1,284 research outputs found

    A multiresolution manifold distance for invariant image similarity

    Full text link

    Manitest: Are classifiers really invariant?

    Get PDF
    Invariance to geometric transformations is a highly desirable property of automatic classifiers in many image recognition tasks. Nevertheless, it is unclear to which extent state-of-the-art classifiers are invariant to basic transformations such as rotations and translations. This is mainly due to the lack of general methods that properly measure such an invariance. In this paper, we propose a rigorous and systematic approach for quantifying the invariance to geometric transformations of any classifier. Our key idea is to cast the problem of assessing a classifier's invariance as the computation of geodesics along the manifold of transformed images. We propose the Manitest method, built on the efficient Fast Marching algorithm to compute the invariance of classifiers. Our new method quantifies in particular the importance of data augmentation for learning invariance from data, and the increased invariance of convolutional neural networks with depth. We foresee that the proposed generic tool for measuring invariance to a large class of geometric transformations and arbitrary classifiers will have many applications for evaluating and comparing classifiers based on their invariance, and help improving the invariance of existing classifiers.Comment: BMVC 201

    Information Surfaces in Systems Biology and Applications to Engineering Sustainable Agriculture

    Full text link
    Systems biology of plants offers myriad opportunities and many challenges in modeling. A number of technical challenges stem from paucity of computational methods for discovery of the most fundamental properties of complex dynamical systems. In systems engineering, eigen-mode analysis have proved to be a powerful approach. Following this philosophy, we introduce a new theory that has the benefits of eigen-mode analysis, while it allows investigation of complex dynamics prior to estimation of optimal scales and resolutions. Information Surfaces organizes the many intricate relationships among "eigen-modes" of gene networks at multiple scales and via an adaptable multi-resolution analytic approach that permits discovery of the appropriate scale and resolution for discovery of functions of genes in the model plant Arabidopsis. Applications are many, and some pertain developments of crops that sustainable agriculture requires.Comment: 24 Pages, DoCEIS 1

    Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs

    Get PDF
    State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifolds, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates

    Retrieval of 3D polygonal objects based on multiresolution signatures

    Get PDF
    In this paper we present a method for retrieving 3D polygonal objects by using two sets of multiresolution signatures. Both sets are based on the progressive elimination of object's details by iterative processing of the 3D meshes. The first set, with five parameters, is based on mesh smoothing. This mainly affects an object's surface. The second set, with three parameters, is based on difference volumes after successive mesh erosions and dilations. Characteristic feature vectors are constructed by combining the features at three mesh resolutions of each object. In addition to being invariant to mesh resolution, the feature vectors are invariant to translation, rotation and size of the objects. The method was tested on a set of 40 complex objects with mesh resolutions different from those used in constructing the feature vectors. By using all eight features, the average ranking rate obtained was 1.075: 37 objects were ranked first and only 3 objects were ranked second. Additional tests were carried out to determine the significance of individual features and all combinations. The same ranking rate of 1.075 can be obtained by using some combinations of only three features. © 2011 Springer-Verlag
    • …
    corecore