
Crossover vs. Mutation: A Comparative Analysis of the
Evolutionary Strategy of Genetic Algorithms Applied to

Combinatorial Optimization Problems

E. Osaba, R. Carballedo, F. Diaz, E. Onieva, I. de la Iglesia, A. Perallos

Deusto Institute of Technology (DeustoTech), University of Deusto,
Av. Universidades 24, Bilbao 48007, Spain

Abstract

Since their first formulation, genetic algorithms (GA) have been one of the most widely
used techniques to solve combinatorial optimization problems. The basic structure of
the GA is known by the scientific community, and thanks to their easy application and
good performance, GAs are the focus of a lot of research works annually. Although
throughout history there have been many studies analyzing various concepts of GAs, in
the literature there are few studies that analyze objectively the influence of using blind
crossover operators for combinatorial optimization problems. For this reason, in this
paper a deep study on the influence of using them is conducted. The study is based on
a comparison of nine techniques applied to four well-known combinatorial optimization
problems. Six of the techniques are GAs with different configurations, and the remaining
three are evolutionary algorithms that focus exclusively on the mutation process. Finally,
to perform a reliable comparison of these results, a statistical study of them is made,
performing the normal distribution z-test.

Keywords: Genetic Algorithm, Crossover Operator, Combinatorial optimization,
Routing Problems, N-Queens Problem, Bin Packing Problem

1. Introduction

Genetic Algorithms (GA) are one of the most successful meta-heuristics for solving
combinatorial optimization problems. Thanks to their easy application and good
performance, GAs have been used to solve many complex problems framed in various
fields, as for example transport [1, 2], software engineering [3, 4], or industry [5, 6]. GAs
were proposed in 1975 by Holland [7], in an attempt to imitate the genetic process of
living organisms, and the law of the evolution of species. Anyway, their practical use to
solve complex optimization problems was shown later, by Goldberg [8] and De Jong [9].

Email addresses: e.osaba@deusto.es (E. Osaba), roberto.carballedo@deusto.es (R.
Carballedo), fernando.diaz@deusto.es (F. Diaz), enrique.onieva@deusto.es (E. Onieva),
idoia.delaiglesia@deusto.es (I. de la Iglesia), perallos@deusto.es (A. Perallos)

Preprint submitted to The Scientific World Journal July 2, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357550331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Throughout history, many researches have been focused on the study of genetic
algorithms. These studies can be grouped into 3 different categories:

• Practical applications of GAs: These studies are focused on the application of
GAs for solving specific problems. Among these three categories, this is the most
common in the literature. Two subcategories can be identified in this first group of
works: variations of a classic GA [10, 11, 12] or hybridization of a GA with some
other technique [13, 14, 15].

• Development of new operators: These researches present new specific operators,
such as crossover [16, 17], or mutation functions [18, 19]. Normally, these operators
are heuristic, and they are applied to a particular problem, in which they get a
great performance.

• Analysis of the algorithm behaviour: These works focus on the theoretical and
practical analysis of GAs. This kind of research analyze, for example, behavioural
characteristics of the algorithm, as the convergence [20]; the efficiency of certain
phases of the algorithm, such as crossover [21, 22] or mutation phases [23, 24]; or the
influence of adapting some parameters, as the crossover and mutation probability
[25, 26, 27]. These works attempt to overcome the drawbacks of traditional genetic
algorithms, and are the source of new problem-solving techniques, such as: the
adaptive genetic algorithms [28, 29], or the parallel genetic algorithms [30, 31].

In this paper a deep study on the influence of using blind crossover operators in GAs
for solving combinatorial optimization problems is conducted. This study is developed
by means of a comparison between GAs with this kind of operators and EAs based
only on mutation operators. Thus, this work could be framed into the third category.
Previously, other studies in the literature have had a similar purpose, for example [32],
where the authors tried to validate the hypothesis that the crossover phase of genetic
algorithms is not efficient when it is applied to routing problems. In that work, the
authors develop several versions of the basic GA with some blind crossover operators
(for example, Order Crossover (OX) [33], or Modified Order Crossover (MOX) [34]), and
they apply these techniques to the Traveling Salesman Problem [35]. Performances of
these GAs are compared with the one of an evolutionary algorithm (EA) based solely
on mutations. The comparison is based on the quality of the solution and the runtime.
Furthermore, the comparison also takes into account the percentage of deviation from
the average values of each parameter.

On the other hand, in [22] the efficiency of six different versions of the classic GA
applied to the Degree Constrained Minimal Spanning Tree Problem [36] is compared.
Each version has its own crossover function. In that work, the only data shown for
each version of the GA is the average value of the results obtained, so, the comparison
is performed based only on this criterion. Moreover, the authors do not perform the
comparison of the results obtained by a conventional GA and an EA. For this reason,
with this study is not possible to quantify the real influence of the crossover phase in the
optimization capacity of a GA.

Together with the above studies, in literature there are many others that are not
comparable with the study presented in this paper. The main reason is that they are

2

focused on other types of problems [21], or because they analyzed only the crossover
process of a traditional GA [37, 38, 39].

The motivation of this work stems from the absence in the literature of a study
that proves objectively the efficiency of using blind crossover operators in GAs for
combinatorial optimization problems. Although [32] studies on this topic, it is only
applicable to routing problems, and it is only tested with one problem, the TSP. In
addition, the comparison of the results done in [32] is not as deep as the made in the
present work. On the other hand, as it has been mentioned, the study presented in the
above mentioned [22] is not truly conclusive to prove the real influence of the crossover
process in a GA.

Therefore, the goal of this paper is to perform an objective study on the efficiency
of blind crossover operators in basic GAs with respect to blind mutation operators in
basic EAs. In order to reach this goal, an exhaustive comparison between different
versions of genetic and evolutionary algorithms is presented. This comparison includes
the following criteria: quality of the results, runtime, and convergence behavior of each of
the techniques reviewed. Furthermore, to perform a reliable comparison of these results
a statistical study is made. For this purpose, the normal distribution z-test is performed.
For the experimentation, four different problems have been used: the Traveling Salesman
Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP) [40], the N-Queens
Problem (NQP), and the one-dimensional Bin Packing Problem (BPP) [41].

The rest of the paper is structured as follows. In Section 2 the description of the
experimentation is presented. In Section 3, the tests for the TSP are shown. After that,
the experiments performed with the CVRP (Section 4) are displayed, followed by those
conducted with the NQP, and BPP (Section 5 and Section 6, respectively). Finally, the
work is finished with the conclusions of the study and further work (Section 7).

2. Description of the experimentation

In this section a description of the experimentation is made. First, in Section 2.1,
the problems used for the tests are introduced. Then, in Section 2.2, the details of the
techniques developed are described, including the functions of the different steps of the
algorithms. Finally, in Section 2.3 the experimentation setup is presented.

2.1. Description of the problems

For this study four different combinatorial problems have been used. Two of them
are optimization problems of routing, the TSP, and the CVRP. In addition, to verify
that the results of this study are valid for other types of problems apart from the routing
ones, two constraint satisfaction problem has also been used in the experimentation,
the NQP and the BPP. These problems were chosen because they are well-known, easy
to implement and understand; and since they are easily replicable. In this way, any
researcher can perform these same tests, either to check the results, or to perform them
with other crossover functions, or different parameters.

The first problem used is the TSP. The TSP is one the most famous and widely studied
problems throughout history in operations research and computer science. It has a great
scientific interest, and it is used in a large number of studies [42, 43, 44]. This problem
can be defined on a complete graph G = (V,A) where V = {v1, v2, . . . , vn} is the set of

3

vertexes which represents the nodes of the system, and A = {(vi, vj) : vi, vj ∈ V, i 6= j}
is the set of arcs which represents the interconnection between nodes. Each arc has an
associated distance cost dij . The objective of the TSP is to find a route that visits every
customer once (and only once), that is, a Hamiltonian cycle in the graph G, and that
minimizes the total distance traveled. In a formal way, the TSP can be formulated as
follows [45]:

Minimize : f(X) =
∑
i=0

∑
i 6=j,j=0

dijxij ∀i, j ∈ V (1)

Where : xij ∈ {0, 1}, ∀{i, j} ∈ A (2)

Subject to constraints :
∑

i=0,i6=j

xij = 1, ∀j ∈ V (3)

∑
j=0,i6=j

xij = 1, ∀i ∈ V (4)

∑
i∈S,j∈S,i 6=j

xij ≥ 1, ∀S ⊂ V (5)

Being xij in Equation (2) a binary variable which is 1 if the arc (i, j) is used in the
solution. Furthermore, V is the set of nodes of the system and dij is the distance between
the nodes i and j. The objective function, (1), is the sum of all the arcs in the solution
used, i.e., it is the total distance of the route. Constraints (3) and (4) indicate that each
node has to be visited and abandoned only once, while the formula (5) guarantees the
absence of sub-tours and indicates that any subset of nodes S has to be abandoned at
least 1 time. This restriction is vital, because it avoids the presence of cycles.

Finally, all the solutions are encoded following the path representation [46]. In this
way, each individual X is encoded by a permutation of numbers, which represents the
path. In Figure 1.A can be seen a possible 9-node instance of the TSP, and in Figure
1.B a possible solution. This solution would be encoded as X = (1, 2, 4, 6, 8, 9, 7, 5, 3),
and its fitness would be f(X) = d12+d24+d46+d68+d89+d97+d75+d53+d31.

Figure 1: Example of TSP instance and possible solution

4

The second selected problem is the CVRP. Due to its complexity and, above all, its
applicability to real life, the CVRP is also used in many researches every year [47, 48].
The problem can be defined on a complete graph G = (V,A) where V = {v0, v1, . . . , vn}
is the set of vertexes and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the set of arcs. The vertex v0
represents the depot and the rest are the customers, each of them with a demand qi. A
fleet of vehicles K is available with a limited capacity Q for each vehicle. The objective
of the CVRP is to find a number of routes with a minimum cost such that i) each route
starts and ends at the depot, ii) each client is visited exactly by one route and iii) the
total demand of the customers visited by one route does not exceed the total capacity of
the vehicle that performs it [49]. This problem could be formulated as follows [40]:

Minimize : f(X) =
∑
i=0

∑
i 6=j,j=0

dijxij ∀i, j ∈ V (6)

Where : yri ∈ {0, 1}, ∀r ∈ K (7)

And : xij ∈ {0, 1}, ∀{i, j} ∈ A; i 6= j (8)

Subject to constraints :
∑

i=0,i6=j

xij = 1, ∀j (9)

∑
j=0,i6=j

xij = 1, ∀i ∈ V (10)

∑
i

xij ≥ |S| − v(S), {S : S ⊆ V/{1}, |S| ≥ 2} (11)

∑
i∈S

qiy
r
i ≤= Q, ∀r ∈ K (12)

The formula (6) is the objective function, which is the total distance traveled by all
the routes. The variable (7) is a binary variable which is 1 if the vehicle r satisfies the
demand of the client i, and 0 otherwise. The binary variable (8) is 1 if the arc (i, j) is
used in the solution. Formulas (10) and (11) ensure that every customer is visited by
one route only and exactly once. Finally, clause (11) serves to eliminate sub-tours, where
|S| is the number of customers and r(S) the minimum number of vehicles to serve all.
Finally, the restriction (12) ensures that the sum of all the demands of a route does not
exceed the maximum vehicle capacity.

In the case of CVRP, the path representation is also used for the individuals encoding
[50]. In this case, the routes are also represented as a permutation of nodes. To
distinguish the routes of one solution, they are separated by zeros. In Figure 2.A an
example of a CVRP is shown. On the other hand, in Figure 2.B a solution composed
by three different routes is depicted. On this occasion, this solution would be encoded
as X = (3, 1, 5,0, 2, 4,0, 7, 9, 8, 6), and its fitness would be f(X) = d03+d31+d15+d50+
d02+d24+ d40+d07+d79+d98+d86+d60.

The third problem is the NQP. This problem is a generalization of the problem of
putting eight non attacking queens on a chessboard [51], which was introduced by M.
Bezzel in 1848 [52]. The NQP consist of placing N queens on a NxN chess board, in order
that they cannot attack each other, i.e., on every row, column and diagonal, only one
queen can be placed. This problem is a classical combinatorial design problem (constraint

5

Figure 2: Example of CVRP instance and possible solution

satisfaction problem), which can also be formulated as a combinatorial optimization
problem [53]. Although NQP is often used as benchmarking problem, it has also some
real applications [54]. In this study, NQP has been formulated as a combinatorial
optimization problem, where a solution X is coded as a N -tuple (q1, q2, ..., qn), which
is a permutation of the N -tuple (1, 2, ..., N). Each qi represents the row occupied by the
queen positioned in the ith column. Using this representation, vertical and horizontal
collisions are avoided, and the complexity of the problem becomes O(N !). Thus, the
fitness function is defined as the number of diagonal collisions along the board. ith and
jth queens collide diagonally if:

|i− qi| = |j − qj | ∀i, j : {1, 2, ..., N}; i 6= j (13)

The objective is to minimize the number of conflicts, being zero the ideal fitness. An
example of an individual for a 6-queens chess board could be seen in Figure 3. According
to the encoding explained, the individual represented in this figure would be encoded as
f(X) = (2, 1, 4, 6, 5, 3). In addition, its fitness would be 3, since there are three diagonal
collisions (2-1, 1-4, and 6-5). This same formulation has been widely used in literature
[55, 56].

