fact does not mean better
results. On the other hand, for more complex problems, the
use of blind crossover operators does not imply a better
convergence behavior.

Finally, as a final conclusion of this work and based on
the findings that have been proposed along the paper, the
following assertion can be concluded.

Conclusion 11. Based on the experimentation performed, an
evolutionary algorithm (based only onmutation and survivor
selection functions) is more efficient than a classic genetic
algorithm to solve combinatorial optimization problems.

As a final comment, the authors of this study want to
clarify that they are aware that there is a large amount of
combinatorial optimization problems in the literature. In the
same way, there are a lot of blind crossover operators. For
these reasons, it could be pretentious to generalize the con-
clusions of this study to all the combinatorial optimization
problems. In this work, to perform the tests, four well-known
and widely used problems have been used. The goal of this
selection is to choose problems of different types and to
obtain conclusions as objective as possible. Following the
same philosophy, all the crossover operators that have been
used in this study have been previously applied in many
studies in the literature.Thereby, the authors of this study are
aware that the conclusions drawn are objective and rigorous,
but just for the conducted experimentation.

As future work and in order to verify the conclusions
of this study, it could be interesting to extend this work to
some other combinatorial optimization problems, such as
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Table 13: 𝑧-test for BPP. “+” indicates that EA is better. “−” depicts that it is worse. “∗” indicates that the difference between the two algorithms
is not significant (at 95% confidence level).

BPP EA1 versus GA1 EA1 versus GA2

Instance Results Convergence Time Results Convergence Time
N2C1W1 A + (2.14) ∗ (0.32) + (19.37) + (4.28) ∗ (0.90) + (13.41)
N2C1W1 B + (8.21) − (−3.67) + (23.68) + (8.24) + (2.06) + (22.13)
N3C2W2 A + (4.27) ∗ (0.92) + (37.85) + (5.92) + (2.45) + (17.54)
N3C2W2 B + (3.35) ∗ (1.82) + (24.44) + (5.95) ∗ (1.26) + (11.53)
N3C3W1 A + (4.11) ∗ (−1.66) + (23.67) + (2.34) ∗ (−0.98) + (13.56)
N3C3W1 B + (6.66) ∗ (−0.58) + (26.71) + (3.72) ∗ (0.63) + (11.74)
N4C1W1 A + (10.81) + (2.16) + (18.07) + (4.80) + (1.97) + (20.86)
N4C1W1 B + (8.37) ∗ (1.26) + (15.89) + (8.13) ∗ (1.31) + (17.93)
N4C1W1 C + (9.95) ∗ (−1.13) + (18.83) + (7.20) ∗ (−0.19) + (19.44)
N4C2W1 A + (6.52) − (−2.62) + (19.18) + (5.49) ∗ (−1.03) + (19.43)
Instance EA2 versus GA3 EA2 versus GA4

N2C1W1 A + (2.61) + (2.27) + (25.32) + (4.24) ∗ (1.16) + (15.81)
N2C1W1 B + (9.05) ∗ (−1.28) + (14.09) + (8.43) ∗ (−0.33) + (22.13)
N3C2W2 A + (2.13) − (−2.74) + (32.21) + (5.33) ∗ (0.54) + (16.65)
N3C2W2 B + (2.35) ∗ (0.95) + (19.00) + (3.62) − (−2.08) + (11.23)
N3C3W1 A + (7.27) ∗ (0.59) + (21.57) + (2.71) + (2.98) + (16.76)
N3C3W1 B + (6.95) − (−2.37) + (33.39) + (2.85) ∗ (−0.31) + (9.46)
N4C1W1 A + (6.50) ∗ (0.22) + (21.12) + (2.24) ∗ (0.15) + (19.10)
N4C1W1 B + (8.06) ∗ (−0.36) + (13.92) + (10.77) ∗ (0.78) + (14.67)
N4C1W1 C + (10.80) ∗ (0.62) + (19.37) + (10.21) ∗ (0.32) + (20.00)
N4C2W1 A + (4.34) − (−2.78) + (17.43) + (5.23) − (−1.97) + (14.77)
Instance EA3 versus GA5 EA3 versus GA6

N2C1W1 A ∗ (1.41) ∗ (−1.74) + (30.45) ∗ (0.00) − (−2.79) + (11.15)
N2C1W1 B + (7.14) − (−2.07) + (17.02) + (5.00) − (−3.27) + (19.20)
N3C2W2 A ∗ (1.36) ∗ (−1.54) + (17.15) + (4.37) ∗ (−0.73) + (17.76)
N3C2W2 B + (2.39) + (2.88) + (18.89) + (2.32) + (2.03) + (14.21)
N3C3W1 A + (7.14) − (−2.85) + (20.28) ∗ (0.00) − (3.58) + (14.91)
N3C3W1 B + (10.87) + (2.55) + (24.68) ∗ (1.75) ∗ (1.94) + (13.58)
N4C1W1 A + (9.61) ∗ (1.70) + (19.34) + (5.22) + (2.06) + (21.61)
N4C1W1 B + (5.02) ∗ (0.88) + (17.82) + (4.04) ∗ (1.27) + (16.54)
N4C1W1 C + (9.53) − (−2.28) + (18.60) + (6.43) − (−3.01) + (21.04)
N4C2W1 A ∗ (1.43) − (−2.50) + (16.12) + (5.65) ∗ (1.21) + (20.37)

the minimum spanning tree problem [77] or the job-shop
scheduling problem [78]. Furthermore, it may be worthwhile
to investigate whether these same findings are also applicable
to other types of optimization problems, such as continuous
optimization.
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