1,120 research outputs found

    Major Trends in Operating Systems Development

    Get PDF
    Operating systems have changed in nature in response to demands of users, and in response to advances in hardware and software technology. The purpose of this paper is to trace the development of major themes in operating system design from their beginnings through the present. This is not an exhaustive history of operating systems, but instead is intended to give the reader the flavor of the dif ferent periods in operating systems\u27 development. To this end, the paper will be organized by topic in approximate order of development. Each chapter will start with an introduction to the factors behind the rise of the period. This will be fol lowed by a survey of the state-of-the-art systems, and the conditions influencing them. The chapters close with a summation of the significant hardware and software contributions from the period

    Shared versus distributed memory multiprocessors

    Get PDF
    The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors

    Computer performance analysis - Measurement objectives and tools

    Get PDF
    Objectives and measurements in computer performance analysi

    Problems in characterizing barrier performance

    Get PDF
    The barrier is a synchronization construct which is useful in separating a parallel program into parallel sections which are executed in sequence. The completion of a barrier requires cooperation among all executing processes. This requirement not only introduces the wait for the slowest process delay which is inherent in the definition of the synchronization, but also has implications for the efficient implementation and measurement of barrier performance in different systems. Types of barrier implementation and their relationship to different multiprocessor environments are described. Then the problem of measuring the performance of barrier implementations on specific machine architecture is discussed. The fact that the barrier synchronization requires the cooperation of all processes makes the problem of performance measurement similarly global. Making non-intrusive measurements of sufficient accuracy can be tricky on systems offering only rudimentary measurement tools

    The force on the flex: Global parallelism and portability

    Get PDF
    A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment

    An overview of the Amoeba distributed operating system

    Get PDF
    As hardware prices continue to drop rapidly, building large computer systems by interconnecting substantial numbers of microcomputers becomes increasingly attractive. Many techniques for interconnecting the hardware, such as Ethernet [Metcalfe and Boggs, 1976], ring nets [Farber and Larson, 1972], packet switching, and shared memory are well understood, but the corresponding software techniques are poorly understood. The design of general purpose distributed operating systems is one of the key research issues for the 1980s
    corecore