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ABSTRACT

Audio-visual speech recognition is a promising approach

to tackling the problem of reduced recognition rates under

adverse acoustic conditions. However, finding an optimal

mechanism for combining multi-modal information remains

a challenging task. Various methods are applicable for inte-

grating acoustic and visual information in Gaussian-mixture-

model-based speech recognition, e.g., via dynamic stream

weighting. The recent advances of deep neural network

(DNN)-based speech recognition promise improved perfor-

mance when using audio-visual information. However, the

question of how to optimally integrate acoustic and visual

information remains.

In this paper, we propose a state-based integration scheme

that uses dynamic stream weights in DNN-based audio-visual

speech recognition. The dynamic weights are obtained from

a time-variant reliability estimate that is derived from the au-

dio signal. We show that this state-based integration is su-

perior to early integration of multi-modal features, even if

early integration also includes the proposed reliability esti-

mate. Furthermore, the proposed adaptive mechanism is able

to outperform a fixed weighting approach that exploits oracle

knowledge of the true signal-to-noise ratio.

Index Terms— audio-visual speech recognition, deep

neural networks, feature fusion, dynamic stream weighting

1. INTRODUCTION

Despite many recent advances in the field of automatic speech

recognition, there is still room for improvement regarding the

robustness against non-stationary environmental noise, which

is often present in real world applications, e.g., in distant talk-

ing scenarios. Audio-visual speech recognition (AVSR) ame-

liorates this problem by including additional visual informa-

tion to preserve or even improve the recognition performance

under harsh environmental conditions.

A common approach to integrating acoustic and visual

information is to combine the likelihood estimates of both

modalities in a weighted fashion. However, finding an op-

timal weighting scheme that appropriately considers the reli-

ability of each modality is a challenging task.

The approach of dynamic stream weight estimation has

proven to be advantageous for combining the acoustic and vi-

sual information in purely statistical systems that are based

on hidden Markov models (HMMs) modeling the state output

densities using Gaussian mixture models (GMMs) [1, 2]. Re-

cent studies have shown that deep neural networks (DNNs)

can yield significant improvements for AVSR compared to

generative statistical models. However, most studies only

utilize the audio and video information at hand and do not

consider additional stream reliability measures to inform the

multi-modal integration process [3, 4, 5, 6].

In this paper, we analyze the efficacy of using an addi-

tional reliability measure, i.e., dynamically estimated signal-

to-noise ratios (SNR) of the acoustic modality, to better inte-

grate the acoustic and visual features in a DNN-based recog-

nition system. We compare the performance of two different

integration methods, namely fusing the audio, video and reli-

ability features at the DNN input layer (early integration) ver-

sus a state-based integration scheme that uses dynamic stream

weights based on the same reliability estimate.

2. RELATED WORK

Thangthai et al. [3] report that a HMM-DNN hybrid system

is superior to an HMM-GMM-based recognizer when using

a simple concatenation of audio and video features without

additional weighting of the individual modalities. Noda et

al. [4] and Ninomiya et al. [5] utilize multi-stream HMMs for

integrating audio-visual features that have been derived from

deep learning architectures, where the integration of streams

is based on manually optimized weights. Huang and Kings-

bury [6] investigate the fusion of mid-level features by con-

catenating the hidden representations of single-modality deep

belief networks (DBNs) and using the result as the input to

an audio-visual DBN. Heckmann et al. [7] compare different

criteria, i.e., entropy, dispersion and voicing index, for com-

bining the audio and video a-posteriori probabilities estimated

by an artificial neural network on a number recognition task.
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3. SYSTEM OVERVIEW

We utilize a hybrid system based on HMMs for modeling

the temporal structure of the audio-visual speech signals.

The HMM state observation probabilities are estimated by

a feed-forward DNN using the observed feature sequence.

The speech recognizer has been implemented using the Kaldi

speech recognition toolkit [8], which was extended to support

stream weighting for combining multiple modalities.

We start by training a conventional HMM-GMM-based

triphone recognizer using feature space maximum likelihood

linear regression (fMLLR) [9] and speaker adaptive training

on top of LDA1-transformed features [10], where we follow

the standard recipe provided by the Kaldi baseline scripts for

the CHiME-2 [11] data. The input dimension of the LDA

transform depends on the dimension of utilized features.

When using a context window length of 7 frames (centered

around the current frame) the output dimension of the LDA

transform is 40 dimensions.

