2,725 research outputs found

    Physiological Self Regulation with Biofeedback Games

    Get PDF
    Mental stress is a global epidemic that can have serious health consequences including cardiovascular diseases and diabetes. Several techniques are available to teach stress self-regulation skills including therapy, meditation, deep breathing, and biofeedback. While effective, these methods suffer from high drop-outs due to the monotonic nature of the exercises and are generally practiced in quiet relaxed environment, which may not transfer to real-world scenarios. To address these issues, this dissertation presents a novel intervention for stress training using games and wearable sensors. The approach consists of monitoring the user’s physiological signals during gameplay, mapping them into estimates of stress levels, and adapting the game in a way that promotes states of low arousal. This approach offers two key advantages. First, it allows users to focus on the gameplay rather than on monitoring their physiological signals, which makes the training far more engaging. More importantly, it teaches users to self-regulate their stress response, while performing a task designed to increase arousal. Within this broad framework, this dissertation studies three specific problems. First, the dissertation evaluates three physiological signals (breathing rate, heart rate variability, and electrodermal activity) that span across the dimensions of degrees of selectivity in measuring arousal and voluntary control in their effectiveness in lowering arousal. This will identify the signal appropriate for game based stress training and the associated bio-signal processing techniques for real-time arousal estimation. Second, this dissertation investigates different methods of biofeedback presentation e.g. visual feedback and game adaptation during gameplay. Selection of appropriate biofeedback mechanism is critical since it provides the necessary information to improve the perception of visceral states (e.g. stress) to the user. Furthermore, these modalities facilitate skill acquisition in distinct ways (i.e., top-down and bottom-up learning) and influence retention of skills. Third, this dissertation studies reinforcement scheduling in a game and its effect on skill learning and retention. A reinforcement schedule determines which occurrences of the target response are reinforced. This study focuses on continuous and partial reinforcement schedules in GBF and their effect on resistance to extinction (i.e. ability to retain learned skills) after the biofeedback is removed. The main contribution of this dissertation is in demonstrating that stress self-regulation training can be embedded in videogames and help individuals develop more adaptive responses to reduce physiological stress encountered both at home and work

    MELOMICS: Contributions of computer science and biology to receptive music therapy

    Get PDF
    It is surprising the fact that while the personalized medicine model is more and more accepted, receptive music therapy is still applied collectively. Although, in some hospitals the subject (patient or health-medical staff) is allowed to select the genre or artist, with most published clinical studies reporting on concrete types of music (eg, relaxing or classical) that are applied to groups of patients. Customizing songs to patient characteristics would make the study much more complex: on the one hand, a higher variability demands a larger sample and, on the other hand, it significantly increases the time and care dedicated to each patient. In any case, customization is a subjective element which strongly depends on individual preferences. MELOMICS integrates computer technology that adapts music to the condition of the patient, in an automatic and objective way. This enables the future design of biofeedback devices, which in the long run results in being favorable for the therapeutic response of the patient.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An ambient assisted living solution for mobile environments

    Get PDF
    An Ambient Assisted Living (AAL) mobile health application solution with biofeedback based on body sensors is very useful to perform a data collection for diagnosis in patients whose clinical conditions are not favourable. This system allows comfort, mobility, and efficiency in all the process of data collection providing more confidence and operability. A physical fall may be considered something natural in the life span of a human being from birth to death. In a perfect scenario it would be possible to predict when a fall will occur in order to avoid it. Falls represent a high risk for senior people health. Those falls can cause fractures or injuries causing great dependence and debilitation to the elderly and even death in extreme cases. Falls can be detected by the accelerometer included in most of the available mobile phones or portable digital assistants (PDAs). To reverse this tendency, it can be obtained more accurate data for patients monitoring from the body sensors attached to the human body (such as, electrocardiogram (ECG), electromyography (EMG), blood volume pulse (BVP), electro dermal activity (EDA), and galvanic skin response (GSR)). Then, this dissertation reviews the related literature on this topic and introduces a mobile solution for falls prevention, detection, and biofeedback monitoring. The proposed system collects sensed data that is sent to a smartphone or tablet through Bluetooth. Mobile devices are used to process and display information graphically to users. The falls prevention system uses collected data from sensors in order to control and advice the patient or even to give instructions to treat an abnormal condition to reduce the falls risk. In cases of symptoms that last more time it can even detect a possible disease. The signal processing algorithms plays a key role in the fall prevention system. These algorithms in real time, through the capture of biofeedback data, are needed to extract relevant information from the signals detected to warn the patient. Monitoring and processing data from sensors is realized by a smartphone or tablet that will send warnings to users. All the process is performed in real time. These mobile devices are also used as a gateway to send the collected data to a Web service, which subsequently allows data storage and consultation. The proposed system is evaluated, demonstrated, and validated through a prototype and it is ready for use