Figure 3: Example of a 6x6 instance for the NQP

Finally, the last used problem is the BPP. In distribution and production the fact
of packing items into boxes or bins is a daily task. Depending on the shape and size of
the items, as well as the form and capacity of bins, a wide amount of different packing

6

problems can be formulated. The BPP is the simplest problem in this field [41, 57], and
it is frequently used in the literature as benchmarking problem [58, 59, 60]. The BPP
consists in a set of items I = {i1, i2, . . . , in}, each with an associated size si, and an
infinite number of bins B of an equal capacity q. The objective of the BPP is to pack
all the items into a minimum number of bins. Therefore, the objective function is the
number of bins, which has to be minimized. In this way, given n items and n bins, the
BPP can be formulated as follows:

Minimize : f(X) =

n∑
i=0

yi (14)

Where : yi ∈ {0, 1}, ∀i ∈ {1, . . . , n} (15)

And : xij ∈ {0, 1}, ∀{i, j} ∈ {1, . . . , n} (16)

Subject to constraints :

n∑
i=0

xij = 1, ∀j ∈ {1, . . . , n} (17)

n∑
j=0

sixij ≤ q, ∀i ∈ {1, . . . , n} (18)

Being xij in Equation (15) a binary variable which is 1 if item j is put in bin i, and
yi a variable which is 1 if bin i is used.

In this study, the solutions of this problem are encoded as a permutation of items. To
count the number of bins needed for one solution, the size of the items is accumulated in
a variable, sumSize. When sumSize exceeds q, the number of bins is increased in 1, and
sumSize is restarted. For example, in a simple instance of 10 items, each one with a size
of 40, and q=120. One possible solution could be X = (i9, i6, i1, i2, i4, i10, i8, i3, i7, i5),
and its fitness would be 4.

2.2. General description of the developed techniques

For the experiments, nine different techniques have been implemented and compared.
The first six techniques (GAv1, GAv2, GAv3, GAv4, GAv5, and GAv6) are conventional
GAs with different configurations. The remaining three techniques are EAs (EAv1, EAv2,
and EAv3). The structure used for both GAs is the represented in Algorithm 1, and it
is considered the conventional one. On the other hand, the flowchart of the EAs is the
same, eliminating the parent selection process and crossover phase.

The parametrization of the GAs has been made based on the concepts outlined
in many previous studies [61, 62, 63]. According to these researches, the crossover is
considered the main operator of genetic algorithms, while the mutation is a secondary
operation. In this way, GAv1 and GAv2 have a crossover probability (pc) of 90%, and
a mutation probability (pm) of 10%. In addition, GAv3 and GAv4 have a pc = 75%
and pm = 25%. Finally, GAv5 and GAv6 have pc = 50% and pm = 50%. On the other
hand, all the EAs have a pc = 0% and a pm of 100%. For GAv1, GAv2 and EAv1,
a population composed by 50 randomly created individuals is used. Additionally, for
GAv3, GAv4, and EAv2, the population has 75 individuals generated randomly. Finally,
for GAv5, GAv6, and EAv3, a population composed by 100 random individuals is used.
In relation to the parents selection criteria, the well-known binary tournament has been

7

Algorithm 1: Pseudocode of both GAs

1 Initialization of initial population
2 repeat
3 Parents selection process
4 Crossover phase
5 Mutation phase
6 Survivor selection process

7 until termination criterion reached ;
8 Return the fitness of the best individual found

used. Regarding the survivor function, it is 50% elitist-random (which means that the
half of the population is composed by the best individuals, and the remaining ones are
selected randomly). About the ending criteria, the execution of each technique finishes
when there are n+

∑n
k=1 k generations without improvements in the best solution, where

n is the size of the problem.
In order to make a fair and rigorous comparison, the good practices proposed in [64]

have been followed to develop all the techniques. These practices dictate that to test
the ability of optimization of a meta-heuristic, and to perform a rigorous comparison
between different techniques, it is appropriate to use neutral operators throughout the
implementation of them. In other words, heuristic operators that use characteristics of
the problem and optimize by themselves have to be avoided. Otherwise, by using heuristic
operators, the optimization capacity of the technique is influenced by the performance
of these operators, and it could not be possible to determine, objectively, which is the
real efficiency of the meta-heuristic.

With respect to TSP, the well-known 2-opt [65], and the insertion function [66] have
been used as mutation function. The first one is a classic operator which selects randomly
two arcs of the solution. Then, these edges are removed from the route, and two new
arcs are created, avoiding subtours. On the other hand, the second operator selects,
and extracts one random node of a solution, and inserts it in another random position.
Regarding crossover functions, the OX [33], Order Based Crossover (OBX)[67], MOX [34],
and the Half Crossover (HX) [32] have been used. These same mutation and crossover
functions have been used for the NQP and BPP.

The OX builds the children by choosing a sub-route of one of the parents and
maintaining the order of the nodes of the remaining parent. First, two cut points are
randomly selected, identical for both parents, and the segments between the cut points
are preserved in the children. Then, starting from the second breakpoint, the remaining
nodes are inserted in the same order they appear in the other parent (starting also from
the second cut point), considering that the nodes that has already been inserted have to
be omitted. When the end of the string is reached, it continues through the beginning
of this. An example of this type of crossover could be as follows:

P = (12345678)→ P = (12|345|678)→ H1 = (∗ ∗ |345| ∗ ∗∗)→ H1 = (87|345|126)

M = (24687531)→M = (24|687|531)→ H2 = (∗ ∗ |687| ∗ ∗∗)→ H2 = (45|687|123)

8

In the OBX, some random positions are selected in a parent tour. The order of the
nodes in the selected positions is imposed on the other parent. For example, considering
the same parents (P and M), and supposing than the second, third, and sixth positions
are selected, the nodes placed in these positions have to be inserted in the same order
in the corresponding offspring. In this case, in M these nodes are 4, 6, and 5, and they
have to be inserted in the first child in this same order. The rest of the route remains in
the same order and position as in P .

P = (12345678)→ H1 = (123 ∗ ∗ ∗ 78)→ H1 = (12346578)

The other child would be the next one, considering that the nodes in the second,
third and sixth positions of P are 2, 3, and 6:

M = (24687531)→ H2 = (∗4 ∗ 875 ∗ 1)→ H2 = (24387561)

In the case of MOX, a random cut point is selected. This cutpoint divides each parent
into two sections. The nodes placed on the left part of the cut point impose their position
on the other parent. Then, the remaining nodes are inserted in the children in the same
order they appear in the other parent. An example of the working way of this crossover
function could be as follows:

P = (1234|5678)→ H1 = (∗2 ∗ 4 ∗ 6 ∗ 8)→ H1 = (72543618)

M = (2468|7531)→ H2 = (24 ∗ ∗ ∗ ∗31)→ H2 = (24567831)

The HX is a particular case of the traditional crossover, in which the cut point is
made always in the middle of the path. In this way, first, a cut is made in the central
position of the parents. Then, the order of nodes placed in the left part remains in the
same order in the offspring. The remaining nodes are added in the same position that
they can be found in the other parent. An example of the HX could be as shown below:

P = (1234|5678)→ H1 = (1234 ∗ ∗ ∗ ∗)→ H1 = (12346875)

M = (2468|7531)→ H2 = (2468 ∗ ∗ ∗ ∗)→ H2 = (24681357)

On the other hand, for CVRP, the implemented crossover functions are the Short
Route Crossover (SRX), the Random Route Crossover (RRX), and the Large Routes
Crossover (LRX). These operators are a particular case of the traditional crossover, in
which the cut point is made always in the middle of the chromosome. The operation
of the first of them is the following: first of all, half of the routes (the shortest ones)
of one of the parents are inserted in the child. After that, the nodes already selected
are removed from the other parent, and the remaining nodes are inserted in the child in
the same order (taking into account the vehicle capacity). Assuming a 17-node instance
(including the depot), an example could be the following:

P = (1, 2, 3, 4,0, 9, 10, 11, 12,0, 13, 14, 15, 16,0, 5, 6, 7, 8)
9

M = (1, 12, 6, 3,0, 2, 4, 7, 11,0, 5, 14, 16, 9,0, 8, 13, 10, 15)

The resulting offprings could be as follows:

H1 = (1, 2, 3, 4,0, 9, 10, 11, 12,0, 6, 7, 5, 14,0, 16, 8, 13, 15)

H2 = (1, 12, 6, 3,0, 2, 4, 7, 11,0, 9, 10, 13, 14,0, 15, 16, 5, 8)

RRX works similar to the SRX. In this case, the routes selected in the first step of
the process are selected randomly, instead of choosing the best ones. Ultimately, in the
case of LRX, the selected routes are the longest ones. Regarding the mutation functions
for CVRP, the Vertex Insertion Function and the Swapping function have been used.
The first one selects one random node from one randomly chosen route of the solution.
This node is extracted, and inserted in another randomly selected route, respecting the
capacity constraints. On the other hand, in the Swapping function two nodes are selected
at random from two random routes to swap their positions, respecting also the capacity
constraints. These functions have been used for the CVRP in some other works, such as
[68].

2.3. Experimentation setup

In this section the aspects common to all the experimentations are introduced. to
begin with, all GAv1,GAv2 and EAv1 were run on an Intel Core i5 2410 laptop, with
2.30 GHz and a RAM of 4 GB. The rest of the techniques were executed on an Intel Core
i7 3930 computer, with 3.20 GHz and a RAM of 16GB. Java was used as programming
language. For every problem 10 different instances have been used, and for each of them
50 runs have been executed. For each experimentation, the results, average runtime
(in seconds), and convergence behaviour of every technique are shown. In addition,
the standard deviation of each of them is also shown. In addition, for every problem
three different experimentations have been performed. In each experimentation, the
performance of one EA is compared with the one of two different GAs. The three
experimentations differ in the configuration of the techniques.

Additionally, in order to make a fair and rigorous comparison, the normal distribution
z-test has been performed for all experiments. Thanks to this statistical test, it can be
shown whether the differences in the results obtained by each technique are significant
or not. The z statistic has the following form:

z =
X1 −X2√
σ1

n1
+ σ2

n2

where:

X1: Average of an EA,
σ1: Standard deviation of an EA,
X2: Average of the other technique,
σ2: Standard deviation of the other technique,
n1: Sample size for an EA,
n2: Sample size for the other technique,

10

The z value can be positive (+), neutral (*), or negative (-). The positive value of
z indicates that the EA is significantly better. In the opposite case, the EA obtains
substantially worse solutions. If z is neutral, the difference is not significant. The
confidence interval has been stated at 95% (z0.05 = 1.96). Besides showing the symbolic
value of z (+, - , or *), its numerical value is also displayed. Thus, the difference in
results may be seen more easily. Finally, as it has been mentioned, the z-test has been
performed for the results quality, runtime and convergence behaviour.

3. Experimentation with the TSP

In this section the experimentation with the TSP is shown. All the instances have
been picked from the well-known TSPLIB benchmark [69]. In order to make this
experimentation more understandable, Table 1 summarizes the characteristics of the
nine algorithms used for the tests.

Alg. Population pc pm Crossover operator Mutation operator

GAv1 50 individuals 90% 10% OX 2-opt

GAv2 50 individuals 90% 10% OBX 2-opt

EAv1 50 individuals 0% 100% No crossover performed 2-opt

GAv3 75 individuals 75% 25% HX Insertion

GAv4 75 individuals 75% 25% MOX Insertion

EAv2 75 individuals 0% 100% No crossover performed Insertion

GAv5 100 individuals 50% 50% OBX 2-opt

GAv6 100 individuals 50% 50% OX 2-opt

EAv3 100 individuals 0% 100% No crossover performed 2-opt

Table 1: Summary of the characteristics of all the techniques developed for the TSP

In Table 2 the results and average runtimes can be found. On the other hand, in
Table 3 the convergence behaviour of each technique is displayed. For this purpose, the
average number of generations needed to reach the final solution is used. In Table 4 the
results of the z-test are shown.

