55 research outputs found

    Joint blind dereverberation and separation of speech mixtures

    Get PDF
    This paper proposes a method for jointly performing blind source separation (BSS) and blind dereverberation (BD) for speech mixtures. In most of the previous studies, BSS and BD have been explored separately. It is common that the performance of the speech separation algorithms deteriorates with the increase of room reverberations. Also most of the dereverberation algorithms rely on the availability of room impulse responses (RIRs) which are not readily accessible in practice. Therefore in this work the dereverberation and separation method are combined to mitigate the effects of room reverberations on the speech mixtures and hence to improve the separation performance. As required by the dereverberation algorithm, a step for blind estimation of reverberation time (RT) is used to estimate the decay rate of reverberations directly from the reverberant speech signal (i.e., speech mixtures) by modeling the decay as a Laplacian random process modulated by a deterministic envelope. Hence the developed algorithm works in a blind manner, i.e., directly dealing with the reverberant speech signals without explicit information from the RIRs. Evaluation results in terms of signal to distortion ratio (SDR) and segmental signal to reverberation ratio (SegSRR) reveal that using this method the performance of the separation algorithm that we have developed previously can be further enhanced. © 2012 EURASIP

    Underdetermined convolutive source separation using two dimensional non-negative factorization techniques

    Get PDF
    PhD ThesisIn this thesis the underdetermined audio source separation has been considered, that is, estimating the original audio sources from the observed mixture when the number of audio sources is greater than the number of channels. The separation has been carried out using two approaches; the blind audio source separation and the informed audio source separation. The blind audio source separation approach depends on the mixture signal only and it assumes that the separation has been accomplished without any prior information (or as little as possible) about the sources. The informed audio source separation uses the exemplar in addition to the mixture signal to emulate the targeted speech signal to be separated. Both approaches are based on the two dimensional factorization techniques that decompose the signal into two tensors that are convolved in both the temporal and spectral directions. Both approaches are applied on the convolutive mixture and the high-reverberant convolutive mixture which are more realistic than the instantaneous mixture. In this work a novel algorithm based on the nonnegative matrix factor two dimensional deconvolution (NMF2D) with adaptive sparsity has been proposed to separate the audio sources that have been mixed in an underdetermined convolutive mixture. Additionally, a novel Gamma Exponential Process has been proposed for estimating the convolutive parameters and number of components of the NMF2D/ NTF2D, and to initialize the NMF2D parameters. In addition, the effects of different window length have been investigated to determine the best fit model that suit the characteristics of the audio signal. Furthermore, a novel algorithm, namely the fusion K models of full-rank weighted nonnegative tensor factor two dimensional deconvolution (K-wNTF2D) has been proposed. The K-wNTF2D is developed for its ability in modelling both the spectral and temporal changes, and the spatial covariance matrix that addresses the high reverberation problem. Variable sparsity that derived from the Gibbs distribution is optimized under the Itakura-Saito divergence and adapted into the K-wNTF2D model. The tensors of this algorithm have been initialized by a novel initialization method, namely the SVD two-dimensional deconvolution (SVD2D). Finally, two novel informed source separation algorithms, namely, the semi-exemplar based algorithm and the exemplar-based algorithm, have been proposed. These algorithms based on the NMF2D model and the proposed two dimensional nonnegative matrix partial co-factorization (2DNMPCF) model. The idea of incorporating the exemplar is to inform the proposed separation algorithms about the targeted signal to be separated by initializing its parameters and guide the proposed separation algorithms. The adaptive sparsity is derived for both ii of the proposed algorithms. Also, a multistage of the proposed exemplar based algorithm has been proposed in order to further enhance the separation performance. Results have shown that the proposed separation algorithms are very promising, more flexible, and offer an alternative model to the conventional methods

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF

    산업용 로봇 고장 진단을 위한 암묵신호 분리 기반 다축 간섭 최소화 기법

    Get PDF
    학위논문(석사)--서울대학교 대학원 :공과대학 기계항공공학부,2019. 8. 윤병동.As smart factory is becoming popular, industrial robots are highly demanding in many manufacturing fields for factory automation. Unpredictable faults in the industrial robot could bring about interruptions in the whole manufacturing process. Therefore, many methods have been developed for fault detection of the industrial robots. Because gearboxes are the main parts in the power transmission system of industrial robots, fault detection of the gearboxes has been widely investigated. Especially, vibration analysis is a well-established technique for fault detection of the industrial robot gearbox. However, the vibration signals from the gearboxes are mixed convolutively and linearly at each axes, which makes it difficult to locate a damaged gearbox, and reduce fault detection performance. Thus, this paper develops a vibration signal separation technique for fault detection of industrial robot gearboxes under multi-axis interference. The developed method includes two steps, frequency domain independent component analysis (ICA-FD) and time domain independent component analysis (ICA-TD). ICA-FD is aimed at separating convolutive mixture of signals, and ICA-TD is aimed at eliminating the residual mixed components. The experiment is performed to demonstrate the effectiveness of the proposed method. The results show that the proposed method could successfully separate the mixed signals by obtaining vibration signals from each gearbox, and enhance fault detection performance for the industrial robot gearboxes.Chapter 1. Introduction 1 1.1 Background and Motivation . 1 1.2 Scope of Research 1 1.3 Structure of the Thesis . 5 Chapter 2. Structure of Industrial Robot . 6 2.1 Structure of Experimental Robot 6 2.2 Problem in Industrial Robot Fault Detection . 8 Chapter 3. Methodology 10 3.1. Time Domain Independent Component Analysis (ICA-TD) . 10 3.2. Frequency Domain Independent Component Analysis (ICA-FD) 12 3.2.1 Separation 12 3.2.2 Permutation . 14 3.2.3 Scaling . 17 3.3. Multi-stage Independent Component Analysis (MSICA) . 17 Chapter 4. Experiment Evaluation . 19 4.1 Experiment with MSICA 19 4.1.1 Experiment Process . 19 4.1.2 Result Analysis 28 4.2 Comparison Experiment Using Basic ICA Method . 33 4.3 Comparison Experiment Using ICA-FD Method . 38 Chapter 5. Discussion and Conclusion . 45 5.1 Conclusions and Contributions 45 5.2 Future Work 46 Bibliography . 47Maste

    Source Separation for Hearing Aid Applications

    Get PDF
    corecore