1,014 research outputs found

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Integrated Maintenance and Production Scheduling

    Get PDF

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Integrated Production and Distribution planning of perishable goods

    Get PDF
    Tese de doutoramento. Programa Doutoral em Engenharia Industrial e Gestão. Faculdade de Engenharia. Universidade do Porto. 201

    Non-identical parallel machines batch processing problem with release dates, due dates and variable maintenance activity to minimize total tardiness

    Full text link
    [EN] Combination of job scheduling and maintenance activity has been widely investigated in the literature. We consider a non-identical parallel machines batch processing (BP) problem with release dates, due dates and variable maintenance activity to minimize total tardiness. An original mixed integer linear programming (MILP) model is formulated to provide an optimal solution. As the problem under investigation is known to be strongly NP-hard, two meta-heuristic approaches based on Simulated Annealing (SA) and Variable Neighborhood Search (VNS) are developed. A constructive heuristic method (H) is proposed to generate initial feasible solutions for the SA and VNS. In order to evaluate the results of the proposed solution approaches, a set of instances were randomly generated. Moreover, we compare the performance of our proposed approaches against four meta heuristic algorithms adopted from the literature. The obtained results indicate that the proposed solution methods have a competitive behaviour and they outperform the other meta-heuristics in most instances. Although in all cases, H + SA is the most performing algorithm compared to the others.Beldar, P.; Moghtader, M.; Giret Boggino, AS.; Ansaripoord, AH. (2022). Non-identical parallel machines batch processing problem with release dates, due dates and variable maintenance activity to minimize total tardiness. Computers & Industrial Engineering. 168:1-28. https://doi.org/10.1016/j.cie.2022.10813512816

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Trends and topics in IJPR from 1961 to 2017:a statistical history

    Get PDF
    This paper studies the history of the International Journal of Production Research (IJPR) by analysing the topics that have received the most attention in each of the journal’s publication years. Text mining exposed for scrutiny the most frequently mentioned and cited terms contained in the titles, abstracts and keywords of IJPR papers. Analyses suggest that the triad of scheduling/optimisation/simulation and supply-chain-related topics have been IJPR’s mainstays, but valuable opportunities remain for relevant topics that have not yet been concurrently and frequently studied. Results also show that terms related to sustainability and risk management topics have gained recent relevance. In addition, IJPR appears to complement its modelling technique focus with empirical methodological approaches to provide a well-balanced perspective, since the ‘case study’ term is common. Finally, a linear relationship is found between the number of papers that have covered certain topics and the number of citations those topics have received, highlighting which topics had fewer or more citations than expected, given the number of papers that covered those topics. IJPR stands as one of the most prestigious and established journals in its field and the results from this study indicate the evolving interests of the field for over half a century

    Quantitative Methods For Select Problems In Facility Location And Facility Logistics

    Get PDF
    This dissertation presented three logistics problems. The first problem is a parallel machine scheduling problems that considers multiple unique characteristics including release dates, due dates, limited machine availability and job splitting. The objective of is to minimize the total amount of time required to complete work. A mixed integer programming model is presented and a heuristic is developed for solving the problem. The second problem extends the first parallel scheduling problem to include two additional practical considerations. The first is a setup time that occurs when warehouse staff change from one type of task to another. The second is a fixed time window for employee breaks. A simulated annealing (SA) heuristic is developed for its solution. The last problem studied in this dissertation is a new facility location problem variant with application in disaster relief with both verified data and unverified user-generated data are available for consideration during decision making. A total of three decision strategies that can be used by an emergency manager faced with a POD location decision for which both verified and unverified data are available are proposed: Consider Only Verified, Consider All and Consider Minimax Regret. The strategies differ according to how the uncertain user-generated data is incorporated in the planning process. A computational study to compare the performance of the three decision strategies across a range of plausible disaster scenarios is presented

    A study on flexible flow shop and job shop scheduling using meta-heuristic approaches

    Get PDF
    Scheduling aims at allocation of resources to perform a group of tasks over a period of time in such a manner that some performance goals such as flow time, tardiness, lateness, and makespan can be minimized. Today, manufacturers face the challenges in terms of shorter product life cycles, customized products and changing demand pattern of customers. Due to intense competition in the market place, effective scheduling has now become an important issue for the growth and survival of manufacturing firms. To sustain in the current competitive environment, it is essential for the manufacturing firms to improve the schedule based on simultaneous optimization of performance measures such as makespan, flow time and tardiness. Since all the scheduling criteria are important from business operation point of view, it is vital to optimize all the objectives simultaneously instead of a single objective. It is also essentially important for the manufacturing firms to improve the performance of production scheduling systems that can address internal uncertainties such as machine breakdown, tool failure and change in processing times. The schedules must meet the deadline committed to customers because failure to do so may result in a significant loss of goodwill. Often, it is necessary to reschedule an existing plan due to uncertainty event like machine breakdowns. The problem of finding robust schedules (schedule performance does not deteriorate in disruption situation) or flexible schedules (schedules expected to perform well after some degree of modification when uncertain condition is encountered) is of utmost importance for real world applications as they operate in dynamic environments
    corecore