Several conclusions can be drawn by analyzing the results shown. First of all, looking
at Table 2 it can be seen that, for the three experimentations, all the EAs performs better
than the other two techniques in all the instances. According to Table 4, in the first

11

TSP GAv1 GAv2 EAv1
Instance Results Time (s) Results Time (s) Results Time (s)

Instance Optimum Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.

St70 675 711.1 25.5 8.9 2.3 714.4 18.3 4.6 1.3 705.0 13.9 1.5 0.5

Eilon75 535 574.7 11.8 12.2 3.1 580.9 14.0 7.5 2.2 570.1 10.9 2.2 0.6

Eil76 538 575.6 11.4 13.0 3.0 586.1 13.1 6.7 1.9 574.0 11.2 2.0 0.7

KroA100 21282 22129.5 557.5 22.5 6.0 22376.5 546.5 14.3 4.3 22117.0 454.2 3.9 0.8

KroB100 22140 23133.2 561.3 24.5 5.6 23332.5 420.9 13.1 4.0 23098.1 401.6 4.0 0.8

KroC100 20749 21822.5 706.7 21.1 3.4 21924.4 479.2 15.4 4.4 21642.5 544.7 4.1 1.2

KroD100 21294 22347.9 573.2 24.4 7.5 22550.2 463.5 15.9 5.2 22239.8 383.4 4.2 1.0

Eil101 629 680.1 11.3 42.6 9.9 685.8 13.2 22.8 6.5 680.0 9.2 4.4 0.9

Pr107 44303 46282.2 1528.9 36.4 13.7 46470.5 1401.2 23.1 7.9 45587.8 936.4 5.8 1.8

Pr124 59030 60407.6 722.2 47.0 11.0 60678.3 1170.1 26.4 6.5 60384.6 927.8 7.5 1.2

Instance GAv3 GAv4 EAv2
St70 675 744.6 21.9 3.6 1.1 725.2 20.5 3.4 0.8 713.0 10.9 0.5 0.1

Eilon75 535 604.2 26.6 4.6 1.1 603.9 16.5 4.9 1.2 579.6 14.1 0.7 0.1

Eil76 538 619.5 19.9 4.8 0.9 597.5 26.1 5.4 1.1 583.7 8.5 0.7 0.1

KroA100 21282 22416.4 518.4 13.3 3.0 22375.6 533.5 10.0 2.6 22202.0 539.4 1.7 0.3

KroB100 22140 23425.4 421.7 11.8 2.6 23542.6 612.1 10.1 1.9 23024.2 458.9 1.7 0.3

KroC100 20749 22304.0 634.9 11.8 2.5 22302.1 733.7 10.2 3.3 21539.1 468.3 1.8 0.3

KroD100 21294 22592.3 434.4 13.0 2.6 22797.8 629.6 8.9 2.1 22370.8 525.3 1.6 0.2

Eil101 629 718.9 17.6 16.4 3.7 712.7 15.3 17.7 3.9 687.4 11.1 1.6 0.3

Pr107 44303 46810.9 1100.7 17.1 3.1 46661.2 1242.7 13.2 3.4 45319.4 694.5 2.4 0.5

Pr124 59030 61421.5 1500.9 27.1 6.1 61148.1 1286.2 18.0 3.0 60380.6 669.8 3.6 0.5

Instance GAv5 GAv6 EAv3
St70 675 716.1 19.8 2.8 0.6 712.4 11.6 4.9 1.0 705.3 10.3 1.3 0.2

Eilon75 535 582.8 11.9 4.0 1.1 576.2 9.9 7.7 1.5 569.0 7.4 1.9 0.6

Eil76 538 582.0 12.9 4.0 1.2 576.5 13.4 8.5 2.7 572.7 10.3 1.8 0.3

KroA100 21282 22366.4 522.9 5.5 1.5 22279.4 614.0 13.9 5.7 21838.6 294.3 3.6 0.6

KroB100 22140 23123.7 371.7 7.0 2.8 23134.9 375.8 12.7 3.9 22964.2 529.3 3.6 0.5

KroC100 20749 22005.9 584.2 6.0 1.8 21718.2 456.8 10.7 2.4 21468.0 400.8 3.8 0.8

KroD100 21294 22404.3 317.7 7.7 2.6 22163.7 356.9 13.3 4.2 22039.1 441.6 3.5 0.5

Eil101 629 696.9 16.3 11.4 2.1 689.5 12.1 24.6 5.1 675.3 9.8 4.3 0.6

Pr107 44303 46276.0 1153.6 10.5 4.2 45542.7 1053.5 25.5 9.4 45145.4 590.4 4.9 1.2

Pr124 59030 60450.1 675.1 13.7 3.2 60020.6 564.1 26.7 8.3 59962.0 740.7 6.9 0.9

Table 2: Results and runtimes of the nine techniques applied to the TSP. For each instance, the results,
average runtime, and their standar deviations are shown.

experimentation, these differences are significant only in two cases compared to GAv1.
On the other hand, these improvements are significant in all but one instances respect
to GAv2. In the second experimentation, the EAv2 gets significantly better results in all
the instances compared with the GAv3, and in nine instances (out of ten) compared with
GAv4. Finally, for the last experimentation, the EAv3 significantly outperforms GAv5 in
the 100% of the instances, and in the 60% (6 out of 10) regarding GAv6. For this reason,
taking into account that EAs never gets worse results than the other two alternatives in
the three experiments, the following conclusion can be stated:

• Conclusion 1: According to the experimentation performed, using blind crossover
operators in genetic algorithms does not offer significant improvements in the results
for the TSP.

This conclusion could be explained in the following way. The main purpose of the
12

TSP GAv1 GAv2 EAv1

Instance Avg. St.d. Avg. St.d. Avg. St.d.

St70 6093.1 1530.5 5590.7 2192.0 6162.6 1530.5

Eilon75 7920.3 2715.6 7279.4 2761.5 8439.5 5852.9

Eil76 8248.8 2663.1 6635.9 2481.2 7461.0 1900.5

KroA100 9568.5 3549.2 9980.5 3831.0 12345.7 2404.4

KroB100 10419.9 3158.8 10090.6 3655.4 13775.1 3594.4

KroC100 9224.9 3853.9 9686.7 3364.6 13614.0 3623.4

KroD100 9495.2 3736.6 9901.1 3919.0 13086.0 3855.8

Eil101 18646.2 5144.4 15209.5 5494.0 15003.4 3936.2

Pr107 13115.3 6858.9 12489.0 5737.5 18683.9 6795.6

Pr124 13662.3 4851.2 11033.7 4303.2 18917.7 4239.8

Instance GAv3 GAv4 EAv2
St70 4400.2 1446.8 2431.6 770.6 3895.7 677.8

Eilon75 4868.1 1342.0 3123.5 940.5 4575.0 4712.5

Eil76 4954.5 1098.8 3352.6 922.7 4712.5 1269.3

KroA100 8382.2 2206.6 7714.8 3258.0 8682.8 2441.2

KroB100 7341.8 1863.3 6516.6 2593.8 9087.0 1879.9

KroC100 8304.0 1034.9 3100.2 1299.2 9824.8 1881.3

KroD100 8183.0 1886.2 7005.9 2796.8 8798.4 1485.5

Eil101 10241.1 2563.7 7260.9 1876.6 8744.9 2062.3

Pr107 8986.3 2021.3 4540.6 1455.5 12741.4 3343.7

Pr124 11880.6 2304.7 9462.5 3687.2 15258.5 2877.1

Instance GAv5 GAv6 EAv3
St70 4188.5 1503.2 4748.8 1500.6 6134.2 1136.0

Eilon75 5792.6 2290.8 7020.5 1952.7 8631.4 2727.7

Eil76 7618.1 2425.2 7637.6 3274.4 7521.0 2056.8

KroA100 3316.9 2245.0 7032.5 4883.1 11817.8 2574.5

KroB100 5491.8 4151.6 5950.4 3318.7 11619.8 2321.5

KroC100 3928.9 2597.3 4360.2 2136.4 12817.6 3363.8

KroD100 6494.7 3838.2 6484.9 3566.6 11216.1 2434.8

Eil101 10718.5 2877.3 14500.3 5100.6 14450.1 2938.9

Pr107 6753.0 4931.3 12775.2 11806.8 16436.2 5161.2

Pr124 6387.7 3342.2 8251.1 4914.7 18022.6 3610.0

Table 3: Convergence behaviour of the nine techniques applied to the TSP.

crossover phase is to obtain new individuals making combinations of the existing ones.
Although these operations were designed for the exploitation of the solution space, several
studies in the literature discuss this fact [39, 70]. On the other hand, as it has been
shown in several works before [71, 72], blind crossovers between different individuals can
be useful to make large jumps along the solution space. For this reason, blind crossover
operators applied to the TSP contribute to increase the exploration capability of the
algorithm, instead of helping to the exploitation.

This way, it could be said that for the TSP, using blind crossovers helps a broad
exploration of the solution space, but does not help to make an exhaustive search of
promising regions. This is so because it is improbable that the resulting offspring from
blind crossovers can improve their parents. In addition, this fact is accentuated when the
execution is near to the convergence. To get a deeper search, the existence of a function
that makes little jumps in the solution space becomes necessary. The mutation function

13

TSP EAv1 vs. GAv1 EAv1 vs. GAv2
Instance Results Convergence Time Results Convergence Time
St70 * (1.46) * (-0.19) + (21.61) + (4.76) * (-1.51) + (14.99)
Eilon75 + (2.00) * (-0.56) + (22.02) + (4.30) * (-1.26) + (16.53)
Eil76 * (0.69) * (1.70) + (24.85) + (4.93) * (-1.86) + (16.53)
KroA100 * (0.12) - (-4.58) + (21.72) + (2.58) - (-3.69) + (16.48)
KroB100 * (0.36) - (-4.95) + (25.63) + (2.84) - (-5.08) + (15.57)
KroC100 * (1.42) - (-5.86) + (28.95) + (2.74) - (-5.61) + (17.57)
KroD100 * (1.10) - (-4.72) + (18.89) + (3.64) - (-4.09) + (15.73)
Eil101 * (0.05) + (3.97) + (26.94) + (2.56) * (0.21) + (19.56)
Pr107 + (2.73) - (-4.07) + (15.56) + (3.70) - (-4.92) + (14.90)
Pr124 * (0.13) - (-5.76) + (25.15) * (1.39) - (-9.92) + (20.12)

Instance EAv2 vs. GAv3 EAv2 vs. GAv4
St70 + (9.13) + (2.23) + (25.43) + (3.71) - (-10.08) + (19.84)
Eilon75 + (5.77) * (0.42) + (24.66) + (7.91) - (-2.13) + (24.96)
Eil76 + (11.61) * (1.01) + (30.08) + (3.55) - (-6.12) + (32.01)
KroA100 + (2.02) * (-0.64) + (22.42) * (1.61) * (-1.68) + (27.20)
KroB100 + (4.55) - (-4.66) + (30.87) + (4.55) - (-5.60) + (27.28)
KroC100 + (6.85) - (-5.00) + (17.92) + (6.19) - (-20.79) + (28.08)
KroD100 + (2.29) * (-1.81) + (24.46) + (3.68) - (-4.00) + (30.91)
Eil101 + (10.70) + (3.10) + (29.10) + (9.46) - (-3.89) + (28.19)
Pr107 + (8.10) - (-6.76) + (22.22) + (6.66) - (-15.90) + (33.10)
Pr124 + (4.47) - (-6.47) + (33.47) + (3.74) - (-8.76) + (27.14)

Instance EAv3 vs. GAv5 EAv3 vs. GAv5
St70 + (3.42) - (-7.30) + (16.77) + (3.23) - (-5.20) + (24.96)
Eilon75 + (6.96) - (-5.63) + (11.85) + (4.11) - (-3.39) + (25.38)
Eil76 + (3.98) * (0.21) + (12.57) * (1.58) * (0.21) + (17.43)
KroA100 + (6.21) - (-17.59) + (8.31) + (4.57) - (-6.12) + (12.7)
KroB100 + (1.74) - (-9.10) + (8.45) * (1.85) - (-9.89) + (16.36)
KroC100 + (5.36) - (-14.78) + (7.89) + (2.91) - (-15.00) + (19.28)
KroD100 + (4.74) - (-7.34) + (11.21) * (1.55) - (-7.74) + (16.38)
Eil101 + (8.03) - (-6.41) + (22.98) + (6.44) * (0.06) + (27.85)
Pr107 + (6.16) - (-9.59) + (9.06) + (2.32) - (-2.00) + (15.37)
Pr124 + (3.44) - (-16.72) + (14.46) * (0.44) - (-11.33) + (16.77)

Table 4: z-test for TSP. ’+’ indicates that EA is better. ’-’ depicts that it is worse. ’*’ indicates that
the difference between the two algorithms is not significant (at 95% confidence level)

can handle this goal, and it can also contribute to perform a broad search of promising
regions [73, 74]. Thus, an EA can conduct a deep and wide search, obtaining similar (or
better) results to the GAs.

