77,528 research outputs found

    Improving audio-visual speech recognition using deep neural networks with dynamic stream reliability estimates

    Get PDF
    Audio-visual speech recognition is a promising approach to tackling the problem of reduced recognition rates under adverse acoustic conditions. However, finding an optimal mechanism for combining multi-modal information remains a challenging task. Various methods are applicable for integrating acoustic and visual information in Gaussian-mixture-model-based speech recognition, e.g., via dynamic stream weighting. The recent advances of deep neural network (DNN)-based speech recognition promise improved performance when using audio-visual information. However, the question of how to optimally integrate acoustic and visual information remains. In this paper, we propose a state-based integration scheme that uses dynamic stream weights in DNN-based audio-visual speech recognition. The dynamic weights are obtained from a time-variant reliability estimate that is derived from the audio signal. We show that this state-based integration is superior to early integration of multi-modal features, even if early integration also includes the proposed reliability estimate. Furthermore, the proposed adaptive mechanism is able to outperform a fixed weighting approach that exploits oracle knowledge of the true signal-to-noise ratio

    Leveraging native language information for improved accented speech recognition

    Full text link
    Recognition of accented speech is a long-standing challenge for automatic speech recognition (ASR) systems, given the increasing worldwide population of bi-lingual speakers with English as their second language. If we consider foreign-accented speech as an interpolation of the native language (L1) and English (L2), using a model that can simultaneously address both languages would perform better at the acoustic level for accented speech. In this study, we explore how an end-to-end recurrent neural network (RNN) trained system with English and native languages (Spanish and Indian languages) could leverage data of native languages to improve performance for accented English speech. To this end, we examine pre-training with native languages, as well as multi-task learning (MTL) in which the main task is trained with native English and the secondary task is trained with Spanish or Indian Languages. We show that the proposed MTL model performs better than the pre-training approach and outperforms a baseline model trained simply with English data. We suggest a new setting for MTL in which the secondary task is trained with both English and the native language, using the same output set. This proposed scenario yields better performance with +11.95% and +17.55% character error rate gains over baseline for Hispanic and Indian accents, respectively.Comment: Accepted at Interspeech 201

    Speaker- and Age-Invariant Training for Child Acoustic Modeling Using Adversarial Multi-Task Learning

    Full text link
    One of the major challenges in acoustic modelling of child speech is the rapid changes that occur in the children's articulators as they grow up, their differing growth rates and the subsequent high variability in the same age group. These high acoustic variations along with the scarcity of child speech corpora have impeded the development of a reliable speech recognition system for children. In this paper, a speaker- and age-invariant training approach based on adversarial multi-task learning is proposed. The system consists of one generator shared network that learns to generate speaker- and age-invariant features connected to three discrimination networks, for phoneme, age, and speaker. The generator network is trained to minimize the phoneme-discrimination loss and maximize the speaker- and age-discrimination losses in an adversarial multi-task learning fashion. The generator network is a Time Delay Neural Network (TDNN) architecture while the three discriminators are feed-forward networks. The system was applied to the OGI speech corpora and achieved a 13% reduction in the WER of the ASR.Comment: Submitted to ICASSP202
    • …
    corecore