Next, we gradually build a feed-forward DNN to replace

the generative model of the previous recognition system. The

DNN layers are first initialized by means of restricted Boltz-

mann machines that are pre-trained using the contrastive

divergence algorithm [12]. The pre-trained layers are then

stacked and fine-tuned by minimizing the per-frame cross-

entropy. The fine-tuning makes use of the state alignments

derived from a forced alignment by using an HMM-GMM

system that was trained on clean data (cf. Sec. 4).

As a final step, we improve the DNNs by conducting sev-

eral iterations of sequence-discriminative training using the

state-level minimum Bayes risk (sMBR) criterion [13].

The input features of all DNN systems are temporally

spliced versions of the LDA-fMLLR-transformed features

used for the initial HMM-GMM system with a context win-

dow length of 11 frames, corresponding to an input layer size

of 440 dimensions. The networks consist of 6 hidden layers,

each using a sigmoid activation function and the number of

hidden units in each layer is 2048. The output layers use a

soft-max function and consist of 1453 units that correspond

to the individual triphone states in the HMM, which have

been determined by decision tree clustering using the clean

audio-only HMM-GMM system.

3.1. Feature types and noise estimation

We compare various feature types and feature combinations:

23-dimensional Mel filterbank features, 13-dimensional Mel

frequency cepstral coefficients (MFCC), 32-dimensional

ratemap features [14], and 13-dimensional Gammatone fre-

quency cepstral coefficients (GFCC) [15]. The ratemap and

GFCC features are motivated by the auditory system, as

they encode a spectro-temporal representation of the auditory

nerve firing rate that stems from the mechanotransduction

process in the cochlea. This provides an interesting compari-

son with the more commonly used features such as MFCCs.

1Linear discriminant analysis.

The 63-dimensional video features are obtained from a

discrete cosine transform of the gray-scale images that con-

tain the mouth regions, determined by the Viola-Jones algo-

rithm, as in [16].

Our goal is to combine the acoustic and visual information

in such a way as to reliably obtain better recognition rates than

the best of the two single-modality systems. For this purpose,

here, we utilize a time-variant stream reliability measure, and

we evaluate two different approaches for its use—either an

early integration of different modalities, including reliabili-

ties, at the input layer of the DNN, or a weighted combination

of the DNN posterior outputs, with the weighting controlled

by the reliability measure. For this purpose, we measure the

degradation—and thus the reliability—of the acoustic modal-

ity using the Improved Minima Controlled Recursive Averag-

ing (IMCRA) approach [17] that was shown to perform well

under highly non-stationary noise conditions [18].

The IMCRA algorithm provides various time-frequency

estimates, where we make use of the estimated a-priori SNR

Ξt,f as well as of the enhanced power spectrum

X̃t,f =
Ξ2

t,f

(Ξt,f + 1)2
Xt,f = Gt,f Xt,f , (1)

where Xt,f represents the linear power spectrum of the noisy

observation signal. We regard Ξt,f and X̃t,f as the reliability

feature, with the latter encoding the SNR indirectly in terms

of the Wiener gain function Gt,f .

The control parameters of the IMCRA algorithm were

chosen as in [17], with the difference that we set the window

length to one as we found that small windows sizes result in

higher recognition rates. The number of frequency compo-

nents of the spectral quantities is given by Nf = 257.

When used as a single or auxiliary feature, the IMCRA

estimates are warped to a 23-dimensional Mel scale to reduce

the number of feature vector components and to give a fair

comparison to the other lower-dimensional features.

3.2. Early integration

Let xi = [xi
0, . . . , x

i
Di−1

] denote the feature vector of the i-th

feature type that consists of Di dimensions, where we have

omitted the dependency on the frame time t for convenience.

The extended feature vector for two different feature types is

then given by their concatenated version

x̃ = [x0||x1] = [x0

0, . . . , x
0

D0−1, x
1

0, . . . , x
1

D1−1]. (2)

This procedure can be extended to an arbitrary number of fea-

ture types, and we compare the performance for different fea-

ture combinations in Sec. 5.2.

3.3. State-based integration

The state-based audio-visual integration is achieved through

a weighted combination of the DNN state posteriors of two

different models

log p̃(oAV

t |s) = λt log p
′(oA

t |s) + (1−λt) log p
′′(oV

t |s), (3)
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where λt ∈ [0, 1] represents the time-dependent stream

weight and log p′(oA
t |s) and log p′′(oV

t |s) denote the log-

likelihood of the acoustic feature observations o
A
t and the

visual feature observation o
V
t , respectively, given the state

index s. The combined log-likelihood log p̃(oAV
t |s) of both

modalities is then used for decoding the sequence of observa-

tion pairs oAV
t = (oA

t ,o
V
t ).