Regarding the runtimes, the EAs also outperform their corresponding algorithms in
all the instances and experimentations. In addition, in this case these improvements are
significant in all of the cases. Besides this, the differences in the runtimes become wider
as the size of the instance grows. This is particularly important in real-time applications,
where the runtime is a key factor. For these reasons, the following conclusion can be
deduced:

• Conclusion 2: In relation to the experimentation performed, the use of blind
crossover operators increases significantly the execution time of an evolutionary
algorithm applied to the TSP.

This difference in runtime between the GAs and the EAs can be explained easily,
in the same manner as explained in previous works [28]: comparing the working way

14

of the crossover and mutation operators, the former are complex operations in which
two individuals combine their characteristics. On the other hand, a mutation is a small
modification of a chromosome, and requires considerably less time than the previous ones.
Thereby, the fact that an EA substitutes the crossover phase in exchange for performing
more mutations is perfectly reflected in runtime, giving a great advantage to an EA in
this aspect.

Finally, if the data presented in Table 3 is analyzed, first, it can be seen that both
GAv1 and GAv2 present a better convergence behaviour compared to EAv1. More
specifically, GAv1 is better than EAv1 in the 80% of the cases, and GAv2 in all but
one. In addition, comparing with the EAv1, these differences are significantly better for
the GAv1 in 60% of the instances, while in 30% are not significant. In the remaining
cases, the differences are substantially better for the EAv1. Regarding GAv2, these data
is, respectively, 60%, 40%, and 0%. Regarding the second experimentation, GAv4 shows
a significantly better convergence behaviour that EAv2 in the 100% of the instances.
On the other hand, the GAv3 outperforms EAv2 in the 60% on the cases, being these
differences significant in four instances (out of 10). By the way, EAv2 significantly
outperforms GAv3 in two instances. Finally, regarding the last experimentation, the
GAv5 and GAv6 present a substantially better convergence in the 90%, and 80% of the
instances, respectively. In the remaining instances, the EAv3 shows a non-significant
better performance. Taken into account all these data, the following conclusion can be
drawn:

• Conclusion 3: Considering these tests conducted for the TSP, the algorithms that
use blind crossover operators demonstrate a better convergence behaviour, needing
less generations to find their final solution.

This improvement in the convergence behaviour can be explained as follows. As
mentioned above, blind crossover operators can be a great help to make a broad
exploration of the solution space. Comparing with the mutation functions, a blind
crossover can make more sudden jumps in the solution space. On the other hand,
mutations are simple operations which move along the solution space little by little,
conducting small jumps. For this reason, and depending on the problem complexity,
with the crossover functions a broader and faster exploration can be made, and the final
solution can be found in less generations.

Furthermore, as has been mentioned above, mutations are an excellent option to
explore the solution space. In addition, as can be seen in the results shown in Table
2, mutations can also take care of the exploitation capacity of the technique. So, using
them, similar (or better) solutions can be found.

In conclusion, all the GAs converge faster than their corresponding EA. Thus,
comparing with the EAs, all the versions of the GA need less generations to reach the
final solution. Anyway, this fact does not mean a better performance. As can be seen in
the results presented, the EAs obtains similar, or significantly better results for all the
TSP instances (needing a substantially smaller runtime).

4. Experimentation with the CVRP

In this section the experimentation with the CVRP is displayed. In this case, instances
have been picked from the CVRP set of Christofides and Eilon (http://neo.lcc.uma.es/vrp

15

Alg. Population pc pm Crossover operator Mutation operator

GAv1 50 individuals 90% 10% SRX Vertex Insertion Function

GAv2 50 individuals 90% 10% RRX Vertex Insertion Function

EAv1 50 individuals 0% 100% No crossover performed Vertex Insertion Function

GAv3 75 individuals 75% 25% LRX Swapping Function

GAv4 75 individuals 75% 25% SRX Swapping Function

EAv2 75 individuals 0% 100% No crossover performed Swappingn Function

GAv5 100 individuals 50% 50% RRX Vertex Insertion Function

GAv6 100 individuals 50% 50% LRX Vertex Insertion Function

EAv3 100 individuals 0% 100% No crossover performed Vertex Insertion Function

Table 5: Summary of the characteristics of all the techniques developed for the CVRP

1). As in previous section, with the aim of making the experimentation more
understandable, Table 5 summarizes the characteristics of the nine algorithms developed.

In Table 6 the results and average runtime can be found. Moreover, the convergence
behaviour is shown in Table 7. Finally, Table 8 displays the statistical z-test performed
for the CVRP.

The conclusions that can be drawn looking at these tables are similar to those
mentioned in the previous section. In this case, regarding the quality of the results,
and according to the data shown in Table 6, EAv1 outperforms GAv1 in 80% of the
instances, and GAv2 in all of them. In addition, looking at Table 8 these improvements
are significant in the 60% of the cases compared to GAv1. On the other hand, in 30% the
differences are not significant, and in the remaining ones EAv1 gets substantially worse
results. Regarding GAv2, these percentages are, respectively, 90%, 10%, and 0%.

Furthermore, EAv2 performs better than GAv3 in the 90% of the instances, and GAv4
in the 80%. In the case of GAv3, the EAv2 obtains significantly better results in nine
instances. In the remaining instance, GAv3 outperforms EAv2 but not substantially.
Moreover, EAv2 improves significantly GAv4 in the 50% of the instances. In addition,
in the 40% these improvements are not substantially. Additionally, in the remaining
instances, EAv2 gets significantly worse results.

Finally, regarding the third experimentation, EAv3 outperforms GAv5 and GAv6 in
80% of the cases. In addition, these improvements are significant in the 60% of the
instances regarding both versions of the GAs. On the other hand, EAv3 gets worse

1Last update: January 2013

16

CVRP GAv1 GAv2 EAv1
Instance Results Time (s) Results Time (s) Results Time (s)

Instance Optimum Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.

En22k4 375 389.0 9.8 1.8 0.5 410.9 23.2 2.5 1.1 404.8 19.5 1.1 0.3

En23k3 569 622.7 28.9 2.1 0.9 629.9 41.6 2.3 1.0 602.7 30.8 1.6 0.6

En30k3 534* 559.6 29.2 3.9 1.2 582.7 43.3 5.0 2.0 545.8 41.6 2.0 0.7

En33k4 835 907.4 31.9 6.0 1.8 932.8 30.6 7.0 2.3 911.9 24.9 2.2 0.7

En51k5 521 641.0 38.3 13.8 5.4 694.3 53.4 18.2 7.9 628.4 37.4 4.5 1.4

En76k7 682 850.0 45.7 44.4 16.4 899.5 63.3 55.1 16.5 822.3 42.9 10.0 3.3

En76k8 735 920.6 59.3 40.9 19.1 952.2 44.6 52.3 17.5 886.9 37.6 8.3 2.8

En76k14 1021 1186.9 35.6 33.4 14.0 1219.6 47.4 38.1 12.6 1171.0 36.2 6.5 2.2

En101k8 815 1061.4 54.8 107.5 33.9 1110.9 71.6 126.3 35.3 1016.7 49.9 15.7 5.1

Pr101k14 1071 1320.0 46.5 88.1 29.6 1370.7 73.1 114.9 34.3 1270.6 41.4 14.8 4.6

Instance GAv3 GAv4 EAv2
En22k4 375 388.0 14.8 1.6 0.4 386.1 10.3 2.3 0.4 392.8 13.9 0.8 0.1

En23k3 569 622.5 31.1 2.7 1.1 615.7 37.9 2.5 1.2 601.8 38.4 0.9 0.2

En30k3 534* 608.1 58.0 3.3 1.3 557.6 18.3 4.0 1.0 547.0 28.9 1.4 0.4

En33k4 835 917.0 24.9 3.4 1.3 901.3 29.2 3.1 1.0 903.4 23.7 1.2 0.4

En51k5 521 716.0 50.1 8.6 2.8 631.7 34.3 8.5 3.2 623.9 31.1 2.4 0.9

En76k7 682 847.8 48.5 35.1 13.5 835.4 56.3 26.0 10.8 809.6 40.8 4.8 1.5

En76k8 735 914.8 54.4 32.4 13.9 895.2 37.9 24.4 7.0 870.2 54.4 5.1 1.5

En76k14 1021 1198.9 46.1 24.3 8.7 1188.8 45.1 33.8 10.5 1167.9 28.8 4.5 1.9

En101k8 815 1034.2 57.8 86.9 24.3 1021.6 72.9 67.2 26.0 1007.0 49.4 8.0 2.1

Pr101k14 1071 1309.8 51.0 75.6 16.7 1288.5 45.3 59.3 25.0 1253.2 36.5 8.7 2.4

Instance GAv5 GAv6 EAv3
En22k4 375 400.2 29.6 1.9 0.3 411.8 31.0 1.9 0.4 390.4 15.0 1.7 0.2

En23k3 569 604.2 37.8 2.9 0.8 608.9 32.8 2.9 1.2 613.5 40.9 2.1 0.8

En30k3 534* 550.6 37.9 3.4 1.3 573.5 42.0 4.0 1.8 549.8 36.2 2.0 0.9

En33k4 835 914.9 33.3 3.8 1.4 904.8 24.7 3.9 1.4 901.2 24.8 1.6 0.3

En51k5 521 655.9.6 43.9 7.9 3.6 668.0 52.6 9.3 3.2 636.9 41.2 4.9 1.6

En76k7 682 833.1 42.0 23.2 8.1 821.8 38.5 28.8 9.5 815.2 29.2 7.7 3.7

En76k8 735 907.3 31.9 23.0 6.2 908.0 30.3 24.3 7.3 895.1 29.5 8.3 2.5

En76k14 1021 1188.3 43.8 19.0 8.3 1171.3 23.9 22.6 7.6 1178.1 32.5 7.5 3.0

En101k8 815 1001.4 57.2 71.9 23.9 1031.2 53.7 59.6 17.7 1006.9 57.7 14.1 4.8

Pr101k14 1071 1309.8 55.3 44.3 14.0 1320.0 47.2 48.2 19.2 1285.2 53.9 12.3 4.6

Table 6: Results and runtime of the nine techniques applied to the CVRP. For each instance, the results,
average runtime, and their standar deviations are shown. *For En30k3, 534 has been used as best
solution, instead of 503, according to the study made in [75]

results in the 20% of the instances in relation to both GAs, but this differences are not
substantial in any case.

With all this, the following finding can be stated:

• Conclusion 4: According to the tests conducted for the CVRP, the use of blind
crossover operators does not offer significant improvements in the results.

This conclusion can be explained in the same way that Conclusion 1 was explained
in Section 3. Regarding the runtime, as in TSP, all the EAs need less time than their
corresponding GAs in all the instances, being these improvements significant in all of the
cases for the first two experimentations. In the third experimentation, the differences are
substantial in the 90% of the instances. In addition, as in the previous problem, these
differences become higher as the size of the instance grows. For this reason, the following

17

CVRP GAv1 GAv2 EAv1

Instance Avg. St.d. Avg. St.d. Avg. St.d.

En22k4 3020.9 2216.7 5099.3 4273.6 2358.7 1874.9

En23k3 6717.1 5062.1 6162.3 4303.3 5813.9 3771.3

En30k3 9392.5 4583.3 9204.8 4963.3 7926.0 4872.9

En33k4 11042.1 4743.8 11628.4 5454.5 4614.0 3104.7

En51k5 15848.3 6991.7 18453.5 9183.2 10387.4 4816.7

En76k7 31420.8 13044.2 39220.3 14444.4 19357.7 7601.9

En76k8 27460.1 14326.1 36647.7 14385.6 16032.6 7197.8

En76k14 20042.1 10435.7 23084.1 8948.0 12133.8 6145.9

En101k8 51525.9 17393.5 55627.8 15426.4 25925.0 8783.4

Pr101k14 39834.9 14442.8 47396.1 14656.6 21276.6 6997.8

Instance GAv3 GAv4 EAv2
En22k4 3227.0 2286.6 2551.0 1395.4 2352.9 1384.5

En23k3 8341.3 4495.1 5519.0 4585.9 4128.9 2740.6

En30k3 7837.7 5142.3 7806.9 3114.9 7668.0 3385.8

En33k4 6563.4 4333.6 6919.3 3760.7 4606.3 3169.3

En51k5 10472.0 5002.5 14226.3 7316.2 9727.1 5062.7

En76k7 27919.0 12521.7 25863.9 12369.9 19385.4 7286.1

En76k8 26178.2 13442.7 23249.8 7909.5 19027.0 7234.8

En76k14 16498.5 9190.2 16464.2 7082.0 11310.7 6886.4

En101k8 48219.9 15013.7 42115.4 17572.3 27595.8 8480.1

Pr101k14 38812.3 10129.9 33882.8 16091.8 23878.2 7960.6

Instance GAv5 GAv6 EAv3
En22k4 2368.5 1464.5 2175.0 1989.2 1554.5 1313.2

En23k3 6543.4 4060.4 7632.6 5486.8 6300.8 2979.3

En30k3 8121.9 4806.2 8707.9 5987.3 7977.2 5820.4

En33k4 7586.2 4555.1 7107.0 4242.0 4942.9 1917.0

En51k5 10322.0 7118.3 11619.2 5673.0 9013.9 4690.5

En76k7 21857.2 8862.2 23312.1 9214.4 15688.0 9329.0

En76k8 19507.3 6989.5 19086.4 7402.4 14941.9 4849.8

En76k14 12945.4 7692.4 14955.9 6730.7 10477.0 5971.6

En101k8 44202.0 16688.4 42967.6 11510.6 27313.3 9049.3

Pr101k14 23547.1 9207.9 24205.8 12040.8 17700.1 7241.0

Table 7: Convergence behaviour of the nine techniques applied to the CVRP.

conclusion can be deduced:

• Conclusion 5: In the same way as with the TSP, the use of crossover phase for the
CVRP increases significantly the execution time of an evolutionary algorithm.