    Autogenic-Feedback Training Exercise (AFTE) Method and System

    Get PDF
    The Autogenic-Feedback Training Exercise (AFTE) method of the present invention is a combined application of physiologic and perceptual training techniques. such as autogenic therapy and biofeedback. This combined therapy approach produces a methodology that is appreciably more effective than either of the individual techniques used separately. The AFTE method enables sufficient magnitude of control necessary to significantly reduce the behavioral and physiologic reactions to severe environmental stressors. It produces learned effects that are persistent over time and are resistant to extinction and it can be administered in a short period of time. The AFTE method may be used efficiently in several applications, among which are the following: to improve pilot and crew performance during emergency flying conditions; to train people to prevent the occurrence of nausea and vomiting associated with motion and sea sickness, or morning sickness in early pregnancy; as a training method for preventing or counteracting air-sickness symptoms in high-performance military aircraft; for use as a method for cardiovascular training, as well as for multiple other autonomic responses, which may contribute to the alleviation of Space Motion Sickness (SMS) in astronauts and cosmonauts; training people suffering from migraine or tension headaches to control peripheral blood flow and reduce forehead and/or trapezius muscle tension; training elderly people suffering from fecal incontinence to control their sphincter muscles; training cancer patients to reduce the nauseagenic effects of chemotherapy; and training patients with Chronic Intestinal Pseudo-obstruction (CIP)

    Designing interactive virtual environments with feedback in health applications.

    Get PDF
    One of the most important factors to influence user experience in human-computer interaction is the user emotional reaction. Interactive environments including serious games that are responsive to user emotions improve their effectiveness and user satisfactions. Testing and training for user emotional competence is meaningful in healthcare field, which has motivated us to analyze immersive affective games using emotional feedbacks. In this dissertation, a systematic model of designing interactive environment is presented, which consists of three essential modules: affect modeling, affect recognition, and affect control. In order to collect data for analysis and construct these modules, a series of experiments were conducted using virtual reality (VR) to evoke user emotional reactions and monitoring the reactions by physiological data. The analysis results lead to the novel approach of a framework to design affective gaming in virtual reality, including the descriptions on the aspects of interaction mechanism, graph-based structure, and user modeling. Oculus Rift was used in the experiments to provide immersive virtual reality with affective scenarios, and a sample application was implemented as cross-platform VR physical training serious game for elderly people to demonstrate the essential parts of the framework. The measurements of playability and effectiveness are discussed. The introduced framework should be used as a guiding principle for designing affective VR serious games. Possible healthcare applications include emotion competence training, educational softwares, as well as therapy methods

    Treat me well : affective and physiological feedback for wheelchair users

    Get PDF
    This work reports a electrocardiograph and skin conductivity hardware architecture, based on E-textile electrodes, attached to a wheelchair for affective and physiological computing. Appropriate conditioning circuits and a microcontroller platform that performs acquisition, primary processing, and communication using Bluetooth were designed and implemented. To increase the accuracy and repeatability of the skin conductivity measuring channel, force measurement sensors were attached to the system certifying measuring contact force on the electrode level. Advanced processing including Rwave peak detector, adaptive filtering and autonomic nervous system analysis based on wavelets transform was designed and implemented on a server. A central design of affective recognition and biofeedback system is described.Fundação para a Ciência e a Tecnologia (FCT

    A Mobile Healthcare Solution for Ambient Assisted Living Environments

    Get PDF
    Elderly people need regular healthcare services and, several times, are dependent of physicians’ personal attendance. This dependence raises several issues to elders, such as, the need to travel and mobility support. Ambient Assisted Living (AAL) and Mobile Health (m-Health) services and applications offer good healthcare solutions that can be used both on indoor and in mobility environments. This dissertation presents an ambient assisted living (AAL) solution for mobile environments. It includes elderly biofeedback monitoring using body sensors for data collection offering support for remote monitoring. The used sensors are attached to the human body (such as the electrocardiogram, blood pressure, and temperature). They collect data providing comfort, mobility, and guaranteeing efficiency and data confidentiality. Periodic collection of patients’ data is important to gather more accurate measurements and to avoid common risky situations, like a physical fall may be considered something natural in life span and it is more dangerous for senior people. One fall can out a life in extreme cases or cause fractures, injuries, but when it is early detected through an accelerometer, for example, it can avoid a tragic outcome. The presented proposal monitors elderly people, storing collected data in a personal computer, tablet, or smartphone through Bluetooth. This application allows an analysis of possible health condition warnings based on the input of supporting charts, and real-time bio-signals monitoring and is able to warn users and the caretakers. These mobile devices are also used to collect data, which allow data storage and its possible consultation in the future. The proposed system is evaluated, demonstrated and validated through a prototype and it is ready for use. The watch Texas ez430-Chronos, which is capable to store information for later analysis and the sensors Shimmer who allow the creation of a personalized application that it is capable of measuring biosignals of the patient in real time is described throughout this dissertation

    AI-Enabled Smartphone-Based Intervention Mental Health Application for University Students

    Get PDF
    The novel COVID-19 outbreak has resulted in lockdowns and university campus closure which affected the mental health of university students negatively. This was reflected in mental disorders, with emotional, physical fitness, exercise, and studying are the most affected aspects during the pandemic. The design and development of a smartphone application is the objective of this paper. The app\u27s goal is to assist university students in improving their mental health and overall quality of life by answering a structured questionnaire at first then the app uses artificial intelligence for sentiment analysis of a user’s social interaction. Then the app connects the user with random peers who share similar mental sentiments to chat with and if there is no peer available, a chatbot is used. In case of significant loneliness, the app connects the user with caregivers, community volunteers, and health professionals

    Serious games and blended learning

    Get PDF
    • …
    corecore