For computing the dynamic stream weights, we map the

frequency-averaged a-priori SNR estimate

Ξ̄t =
1

Nf

∑

∀f

Ξt,f , (4)

to a suitable stream weight value by using a logistic function

λt = α+
β

1 + e−
Ξ̄t−µ

σ

, (5)

where α represents an offset, β is a scaling factor, µ is the

midpoint of the curve and σ defines the slope of the curve.

The parameters of the mapping function have been found

by fitting the logistic function to the cumulative probability

density function of the IMCRA a-priori SNR estimates us-

ing all utterances and time frames of the training set, with

the constraint that weight values are limited to the interval

[0.60, 0.74], which are based on the range of optimal weights

found via stream-weight tuning (cf. Fig. 2).

In addition, we use a semi-dynamic scheme, where the

weights are not adjusted frame by frame but kept constant

per utterance using the temporal average of the a-priori SNR

estimate. The parameters of the logistic function have been

found in the same manner as for Eq. (5) by using the density

functions of the temporally averaged SNR.

4. EXPERIMENTAL SETUP

We evaluate our approach using the audio data of Track 1

of the 2nd CHiME Speech Separation and Recognition Chal-

lenge [11], where the task is to recognize short command sen-

tences that are of the form

<command:4><color:4><preposition:4>

<letter:25><number:10><adverb:4>.

In the brackets, the number of alternatives for each word type

is shown. Clean audio material from the GRID corpus [19] is

used, which contains recordings from 34 speakers (18 male,

16 female). All audio signals have been processed to sim-

ulate room reverberation, small speaker movements and en-

vironmental noise. To achieve this, the signals were filtered

with binaural room impulse responses followed by an addi-

tive mixing with a highly non-stationary background noise

that was recorded in a family living room. The temporal

placement of the clean speech within the background noise

has been done in a controlled manner to yield six different

SNR conditions between -6 dB and 9 dB without rescaling the

speech or noise signals. The CHiME challenge data consists

of three pre-segmented sets, i.e., a training set, a development

set, and a test set. The original audio material is sampled at

16 kHz and contains binaural signals. In the following exper-

iments, all signals were downmixed by taking the average of

the left and the right channel before extracting audio features.

The video data was also taken from the GRID corpus, which

contains clean facial video recordings for each utterance.

4.1. Training and evaluation

We use the development set for determining the optimal set of

features for the early integration scheme as well as for finding

the fixed oracle stream weights for each SNR condition. The

test set is then used for evaluating our proposed methods.

All models are trained under matched conditions, i.e., the

training and evaluation process only considers the noisy mix-

ture signals provided by the corpus.

We measure the speech recognition performance in terms

of the keyword accuracy (the official evaluation metric of the

CHiME challenge), where a keyword is defined by the letter-

number pair that occures before the adverb of each utterance.

5. RESULTS

We first provide a performance comparison between differ-

ent models and look for the optimal set of features. Based

on these findings we then analyze the proposed state-based

integration approach using dynamic reliability estimates.

5.1. Model performance

We compare the performance between different models, i.e.,

the GMM-based system and the DNN-based systems at dif-

ferent training stages when using MFCC features in Fig. 1.

We can see that DNN-based systems are able to outperform

the GMM-based system for each SNR, where the largest rel-

ative improvements are seen for very low SNR conditions.

The recognition accuracy further increases when using the

sMBR criterion for training, where a higher number of iter-

ations (i.e., sMBR-5 vs. sMBR-1) yields slight performance

improvements on average over all SNRs. For the sake of com-

pactness, we thus limit the ensuing evaluation to using only

the strongest DNN system (DNN sMBR-5).
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Fig. 1: Comparison of models for MFCC features (development set).

5.2. Early integration

Table 1 shows the keyword accuracies that are achieved for

single feature types and their combinations using early inte-
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gration. The results show that a fusion of audio and video

features (i.e., FV, MV, RV, and GV) can generally improve

the recognition performance at low SNR conditions below

0 dB, whereas audio-only features (i.e., F, M, R, and G) are

generally superior at higher SNR conditions (≥ 6 dB). A

direct comparison of the isolated IMCRA-based reliability

measures shows that the enhanced spectrum IX̃ outperforms

the estimated a-priori SNR IΞ for each condition. When

using IX̃ as an additional reliability feature for the early in-

tegration approach, the average recognition performance can

be further improved as compared to the audio-visual fea-

ture combinations in most cases (IX̃FV, IX̃MV, IX̃GV). The

ratemap features clearly outperform the other feature types

when used in combination with the video features (i.e., RV

and IX̃RV). Considering the lip-reading performance, the

video features alone yield a keyword recognition accuracy of

71.34 %, which corresponds to a word accuracy of 84.81 %.