The reasons of this increase in the runtime are the same as explained in the previous
section for the TSP. Anyway, regarding the convergence behaviour, the results displayed
in Table 7 are different in relation to the previously studied problem. Analyzing these
outcomes it can be observed how the EAs show better convergence behaviour in all the
instances and experimentations. Additionally, these improvements are significant in 80%
of the cases compared to GAv2 and GAv3, in 70% regarding GAv2, GAv4, and GAv6,
and in 60% compared to GAv5. This means that the EAs reach the final solution in
less generations than the other alternatives. The following finding can be extracted from
these observations:

18

CVRP EAv1 vs. GAv1 EAv1 vs. GAv2
Instance Results Convergence Time Results Convergence Time
En22k4 - (-5.09) * (1.61) + (7.96) * (1.41) + (4.15) + (8.64)
En23k3 + (3.35) * (1.01) + (2.76) + (3.71) * (0.43) + (3.99)
En30k3 * (1.91) * (1.55) + (9.45) + (4.33) * (1.30) + (9.88)
En33k4 * (-0.78) + (8.01) + (13.24) + (3.73) + (7.90) + (13.69)
En51k5 * (1.65) + (4.54) + (11.63) + (7.14) + (5.50) + (12.09)
En76k7 + (3.12) + (5.64) + (14.47) + (7.14) + (8.60) + (18.90)
En76k8 + (3.42) + (5.03) + (11.89) +(7.90) + (9.06) + (17.45)
En76k14 + (2.20) + (4.61) + (13.36) + (5.76) + (7.13) + (17.44)
En101k8 + (4.26) + (9.29) + (18.86) + (7.63) + (11.83) + (21.88)
En101k14 + (5.60) + (8.17) + (17.26) + (8.42) + (11.37) + (20.43)

Instance EAv2 vs. GAv3 EAv2 vs. GAv4
En22k4 * (-1.67) + (2.31) + (13.71) - (-2.73) * (0.71) + (25.72)
En23k3 + (2.96) + (5.65) + (11.38) * (1.83) * (1.83) + (9.29)
En30k3 + (6.66) * (0.19) + (9.87) + (2.19) * (0.21) + (17.06)
En33k4 + (2.80) + (2.57) + (11.43) * (-0.33) + (3.32) + (12.47)
En51k5 + (11.04) * (0.74) + (14.90) * (1.19) + (3.57) + (12.97)
En76k7 + (4.26) + (4.16) + (15.77) + (2.62) + (3.19) + (13.74)
En76k8 + (4.09) + (3.31) + (13.80) + (2.66) + (2.78) + (19.06)
En76k14 + (4.03) + (3.19) + (15.72) + (2.76) + (3.68) + (19.41)
En101k8 + (2.52) + (8.45) + (22.87) * (1.17) + (5.26) + (16.04)
En101k14 + (6.38) + (8.19) + (28.03) + (4.29) + (3.94) + (14.24)

Instance EAv3 vs. GAv5 EAv3 vs. GAv6
En22k4 + (2.08) + (2.92) + (3.92) + (4.39) * (1.84) + (3.16)
En23k3 * (-1.18) * (0.34) * (1.87) * (-0.62) * (1.50) * (1.47)
En30k3 * (0.10) * (0.13) + (6.26) + (3.02) * (0.61) + (7.02)
En33k4 + (2.33) + (3.78) + (10.86) * (0.72) + (3.28) + (11.35)
En51k5 + (2.23) * (1.08) + (5.38) + (3.29) + (2.50) + (8.69)
En76k7 + (2.47) + (3.39) + (12.30) * (0.96) + (4.11) + (14.63)
En76k8 + (1.98) + (3.79) + (15.54) + (2.15) + (3.31) + (14.66)
En76k14 * (1.32) * (1.79) + (9.21) * (-1.19) + (3.51) + (13.06)
En101k8 * (-0.47) + (6.29) + (16.76) + (2.17) + (7.56) + (17.54)
En101k14 + (2.25) + (3.52) + (15.35) + (3.44) + (3.27) + (12.85)

Table 8: z-test for CVRP. ’+’ indicates that EA is better. ’-’ depicts that it is worse. ’*’ indicates that
the difference between the two algorithms is not significant (at 95% confidence level)

• Conclusion 6: Contrary to what happens for the TSP, and according to the
experimentation conducted, the use of blind crossover operators does not improve
the convergence behaviour of an evolutionary algorithm applied to the CVRP.

This change in the behavior of the EA compared to that observed for the previous
problems can be justified as follows: Crossover operators are complex functions that
combine the characteristics of two individuals of the population. These functions are
easy to design and implement if the problem has not many constraints (for example,
TSP and NQP). Anyway, if the problem has a complex formulation, or its restrictions
are numerous, the development of a crossover function can be very hard. For this reason,
many operators designed for this type of problems include problem dependent heuristics
[76, 77], or they do not consider some of the constraints of the problem [78, 79]. In
any case, these operators are difficult to implement and understand, and they increase
considerably the complexity of the algorithm and its runtime.

Thus, blind operators are rarely used in solving these complex problems. In addition,

19

NQP GAv1 GAv2 EAv1
Instance Results Time (s) Results Time (s) Results Time (s)

Instance Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.

8-Queens 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.0

20-Queens 1.6 0.8 0.1 0.1 1.5 0.7 0.1 0.1 0.8 0.5 0.1 0.0

50-Queens 6.6 1.6 0.6 0.1 6.4 1.6 0.3 0.1 5.1 1.4 0.3 0.1

75-Queens 13.7 2.2 0.8 0.3 13.1 2.5 0.7 0.4 9.2 2.3 0.6 0.1

100-Queens 15.4 2.3 6.2 1.5 15.2 2.6 4.7 1.3 11.5 2.3 2.9 0.7

125-Queens 25.5 3.4 5.2 1.5 24.3 3.6 3.9 1.2 17.0 3.1 3.6 0.8

150-Queens 32.0 3.9 9.5 3.4 27.7 3.9 7.6 2.2 21.9 3.2 6.6 1.4

200-Queens 43.2 5.9 69.9 7.9 38.2 4.5 38.0 8.1 26.6 3.9 32.5 7.9

250-Queens 56.4 7.1 63.8 19.8 52.1 5.2 45.5 12.5 38.0 5.3 42.5 10.7

300-Queens 69.9 7.9 123.3 41.3 65.2 6.5 109.5 25.6 45.6 5.3 94.6 19.3

Instance GAv3 GAv4 EAv2
8-Queens 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1

20-Queens 1.4 1.0 0.1 0.1 1.3 0.8 0.1 0.1 0.8 0.6 0.1 0.1

50-Queens 5.9 1.8 0.2 0.1 5.6 1.3 0.2 0.1 4.6 1.5 0.1 0.1

75-Queens 10.9 2.1 0.7 0.1 10.0 2.5 0.8 0.1 8.7 1.6 0.5 0.1

100-Queens 14.7 3.3 2.2 0.6 15.3 2.8 1.8 0.5 12.1 2.0 1.5 0.3

125-Queens 19.8 2.9 4.2 1.1 18.3 2.7 4.8 1.1 17.2 2.5 3.1 0.5

150-Queens 23.7 3.7 8.1 2.7 22.2 3.2 9.3 2.0 21.3 3.0 5.8 1.0

200-Queens 33.3 4.4 26.7 7.2 30.4 4.3 27.1 6.1 26.9 4.8 18.7 4.0

250-Queens 43.5 5.6 52.6 12.0 41.6 5.2 56.4 13.1 37.1 4.5 44.8 9.1

300-Queens 57.8 5.7 98.6 33.6 50.4 6.5 118.6 28.5 45.9 4.9 77.6 19.7

Instance GAv5 GAv6 EAv3
8-Queens 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0

20-Queens 1.3 0.6 0.1 0.1 1.1 0.5 0.1 0.1 0.8 0.6 0.1 0.1

50-Queens 5.2 1.6 0.2 0.1 4.9 1.2 0.2 0.1 4.2 1.4 0.1 0.1

75-Queens 10.0 2.0 0.9 0.1 8.7 1.9 0.8 0.1 7.6 2.3 0.6 0.1

100-Queens 12.7 2.7 2.6 0.3 13.4 2.6 2.5 0.6 11.8 2.1 2.1 0.4

125-Queens 17.8 2.1 6.3 0.9 15.6 3.1 5.1 1.0 14.4 2.7 4.7 1.0

150-Queens 21.2 4.3 8.2 2.7 21.2 2.7 8.6 1.9 19.5 3.3 7.7 1.6

200-Queens 30.3 3.5 28.6 3.9 30.5 3.8 25.8 5.3 27.0 4.2 22.9 5.0

250-Queens 36.9 3.7 59.1 11.6 36.2 3.0 62.5 10.9 32.1 4.1 52.8 10.0

300-Queens 46.7 7.0 93.5 21.9 46.9 4.6 111.3 27.2 42.5 6.6 89.7 16.8

Table 9: Results and runtime of the nine techniques applied to the NQP. For each instance, the results,
average runtime, and their standar deviations are shown.

its performance is usually not good. An evidence of this last statement is shown in
this study: all GA techniques that prioritize the use of blind crossover operators are
outperformed by the technique that gives more importance to the mutation phase, in
terms of exploration and exploitation.

5. Experimentation with the NQP

In this section the experimentation with the NQP is detailed. The characteristics of
the nine techniques implemented are the same as the algorithms used for the TSP. Table
1 summarizes them.

In Table 9 the results and average runtime can be found. The name of each instance
describes the number of queens and the size of the chessboard. In this case, the optimum

20

NQP GAv1 GAv2 EAv1

Instance Avg. St.d. Avg. St.d. Avg. St.d.

8-Queens 3.3 3.2 4.9 4.6 2.8 2.9

20-Queens 36.9 26.2 37.9 28.3 39.1 21.8

50-Queens 210.0 126.6 191.3 112.3 151.9 71.4

75-Queens 183.4 98.8 195.6 93.5 224.8 89.0

100-Queens 818.0 385.7 791.7 333.7 575.8 255.8

125-Queens 589.1 202.6 599.7 217.8 578.9 173.9

150-Queens 636.0 290.9 788.1 299.1 723.1 209.1

200-Queens 1181.6 417.3 1560.7 563.6 1854.1 606.3

250-Queens 1649.7 615.9 1717.2 564.3 1853.6 567.6

300-Queens 2279.4 897.3 2402.7 843.5 2821.7 683.3

Instance GAv3 GAv4 EAv2
8-Queens 3.0 1.8 2.1 1.3 1.8 1.2

20-Queens 18.5 10.3 18.2 8.9 23.9 10.9

50-Queens 128.0 54.3 131.2 48.4 116.0 38.1

75-Queens 207.4 82.0 176.6 65.7 210.7 74.3

100-Queens 416.3 208.9 252.7 112.3 346.7 105.9

125-Queens 511.7 187.0 451.1 151.0 462.4 105.8

150-Queens 712.5 292.0 654.1 190.8 614.1 159.1

200-Queens 1363.1 458.5 1351.0 345.4 1208.5 330.6

250-Queens 1714.2 480.1 1461.5 433.2 1827.3 432.4

300-Queens 2465.8 948.1 2222.1 636.2 2250.8 675.3

Instance GAv5 GAv6 EAv3
8-Queens 1.6 1.2 2.3 1.5 1.4 1.1

20-Queens 21.2 9.1 21.7 6.8 21.1 10.8

50-Queens 89.2 42.4 80.0 31.4 91.6 38.1

75-Queens 154.3 65.1 159.0 55.3 172.3 65.8

100-Queens 240.8 89.4 315.4 124.2 325.2 102.9

125-Queens 329.8 98.8 420.3 127.1 569.5 145.9

150-Queens 590.2 254.0 484.4 164.0 672.8 199.4

200-Queens 847.0 237.5 903.6 250.1 1193.7 337.6

250-Queens 1344.2 399.0 1491.5 329.7 1470.1 360.6

300-Queens 1974.5 975.1 1829.6 567.3 2137.0 492.9

Table 10: Convergence behaviour of the nine techniques applied to the NQP.

of each instance is not shown, since it is known that it is 0 for all of them. In addition,
Table 10 displays the convergence behaviour of each algorithm. On the other hand, the
z-test made for this problems is shown in Table 11.

The conclusions that can be drawn analyzing these tables are similar to those obtained
in previous sections. First of all, as can be seen in Table 9, the EAs obtain better results
than their corresponding GAs in all but one of the instances. In the remaining case
(8-Queens instance), they get the same outcomes. In addition, these improvements
are significant in 90% of the instances compared to GAv1, GAv2, GAv3, GAv4 and
GAv6, being the 8-Queens instance the only where the differences are not significant.
Additionally, these improvements are substantial in the 80% of the cases regarding GAv5,
being not significant in the remaining 20%. For these reasons, Conclusions 1 and 4 are
also applicable for the NQP.

The same happens with runtime. The EAs are never overcomed by any of the

21

NQP EAv1 vs. GAv1 EAv1 vs. GAv2
Instance Results Convergence Time Results Convergence Time
8-Queens * (0.00) * (0.80) * (0.00) * (1.41) + (2.70) * (0.00)
20-Queens + (5.08) * (-0.57) + (15.00) + (5.07) * (-0.75) + (6.32)
50-Queens + (4.76) + (2.84) + (10.00) + (4.03) + (2.10) + (2.16)
75-Queens + (9.60) - (-2.19) + (4.14) + (7.88) * (-1.58) * (1.06)
100-Queens + (8.23) + (3.69) + (13.04) + (7.37) + (3.63) + (7.82)
125-Queens + (12.98) * (0.26) + (6.30) + (10.85) * (0.52) * (1.10)
150-Queens + (13.86) * (1.71) + (5.40) +(13.86) * (1.25) + (2.61)
200-Queens + (16.48) - (-6.45) + (23.56) + (13.64) - (-2.50) + (3.39)
250-Queens + (14.54) * (-1.72) + (6.67) + (14.54) * (1.20) * (1.29)
300-Queens + (18.06) - (-3.39) + (4.44) + (16.47) - (-2.72) + (3.27)

Instance EAv2 vs. GAv3 EAv2 vs. GAv4
8-Queens * (0.00) + (3.92) * (0.00) * (0.00) * (1.19) * (0.00)
20-Queens + (3.63) - (-2.54) * (0.00) + (3.53) - (-2.81) * (0.00)
50-Queens + (3.93) * (1.27) + (5.00) + (3.56) * (1.74) + (5.00)
75-Queens + (5.89) * (-0.21) + (10.00) + (3.09) - (-2.43) + (15.00)
100-Queens + (4.76) + (2.09) + (7.37) + (6.57) - (-4.30) + (3.63)
125-Queens + (4.80) * (1.61) + (6.43) + (2.11) * (-0.43) + (9.94)
150-Queens + (3.56) + (2.09) + (5.64) + (1.45) * (1.13) + (11.06)
200-Queens + (6.94) * (1.93) + (6.86) + (3.84) + (2.10) + (8.14)
250-Queens + (6.29) * (-1.23) + (3.66) + (4.62) - (4.22) + (5.14)
300-Queens + (11.19) * (1.30) + (3.81) + (3.92) * (-0.21) + (8.36)

Instance EAv3 vs. GAv5 EAv3 vs. GAv6
8-Queens * (0.00) * (0.86) * (0.00) * (0.00) + (3.42) * (0.00)
20-Queens + (4.16) * (0.05) * (0.00) + (2.71) * (0.33) * (0.00)
50-Queens + (3.32) * (-0.29) + (5.00) + (2.68) * (-1.66) + (5.00)
75-Queens + (5.56) * (-1.37) + (15.00) + (2.60) * (-1.09) + (10.00)
100-Queens * (1.86) - (-4.37) + (7.07) + (3.38) - (-0.42) + (3.92)
125-Queens + (7.02) - (-9.61) + (8.40) + (2.06) - (-5.45) + (2.00)
150-Queens + (2.21) * (-1.80) * (1.12) + (2.81) - (-5.15) + (2.56)
200-Queens + (4.26) - (-5.93) + (6.35) + (4.36) - (-4.88) + (2.81)
250-Queens + (6.14) * (-1.65) + (2.90) + (5.70) * (0.30) + (4.63)
300-Queens + (3.06) * (-1.05) * (0.97) + (3.86) - (-2.89) + (4.77)

Table 11: z-test for NQP. ’+’ indicates that EA is better. ’-’ depicts that it is worse. ’*’ indicates that
the difference between the two algorithms is not significant (at 95% confidence level)

genetic algorithms used, obtaining significantly better runtimes in 90% and 60% of cases
regarding GAv1 and GAv2, in 80% of the instances compared to GAv3 and GAv4, and in
60% and 80% in relation to GAv5 and GAv6, respectively. Therefore, Conclusion 2 and
Conclusion 5 are also applicable for this problem.

Finally, regarding the convergence behaviour, the results obtained are more similar
to those seen for the TSP. Looking at the data displayed in Table 9, the EAv1 has a
better convergence behaviour in 40% of the instances, and the GAv1 and GAv2 in the
other 60%. According to Table 11, comparing to GAv1, the differences in the results are
significantly better for the EAv1 in 20% of the instances, and significantly worse in 30%
of them. In the remaining cases the differences are not substantial. On the other hand,
comparing to GAv2, these percentages are, respectively, 30%, 20%, and 50%.

Regarding the second experimentation, the EAv2 gets a better convergence compared
to GAv3 and GAv4 in the 40% of the instances. In the remaining 60%, the EAv2 has

22

been overcomed by at least one of the GAs. Regarding the GAv3, the differences are
not significant in the 60% of the cases. In addition, the EAv2 has showed a substantial
better convergence behaviour in 30% of the instances. In the remaining 10% the GAv3
has significantly outperformed the behaviour of EAv2. On the other hand, compared to
GAv4, these percentages are different, being 50%, 10%, and 40% respectively.

In relation to the third experimentation, the EAv3 has shown a better convergence
than GAv5 and GAv6 in the 20% of the cases, being overcomed in the remaining 80%.
Compared to GAv5, the difference in the behaviour is not significant in the 70% of the
cases. Furthermore, they are substantially better for the GA in the remaining 30%.
On the other hand, the EAv3 has significantly improved the convergence of GAv6 in
the 10% of the instances. In addition, in the 40% of the cases the differences are not
substantial. Ultimately, in the remaining 50%, GAv6 has shown a significant better
convergence behaviour.

For this reason, the following finding can be drawn:

• Conclusion 7: According to the tests conducted, the use of blind crossover operators
in the development of genetic algorithms for the NQP entails an improvement in
the convergence behavior of the technique.

The NQP is a problem with a simple formulation. For this reason, the convergence
behaviour of the GAs is much better than the shown for the CVRP, since the crossover
phase helps to the exploration capacity of the technique. In this way, the results obtained
in this aspect are similar to those obtained for the TSP.

6. Experimentation with the BPP

In this section the experimentation with the BPP is shown. The characteristics of the
nine techniques developed are the same as the ones used for the TSP. Table 1 summarizes
them.

In Table 12 the results and average runtime can be found. Each instance has been
picked from the Scholl/Klein benchmark2. These cases are named NxCyWz a, where
x is, 2 (100 items), 3 (200 items) or 4 (500 items); y is 1 (capacity of 100), 2 (capacity
of 120) and 3 (capacity of 150); z is 1 (items size between 1 and 100) and 2 (items size
between 20 and 100); and a is A or B as benchmark indexing parameter. Additionally,
Table 13 shows the convergence behaviour of each technique. Furthermore, the z-test
made for the BPP is shown in Table 14.

The conclusions that can be obtained in this case are very similar to those drawn
for the NQP. As can be seen in Table 12, the EAs obtain better or same (in two cases
only) results in the 100% of the instances, being significantly better in the 90% of the
cases. Therefore, Conclusions 1 and 4 can be also applied for this problem. Regarding
runtimes, as already seen in the previous experimentations, all the EAs outperform their
corresponding GAs. In this case, the EAs obtain significantly better runtimes in the
100% of the instances. In this way, Conclusion 2 and Conclusion 5 are also valid for the
BPP.

2http://www.wiwi.uni-jena.de/entscheidung/binpp/index.htm.

23

BPP GAv1 GAv2 EAv1
Instance Results Time (s) Results Time (s) Results Time (s)

Instance Optimum Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d. Avg. St.d.

N2C1W1 A 48 53.4 0.7 0.35 0.12 53.7 0.7 0.08 0.03 53.1 0.7 0.02 0.01

N2C1W1 B 49 54.3 0.7 0.29 0.08 54.4 0.8 0.09 0.02 53.3 0.5 0.02 0.01

N3C2W2 A 107 121.4 1.5 1.84 0.33 121.8 1.4 0.47 0.16 120.2 1.3 0.07 0.02

N3C2W2 B 105 117.7 1.8 1.93 0.54 118.2 2.2 0.39 0.20 116.7 1.1 0.06 0.03

N3C3W1 A 66 73.9 0.8 1.48 0.42 73.6 0.8 0.42 0.18 73.2 0.9 0.07 0.03

N3C3W1 B 71 80.4 0.9 1.46 0.37 79.8 0.7 0.46 0.24 79.2 0.9 0.06 0.02

N4C1W1 A 240 277.9 2.4 7.79 2.90 275.4 2.4 5.84 1.85 273.4 1.7 0.37 0.12

N4C1W1 B 262 300.4 3.2 7.48 3.12 298.8 1.4 5.93 2.15 295.8 2.2 0.45 0.21

N4C1W1 C 241 277.9 2.6 7.67 2.69 276.8 2.7 6.15 2.05 273.6 1.6 0.49 0.18

N4C2W1 A 210 245.8 2.9 7.08 2.41 244.8 2.1 6.02 1.99 242.6 1.9 0.51 0.24

Instance GAv3 GAv4 EAv2
N2C1W1 A 48 53.2 0.9 0.37 0.10 53.4 0.8 0.06 0.02 52.8 0.6 0.01 0.01

N2C1W1 B 49 54.0 0.5 0.25 0.12 54.1 0.7 0.08 0.02 53.5 0.6 0.01 0.01

N3C2W2 A 107 121.0 1.3 1.93 0.41 122.0 1.5 0.51 0.19 120.4 1.5 0.06 0.02

N3C2W2 B 105 117.4 1.5 2.12 0.77 117.9 1.9 0.40 0.22 116.8 1.0 0.05 0.01

N3C3W1 A 66 74.2 1.0 1.82 0.57 73.3 0.5 0.58 0.21 73.0 0.6 0.08 0.02

N3C3W1 B 71 80.1 0.7 1.39 0.28 79.5 1.1 0.49 0.32 78.9 1.0 0.06 0.03

N4C1W1 A 240 276.3 2.7 7.91 2.49 274.3 2.1 6.12 2.09 273.5 1.4 0.43 0.26

N4C1W1 B 262 299.8 3.4 8.27 3.93 299.4 1.8 6.29 2.77 295.3 2.0 0.51 0.28

N4C1W1 C 241 278.2 2.9 8.93 3.00 277.1 2.2 7.00 2.22 272.9 1.9 0.68 0.25

N4C2W1 A 210 245.2 3.1 8.11 2.91 245.1 2.1 5.99 2.42 242.9 2.1 0.89 0.32

Instance GAv5 GAv6 EAv3
N2C1W1 A 48 52.9 0.8 0.41 0.09 52.7 0.9 0.21 0.12 52.7 0.6 0.02 0.01

N2C1W1 B 49 53.8 0.7 0.31 0.12 53.5 0.7 0.32 0.11 52.8 0.7 0.02 0.01

N3C2W2 A 107 119.2 1.1 1.95 0.77 120.1 1.6 1.84 0.70 118.9 1.1 0.08 0.03

N3C2W2 B 105 117.2 1.9 1.99 0.71 117.4 2.7 1.72 0.81 116.4 1.4 0.09 0.04

N3C3W1 A 66 73.8 0.7 2.11 0.70 72.8 0.9 2.21 1.00 72.8 0.7 0.10 0.03

N3C3W1 B 71 80.1 1.2 2.01 0.54 78.4 1.1 1.87 0.91 78.1 0.5 0.12 0.04

N4C1W1 A 240 278.1 2.8 7.89 2.71 276.0 2.8 6.84 2.08 273.5 1.9 0.47 0.12

N4C1W1 B 262 298.4 3.7 8.21 3.03 297.1 2.1 6.94 2.72 295.1 2.8 0.53 0.32

N4C1W1 C 241 277.1 2.2 9.00 3.09 275.9 2.4 8.95 2.71 273.0 2.1 0.81 0.37

N4C2W1 A 210 242.4 3.1 8.15 3.12 244.1 2.6 7.99 2.40 241.7 1.5 0.97 0.42

Table 12: Results and runtimes of the nine techniques applied to the BPP. For each instance, the results,
average runtime, and their standar deviations are shown.