Table 1: Keyword accuracies (%) obtained on the development set

for various features: Mel filterbank (F), MFCC (M), Ratemap (R),

GFCC (G), Video (V), IMCRA-enhanced spectrum (I
X̃

), IMCRA-

estimated a-priori SNR (IΞ), and selected fused combinations.

Feat. -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.

F 72.11 78.06 86.14 90.65 92.86 93.11 85.49

M 73.21 78.66 84.78 90.82 93.11 94.05 85.77

R 73.13 80.36 86.48 89.54 92.77 93.37 85.94

G 73.98 78.57 86.48 89.71 92.86 94.47 86.01

V 71.34 71.34 71.34 71.34 71.34 71.34 71.34

IΞ 62.07 66.84 75.68 80.44 85.29 87.93 76.38

I
X̃

71.60 78.49 83.50 89.12 91.75 93.11 84.59

FV 87.76 88.52 88.69 89.88 90.90 90.82 89.43

MV 82.14 83.42 84.01 86.31 87.41 87.33 85.10

RV 87.76 88.18 89.88 91.50 92.26 92.26 90.31

GV 83.84 84.69 85.29 86.90 88.27 88.52 86.25

I
X̃

FV 86.56 89.03 89.37 91.33 91.84 92.43 90.09

I
X̃

MV 84.44 87.24 88.78 89.80 90.65 91.07 88.66

I
X̃

RV 85.97 88.10 89.37 91.75 92.94 93.11 90.21

I
X̃

GV 84.69 87.16 88.86 90.90 91.84 91.58 89.17

5.3. State-based integration

The analysis of the state-based integration approach is done

using the ratemap acoustic features as they have achieved the

best performance for the early integration approach. Figure 2

shows the optimal fixed stream weights λopt that were found

via parameter search on the development set. We can see that

stream weights are roughly increasing with increasing SNR

and their values are within the interval [0.60, 0.74].

The final results obtained on the test set using the ratemap

acoustic features are given by Tab. 2. We can see that the

early integration (RV, IX̃RV) outperforms the fixed stream

weights (Fixed) on average. However, the reliability features

do not improve the performance for the early integration ap-

proach (IX̃RV vs. RV). The best performance is achieved by

0.60
0.66

0.65 0.67
0.67

0.74100
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K
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Fig. 2: Optimal fixed stream weights and corresponding keyword

accuracies for ratemap acoustic features (development set).

the dynamic stream weights, where the frame-wise weighting

(SNR-F) outperforms the utterance-wise weighting (SNR-U)

for most SNRs above -3 dB and on average.

Table 2: Keyword accuracies (%) for early versus state-based in-

tegration using the ratemap acoustic features. All scores are based

on the test set. The methods R, V, RV, and I
X̃

RV correspond to

the features of Tab. 1. Fixed corresponds to the optimal fixed stream

weights tuned on the development set. SNR-U and SNR-F denote the

utterance and frame-wise dynamic stream weights estimated without

oracle SNR knowledge.

Method -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.

R 73.88 78.44 85.48 88.49 92.01 93.56 85.31

V 70.96 70.96 70.96 70.96 70.96 70.96 70.96

RV 87.20 87.63 89.60 90.64 91.58 91.58 89.70

I
X̃

RV 84.36 86.00 88.06 90.38 90.89 92.53 88.70

Fixed 71.48 79.21 89.35 94.76 94.85 93.56 87.20

SNR-U 88.32 90.21 93.04 94.67 95.02 96.74 93.00

SNR-F 87.97 90.12 93.47 95.02 94.76 96.82 93.03

6. CONCLUSIONS

We have analyzed the effect of an additional stream reliability

estimate for improving the integration of acoustic and visual

data in DNN-based AVSR. Specifically, we have compared

its value in early integration and in state-based integration.

All experiments have clearly shown that state-based integra-

tion, with stream weighting based on the reliabilities, is su-

perior to using reliabilities as additional features in early in-

tegration, calling into question our original idea of letting the

DNN learn the optimal integration from data alone. Under all

conditions, the introduced dynamic weighting mechanism has

also outperformed a strong baseline setting using fixed stream

weights that exploit oracle knowledge of the current SNR.

Furthermore, we have compared a range of acoustic fea-

ture types for use in DNN-based AVSR, finding that the

auditory-inspired ratemap features show superior perfor-

mance compared to other feature types that are more com-

monly used for speech recognition applications (such as Mel

filterbank features).
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