Concerning the convergence behavior, the results obtained are similar to those
obtained for the NQP. The EAs have a better convergence in the 43.33% cases (13 out
of 30), while the GAs performs better in the remaining 56.67%. In addition, comparing
to GAv1, the differences are significantly better for the EAv1 in 10% (1 out of 10) of
the cases, and significantly worse in 20% (2 out of 10). In the remaining 7 instances
these differences are insignificant. Furthermore, regarding GAv2, these percentages are
30%, 0%, and 70% respectively. In relation to the second experimentation, the EAv2
shows a substantial better behaviour in 10% of the instances, and substantially worse in
25%. In the rest of the instances, the differences are not substantial. Finally, for the
third experimentation these percentages are, respectively, 20%, 40%, and 40%. Thereby,
looking at Table 14 it can be said that Conclusion 7 is also applicable for the BPP.

24

BPP GAv1 GAv2 EAv1

Instance Avg. St.d. Avg. St.d. Avg. St.d.

N2C1W1 A 134.4 85.0 143.8 76.8 128.7 88.8

N2C1W1 B 64.8 24.6 112.8 81.4 86.9 34.7

N3C2W2 A 332.1 144.1 384.9 153.7 301.2 185.7

N3C2W2 B 356.4 116.7 345.1 128.0 314.8 111.0

N3C3W1 A 298.7 102.4 310.8 117.0 332.1 98.6

N3C3W1 B 366.0 176.8 410.2 218.4 385.8 158.4

N4C1W1 A 1542.3 312.7 1569.7 583.9 1328.6 586.9

N4C1W1 B 1663.4 497.8 1682.4 597.7 1538.7 486.8

N4C1W1 C 1364.8 599.4 1473.1 757.2 1499.4 584.7

N4C2W1 A 1340.0 573.0 1495.5 674.6 1616.4 473.5

Instance GAv3 GAv4 EAv2
N2C1W1 A 151.7 80.8 132.2 81.2 112.7 90.7

N2C1W1 B 87.4 43.1 95.6 42.2 100.3 56.1

N3C2W2 A 232.7 101.8 299.4 81.4 285.7 91.3

N3C2W2 B 371.5 120.7 301.4 114.7 350.0 103.3

N3C3W1 A 312.8 136.9 358.7 136.2 299.5 77.0

N3C3W1 B 351.7 146.2 400.7 187.4 411.4 101.3

N4C1W1 A 1501.1 304.7 1499.0 608.9 1482.4 499.9

N4C1W1 B 1452.8 531.5 1577.3 519.0 1490.2 503.1

N4C1W1 C 1612.7 671.4 1579.0 676.3 1535.8 555.3

N4C2W1 A 1315.8 500.4 1399.4 741.2 1584.4 463.9

Instance GAv5 GAv6 EAv3
N2C1W1 A 114.0 73.4 100.4 57.1 142.7 90.4

N2C1W1 B 81.4 21.1 71.8 27.4 95.7 43.8

N3C2W2 A 300.2 112.4 327.1 99.7 350.2 198.7

N3C2W2 B 376.4 132.4 355.4 140.5 299.4 134.5

N3C3W1 A 280.7 139.5 273.0 113.6 350.7 102.7

N3C3W1 B 481.8 241.5 451.9 223.4 371.4 188.0

N4C1W1 A 1427.0 299.9 1500.2 531.5 1286.7 499.7

N4C1W1 B 1701.8 513.8 1759.0 642.3 1612.0 500.1

N4C1W1 C 1310.8 524.3 1210.4 571.8 1571.0 611.4

N4C2W1 A 1274.0 497.9 1379.6 573.4 1527.1 511.7

Table 13: Convergence behaviour of the nine techniques applied to the BPP.

7. Conclusions and further work

In this paper a study on the influence of using blind crossover operators in genetic
algorithms applied to combinatorial optimization problem has been conducted. For
this purpose, four different well-known combinatorial optimization problems have been
used, the Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing Problem
(CVRP), the N-Queens Problems (NQP), and the one-dimensional Bin Packing Problem
(BPP). For each problem 10 different instances have been selected, making a total
set of 40 cases. In the experimentation done, the performance of six classic genetic
algorithms, each with a different crossover function, has been compared with the one of
three evolutionary algorithms, in three separate experimentations.

In general terms, regarding the results, the EAs obtain better results in 94.16% of the
cases (113 out of 120). In addition, comparing with the GA variants, these improvements

25

BPP EAv1 vs. GAv1 EAv1 vs. GAv2
Instance Results Convergence Time Results Convergence Time
N2C1W1 A + (2.14) * (0.32) + (19.37) + (4.28) * (0.90) + (13.41)
N2C1W1 B + (8.21) - (-3.67) + (23.68) + (8.24) + (2.06) + (22.13)
N3C2W2 A + (4.27) * (0.92) + (37.85) + (5.92) + (2.45) + (17.54)
N3C2W2 B + (3.35) * (1.82) + (24.44) + (5.95) * (1.26) + (11.53)
N3C3W1 A + (4.11) * (-1.66) + (23.67) + (2.34) * (-0.98) + (13.56)
N3C3W1 B + (6.66) * (-0.58) + (26.71) + (3.72) * (0.63) + (11.74)
N4C1W1 A + (10.81) + (2.16) + (18.07) + (4.80) + (1.97) + (20.86)
N4C1W1 B + (8.37) * (1.26) + (15.89) + (8.13) * (1.31) + (17.93)
N4C1W1 C + (9.95) * (-1.13) + (18.83) + (7.20) * (-0.19) + (19.44)
N4C2W1 A + (6.52) - (-2.62) + (19.18) + (5.49) * (-1.03) + (19.43)

Instance EAv2 vs. GAv3 EAv2 vs. GAv4
N2C1W1 A + (2.61) + (2.27) + (25.32) + (4.24) * (1.16) + (15.81)
N2C1W1 B + (9.05) * (-1.28) + (14.09) + (8.43) * (-0.33) + (22.13)
N3C2W2 A + (2.13) - (-2.74) + (32.21) + (5.33) * (0.54) + (16.65)
N3C2W2 B + (2.35) * (0.95) + (19.00) + (3.62) - (-2.08) + (11.23)
N3C3W1 A + (7.27) * (0.59) + (21.57) + (2.71) + (2.98) + (16.76)
N3C3W1 B + (6.95) - (-2.37) + (33.39) + (2.85) * (-0.31) + (9.46)
N4C1W1 A + (6.50) * (0.22) + (21.12) + (2.24) * (0.15) + (19.10)
N4C1W1 B + (8.06) * (-0.36) + (13.92) + (10.77) * (0.78) + (14.67)
N4C1W1 C + (10.80) * (0.62) + (19.37) + (10.21) * (0.32) + (20.00)
N4C2W1 A + (4.34) - (-2.78) + (17.43) + (5.23) - (-1.97) + (14.77)

Instance EAv3 vs. GAv5 EAv3 vs. GAv6
N2C1W1 A * (1.41) * (-1.74) + (30.45) * (0.00) - (-2.79) + (11.15)
N2C1W1 B + (7.14) - (-2.07) + (17.02) + (5.00) - (-3.27) + (19.20)
N3C2W2 A * (1.36) * (-1.54) + (17.15) + (4.37) * (-0.73) + (17.76)
N3C2W2 B + (2.39) + (2.88) + (18.89) + (2.32) + (2.03) + (14.21)
N3C3W1 A + (7.14) - (-2.85) + (20.28) * (0.00) - (3.58) + (14.91)
N3C3W1 B + (10.87) + (2.55) + (24.68) * (1.75) * (1.94) + (13.58)
N4C1W1 A + (9.61) * (1.70) + (19.34) + (5.22) + (2.06) + (21.61)
N4C1W1 B + (5.02) * (0.88) + (17.82) + (4.04) * (1.27) + (16.54)
N4C1W1 C + (9.53) - (-2.28) + (18.60) + (6.43) - (-3.01) + (21.04)
N4C2W1 A * (1.43) - (-2.50) + (16.12) + (5.65) * (1.21) + (20.37)

Table 14: z-test for BPP. ’+’ indicates that EA is better. ’-’ depicts that it is worse. ’*’ indicates that
the difference between the two algorithms is not significant (at 95% confidence level)

are significant in the 81.25% of the cases (195 out of 240). In 17.91% of the cases (43 out
fo 240) these differences are insignificant, and in the remaining 0.84% (2 out of 240) one
GA obtains substantially better results than its corresponding EA. For these reasons:

• Conclusion 8: Regarding the results and applicable to the experimentation
performed, it is concluded that the use of blind crossover operators in genetic
algorithms for solving combinatorial optimization problems provides no significant
improvement in the results.

In relation to the runtime, the EAs needs less time than their corresponding GAs in
all of the instances. In addition, these improvements are substantial in 92.91% of the
cases (223 out of 240). These data suggest the following finding:

• Conclusion 9: In relation to runtime and according to the experimentation
performed, the use of blind crossover operators in genetic algorithms substantially

26

increases the execution time of the technique, without providing an improvement
in results.

Regarding the convergence behaviour, the GAs show better performance than the
EAs. This means that they need less generations/iterations to find their final solution.
Anyway, this fact does not entail better results, or less runtime, as has been mentioned in
Conclusion 8 and Conclusion 9. What it really involves, is a greater exploration capacity
of the technique. Additionally, this fact is subject to the problem that is being treated,
being more effective if the problem has an easy formulation. For the experimentation
conducted, the EAs show better convergence behaviour in 45.83% of the cases (55 out
of 120). Moreover, the statistical test conducted shows that for simple formulation
problems (TSP, NQP, and BPP), the EAs have a significantly better convergence in
12.77% (23 of 180) of the cases. On the other hand, in 41.66% (75 out of 180) of the
comparisons, the GAs are substantially better. In the remaining 45.57% the differences
are not remarkable. For the CVRP, as has been seen in Section 4, the EAs show a
significantly better convergence in the 71.66% (43 out of 60) of the cases. As a result of
this, the following finding can be deduced:

• Conclusion 10: Finally, regarding the convergence behaviour and according to the
experimentation performed, the study concludes that the use of blind crossover
operators in genetic algorithms for solving combinatorial optimization problems
with simple formulation entails a better convergence behaviour of the technique,
needing less generations to obtain the final solution. Anyway, this fact does not
mean better results. On the other hand, for more complex problems, the use of
blind crossover operators does not imply a better convergence behavior.

Finally, as a final conclusion of this work, and based on the findings that have been
proposed along the paper, the following assertion can be concluded:

• Conclusion 11: Based on the experimentation performed, an evolutionary algorithm
(based only on mutation and survivor selection functions) is more efficient than a
classic genetic algorithm to solve combinatorial optimization problems.

As a final comment, the authors of this study want to clarify that they are aware
that there is a large amount of combinatorial optimization problems in the literature.
In the same way, there are a lot of blind crossover operators. For these reasons, it
could be pretentious to generalize the conclusions of this study to all the combinatorial
optimization problems. In this work, to perform the tests, four well-known and widely
used problems have been used. The goal of this selection is to choose problems of different
type, and to obtain conclusions as objective as possible. Following the same philosophy,
all the crossover operators that have been used in this study have been previously utilized
in many studies in the literature. Thereby, the authors of this study are aware that the
conclusions drawn are objective and rigorous, but just for the conducted experimentation.

As future work, and in order to verify the conclusions of this study, it could be
interesting to extend this work to some other combinatorial optimization problems, such
as the minimum spanning tree problem [80], or the job-shop scheduling problem [81].
Furthermore, it may be worthwhile to investigate whether these same findings are also
applicable to other types of optimization problems, such as continuous optimization.

27

References

[1] Baker, B.M., Ayechew, M.: A genetic algorithm for the vehicle routing problem. Computers &
Operations Research 30(5) (2003) 787–800

[2] Ahn, C.W., Ramakrishna, R.S.: A genetic algorithm for shortest path routing problem and the
sizing of populations. IEEE Transactions on Evolutionary Computation 6(6) (2002) 566–579

[3] Norouzi, A., Zaim, A.H.: Genetic algorithm application in optimization of wireless sensor networks.
The Scientific World Journal 2014 (2014) Article ID 286575, 15 pages

[4] Li, Q., Yao, M., Yang, J., Xu, N.: Genetic algorithm and graph theory based matrix factorization
method for online friend recommendation. The Scientific World Journal 2014 (2014) Article ID
162148, 5 pages

[5] Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of the 1st international
conference on genetic algorithms, L. Erlbaum Associates Inc. (1985) 136–140

[6] Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop scheduling
problem. Computers & Operations Research 35(10) (2008) 3202–3212

[7] Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press (1975)

[8] Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley
Professional (1989)

[9] De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University
of Michigan, Michigan, USA (1975)

[10] Stanimirović, Z.: A genetic algorithm approach for the capacitated single allocation p-hub median
problem. Computing and Informatics 29(1) (2012) 117–132

[11] Venkadesh, S., Hoogenboom, G., Potter, W., McClendon, R.: A genetic algorithm to refine
input data selection for air temperature prediction using artificial neural networks. Applied Soft
Computing 51(3) (2013) 682–697

[12] Wu, G., Bai, Y., Sun, Z.: Research on formation of microsatellite communication with genetic
algorithm. The Scientific World Journal 2013 (2013) Article ID: 509508, 7 pages

[13] Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for
multidepot and periodic vehicle routing problems. Operations Research 60(3) (2012) 611–624

[14] Moradi, M., Abedini, M.: A combination of genetic algorithm and particle swarm optimization for
optimal dg location and sizing in distribution systems. International Journal of Electrical Power &
Energy Systems 34(1) (2012) 66–74

[15] Duan, Q.Q., Yang, G.K., Pan, C.C.: A novel algorithm combining finite state method and genetic
algorithm for solving crude oil scheduling problem. The Scientific World Journal 2014 (2014)
Article ID: 748141, 11 pages

[16] Chen, Z.Q., Yin, Y.F.: An new crossover operator for real-coded genetic algorithm with selective
breeding based on difference between individuals. In: IEEE Eighth International Conference on
Natural Computation. (2012) 644–648

[17] Hara, A., Ueno, Y., Takahama, T.: New crossover operator based on semantic distance between
subtrees in genetic programming. In: IEEE International Conference on Systems, Man, and
Cybernetics. (2012) 721–726

[18] Albayrak, M., Allahverdi, N.: Development a new mutation operator to solve the traveling salesman
problem by aid of genetic algorithms. Expert Systems with Applications 38(3) (2011) 1313–1320

[19] Mateo, P.M., Alberto, I.: A mutation operator based on a pareto ranking for multi-objective
evolutionary algorithms. Journal of Heuristics 18(1) (2012) 53–89

[20] Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural
Networks 5(1) (1994) 96–101

[21] De Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size and crossover
in genetic algorithms. In: Parallel problem solving from nature. Springer (1991) 38–47

[22] Kumar, A., Jani, N., Gupta, P., Saxena, S., Singh, S., Dhami, S., Singh, V., Kapoor, S., Singh, S.,
Chikara, S., et al.: An empirical study on crossover operator for degree constraint minimal spanning
tree problem using genetic algorithm. International Journal of Computational Intelligence Research
8(1) (2012) 1–15

[23] Banzhaf, W., Francone, F.D., Nordin, P.: The effect of extensive use of the mutation operator on
generalization in genetic programming using sparse data sets. In: 4th International Conference on
Parallel Problem Solving from Nature. Springer (1996) 300–309

[24] Mresa, E.S., Bottaci, L.: Efficiency of mutation operators and selective mutation strategies: An
empirical study. Software Testing Verification and Reliability 9(4) (1999) 205–232

28

[25] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 3(2) (1999) 124–141

[26] Fernandez-Prieto, J., Gadeo-Martos, M., Velasco, J.R., et al.: Optimisation of control parameters
for genetic algorithms to test computer networks under realistic traffic loads. Applied Soft
Computing 11(4) (2011) 3744–3752

[27] Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions
on Systems, Man and Cybernetics 16(1) (1986) 122–128

[28] De Giovanni, L., Massi, G., Pezzella, F.: An adaptive genetic algorithm for large-size open stack
problems. International Journal of Production Research 5(13) (2013) 2253–2260

[29] Osaba, E., Onieva, E., Carballedo, R., Diaz, F., Perallos, A., Zhang, X.: A multi-crossover and
adaptive island based population algorithm for solving routing problems. Journal of Zhejiang
University SCIENCE C 14(11) (2013) 815–821

[30] Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Complexity 4(4) (1999)
31–52

[31] Cantu-Paz, E.: Efficient and accurate parallel genetic algorithms. Volume 1. Springer (2000)
[32] Osaba, E., Carballedo, R., Diaz, F., Perallos, A.: Analysis of the suitability of using blind crossover

operators in genetic algorithms for solving routing problems. In: IEEE 8th International Symposium
on Applied Computational Intelligence and Informatics. (2013) 17–22

[33] Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the international
joint conference on artificial intelligence. Volume 1. (1985) 161–163

[34] Ray, S.S., Bandyopadhyay, S., Pal, S.K.: New operators of genetic algorithms for traveling salesman
problem. In: Proceedings of the IEEE 17th International Conference on Pattern Recognition.
Volume 2. (2004) 497–500

[35] Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B.: The traveling salesman problem: a guided
tour of combinatorial optimization. Volume 3. Wiley Chichester (1985)

[36] Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning tree. Computers & Operations
Research 7(4) (1980) 239–249

[37] Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-coded
genetic algorithms: An experimental study. International Journal of Intelligent Systems 18(3)
(2003) 309–338

[38] Pendharkar, P.C., Rodger, J.A.: An empirical study of impact of crossover operators on the
performance of non-binary genetic algorithm based neural approaches for classification. Computers
& Operations Research 31(4) (2004) 481–498

[39] Fogel, D.B., Atmar, J.W.: Comparing genetic operators with gaussian mutations in simulated
evolutionary processes using linear systems. Biological Cybernetics 63(2) (1990) 111–114

[40] Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms.
European Journal of Operational Research 59(3) (1992) 345–358

[41] Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing
problem. In: 23rd Annual Symposium on Foundations of Computer Science, IEEE (1982) 312–320

[42] Li, Z., Zhou, Z., Sun, X., Guo, D.: Comparative study of artificial bee colony algorithms with
heuristic swap operators for traveling salesman problem. In: Intelligent Computing Theories and
Technology. Springer (2013) 224–233

[43] Bai, J., Yang, G.K., Chen, Y.W., Hu, L.S., Pan, C.C.: A model induced max-min ant colony
optimization for asymmetric traveling salesman problem. Applied Soft Computing 13(3) (2013)
1365–1375

[44] Sung, J., Jeong, B.: An adaptive evolutionary algorithm for traveling salesman problem with
precedence constraints. The Scientific World Journal 2014 (2014) Article ID 313767, 11 pages

[45] Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem.
Journal of the operations research society of America 2(4) (1954) 393–410

[46] Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for
the travelling salesman problem: A review of representations and operators. Artificial Intelligence
Review 13(2) (1999) 129–170

[47] Baldacci, R., Mingozzi, A., Roberti, R., Calvo, R.W.: An exact algorithm for the two-echelon
capacitated vehicle routing problem. Operations Research 61(2) (2013) 298–314

[48] Jepsen, M., Spoorendonk, S., Ropke, S.: A branch-and-cut algorithm for the symmetric two-echelon
capacitated vehicle routing problem. Transportation Science 47(1) (2013) 23–37

[49] Cordeau, J., Maischberger, M.: A parallel iterated tabu search heuristic for vehicle routing
problems. Computers & Operations Research 39(9) (2012) 2033–2050

[50] Toth, P., Vigo, D.: The vehicle routing problem. Volume 9. Siam (2002)

29

[51] Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. Discrete
Mathematics 309(1) (2009) 1–31

[52] Bezzel, M.: Proposal of 8-queens problem. Berliner Schachzeitung 3 (1848) 363
[53] Hu, X., Eberhart, R.C., Shi, Y.: Swarm intelligence for permutation optimization: a case study of

n-queens problem. In: Proceedings of the IEEE Swarm Intelligence Symposium. (2003) 243–246
[54] Erbas, C., Tanik, M.M., Aliyazicioglu, Z.: Linear congruence equations for the solutions of the

n-queens problem. Information processing letters 41(6) (1992) 301–306
[55] Masehian, E., Akbaripour, H., Mohabbati-Kalejahi, N.: Landscape analysis and efficient

metaheuristics for solving the n-queens problem. Computational Optimization and Applications
(2013) 1–30

[56] Martinjak, I., Golub, M.: Comparison of heuristic algorithms for the n-queen problem. In: 29th
IEEE International Conference on Information Technology Interfaces. (2007) 759–764

[57] Martello, S., Toth, P.: Knapsack problems. Wiley New York (1990)
[58] Fleszar, K., Charalambous, C.: Average-weight-controlled bin-oriented heuristics for the one-

dimensional bin-packing problem. European Journal of Operational Research 210(2) (2011) 176–184
[59] Sim, K., Hart, E., Paechter, B.: A hyper-heuristic classifier for one dimensional bin packing

problems: Improving classification accuracy by attribute evolution. In: Proceeding of the XII
conference on Parallel Problem Solving from Nature. Springer (2012) 348–357

[60] Sim, K., Hart, E.: Generating single and multiple cooperative heuristics for the one dimensional
bin packing problem using a single node genetic programming island model. In: Proceeding of
the fifteenth annual conference on Genetic and evolutionary computation conference, ACM (2013)
1549–1556

[61] Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems
repartis 10(2) (1998) 141–171

[62] Tomassini, M.: A survey of genetic algorithms. Annual Reviews of Computational Physics 3(2)
(1995) 87–118

[63] Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural
Networks 5(1) (1994) 3–14

[64] Osaba, E., Carballedo, R., Diaz, F., Onieva, E., Perallos, A.: A proposal of good practice in the
formulation and comparison of meta-heuristics for solving routing problems. In: International Joint
Conference SOCO14-CISIS14-ICEUTE14, Springer (2014) 31–40

[65] Lin, S.: Computer solutions of the traveling salesman problem. Bell System Technical Journal
44(10) (1965) 2245–2269

[66] Fogel, D.B.: An evolutionary approach to the traveling salesman problem. Biological Cybernetics
60(2) (1988) 139–144

[67] Syswerda, G.: Schedule optimization using genetic algorithms. Handbook of genetic algorithms
(1991) 332–349

[68] Osaba, E., Diaz, F., Onieva, E.: Golden ball: a novel meta-heuristic to solve combinatorial
optimization problems based on soccer concepts. Applied Intelligence 41 (2014) 145–166

[69] Reinelt, G.: Tspliba traveling salesman problem library. ORSA journal on computing 3(4) (1991)
376–384

[70] Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural
Networks 5(1) (1994) 3–14

[71] Pongcharoen, P., Chainate, W., Thapatsuwan, P.: Exploration of genetic parameters and operators
through travelling salesman problem. Science Asia 33(2) (2007) 215–22

[72] Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization.
In: 7th International Conference on Evolutionary Programming, Springer (1998) 611–616

[73] Eiben, A.E., Schippers, C.: On evolutionary exploration and exploitation. Fundamenta Informaticae
35(1) (1998) 35–50

[74] Wong, Y.Y., Lee, K.H., Leung, K.S., Ho, C.W.: A novel approach in parameter adaptation and
diversity maintenance for genetic algorithms. Soft Computing 7(8) (2003) 506–515

[75] Osaba, E., Carballedo, R., Diaz, F., Perallos, A.: Discussion related to wang, c.-h., & lu j.-z.(2009).
a hybrid genetic algorithm that optimizes capacitated vehicle routing problem. expert systems with
applications, 36 (2), 2921-2936. Expert Systems with Applications 40(14) (2013) 5424–5426

[76] Berger, J., Barkaoui, M.: A new hybrid genetic algorithm for the capacitated vehicle routing
problem. Journal of the Operational Research Society 54(12) (2003) 1254–1262

[77] Pereira, F.B., Tavares, J., Machado, P., Costa, E.: Gvr: a new genetic representation for the vehicle
routing problem. In: Artificial Intelligence and Cognitive Science. Springer (2002) 95–102

[78] Nagata, Y.: Edge assembly crossover for the capacitated vehicle routing problem. In: Evolutionary

30

Computation in Combinatorial Optimization. Springer (2007) 142–153
[79] Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic algorithm for

the vehicle routing problem with time windows. Computers & Operations Research 37(4) (2010)
724–737

[80] Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Annals of the
History of Computing 7(1) (1985) 43–57

[81] Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA
Journal on computing 3(2) (1991) 149–156

31

