853 research outputs found

    Leveraging Non-Volatile Memory in Modern Storage Management Architectures

    Get PDF
    Non-volatile memory technologies (NVM) introduce a novel class of devices that combine characteristics of both storage and main memory. Like storage, NVM is not only persistent, but also denser and cheaper than DRAM. Like DRAM, NVM is byte-addressable and has lower access latency. In recent years, NVM has gained a lot of attention both in academia and in the data management industry, with views ranging from skepticism to over excitement. Some critics claim that NVM is not cheap enough to replace flash-based SSDs nor is it fast enough to replace DRAM, while others see it simply as a storage device. Supporters of NVM have observed that its low latency and byte-addressability requires radical changes and a complete rewrite of storage management architectures. This thesis takes a moderate stance between these two views. We consider that, while NVM might not replace flash-based SSD or DRAM in the near future, it has the potential to reduce the gap between them. Furthermore, treating NVM as a regular storage media does not fully leverage its byte-addressability and low latency. On the other hand, completely redesigning systems to be NVM-centric is impractical. Proposals that attempt to leverage NVM to simplify storage management result in completely new architectures that face the same challenges that are already well-understood and addressed by the traditional architectures. Therefore, we take three common storage management architectures as a starting point, and propose incremental changes to enable them to better leverage NVM. First, in the context of log-structured merge-trees, we investigate the impact of storing data in NVM, and devise methods to enable small granularity accesses and NVM-aware caching policies. Second, in the context of B+Trees, we propose to extend the buffer pool and describe a technique based on the concept of optimistic consistency to handle corrupted pages in NVM. Third, we employ NVM to enable larger capacity and reduced costs in a index+log key-value store, and combine it with other techniques to build a system that achieves low tail latency. This thesis aims to describe and evaluate these techniques in order to enable storage management architectures to leverage NVM and achieve increased performance and lower costs, without major architectural changes.:1 Introduction 1.1 Non-Volatile Memory 1.2 Challenges 1.3 Non-Volatile Memory & Database Systems 1.4 Contributions and Outline 2 Background 2.1 Non-Volatile Memory 2.1.1 Types of NVM 2.1.2 Access Modes 2.1.3 Byte-addressability and Persistency 2.1.4 Performance 2.2 Related Work 2.3 Case Study: Persistent Tree Structures 2.3.1 Persistent Trees 2.3.2 Evaluation 3 Log-Structured Merge-Trees 3.1 LSM and NVM 3.2 LSM Architecture 3.2.1 LevelDB 3.3 Persistent Memory Environment 3.4 2Q Cache Policy for NVM 3.5 Evaluation 3.5.1 Write Performance 3.5.2 Read Performance 3.5.3 Mixed Workloads 3.6 Additional Case Study: RocksDB 3.6.1 Evaluation 4 B+Trees 4.1 B+Tree and NVM 4.1.1 Category #1: Buffer Extension 4.1.2 Category #2: DRAM Buffered Access 4.1.3 Category #3: Persistent Trees 4.2 Persistent Buffer Pool with Optimistic Consistency 4.2.1 Architecture and Assumptions 4.2.2 Embracing Corruption 4.3 Detecting Corruption 4.3.1 Embracing Corruption 4.4 Repairing Corruptions 4.5 Performance Evaluation and Expectations 4.5.1 Checksums Overhead 4.5.2 Runtime and Recovery 4.6 Discussion 5 Index+Log Key-Value Stores 5.1 The Case for Tail Latency 5.2 Goals and Overview 5.3 Execution Model 5.3.1 Reactive Systems and Actor Model 5.3.2 Message-Passing Communication 5.3.3 Cooperative Multitasking 5.4 Log-Structured Storage 5.5 Networking 5.6 Implementation Details 5.6.1 NVM Allocation on RStore 5.6.2 Log-Structured Storage and Indexing 5.6.3 Garbage Collection 5.6.4 Logging and Recovery 5.7 Systems Operations 5.8 Evaluation 5.8.1 Methodology 5.8.2 Environment 5.8.3 Other Systems 5.8.4 Throughput Scalability 5.8.5 Tail Latency 5.8.6 Scans 5.8.7 Memory Consumption 5.9 Related Work 6 Conclusion Bibliography A PiBenc

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    Centaur: Host-Side SSD Caching for Storage Performance Control

    Full text link

    Improving Storage Performance with Non-Volatile Memory-based Caching Systems

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2017. Major: Computer Science. Advisor: David Du. 1 computer file (PDF); ix, 104 pages.With the rapid development of new types of non-volatile memory (NVRAM), e.g., 3D Xpoint, NVDIMM, and STT-MRAM, these technologies have been or will be integrated into current computer systems to work together with traditional DRAM. Compared with DRAM, which can cause data loss when the power fails or the system crashes, NVRAM's non-volatile nature makes it a better candidate as caching material. In the meantime, storage performance needs to keep up to process and accommodate the rapidly generated amounts of data around the world (a.k.a the big data problem). Throughout my Ph.D. research, I have been focusing on building novel NVRAM-based caching systems to provide cost-effective ways to improve storage system performance. To show the benefits of designing novel NVRAM-based caching systems, I target four representative storage devices and systems: solid state drives (SSDs), hard disk drives (HDDs), disk arrays, and high-performance computing (HPC) parallel file systems (PFSs). For SSDs, to mitigate their wear out problem and extend their lifespan, we propose two NVRAM-based buffer cache policies which can work together in different layers to maximally reduce SSD write traffic: a main memory buffer cache design named Hierarchical Adaptive Replacement Cache (H-ARC) and an internal SSD write buffer design named Write Traffic Reduction Buffer (WRB). H-ARC considers four factors (dirty, clean, recency, and frequency) to reduce write traffic and improve cache hit ratios in the host. WRB reduces block erasures and write traffic further inside an SSD by effectively exploiting temporal and spatial localities. For HDDs, to exploit their fast sequential access speed to improve I/O throughput, we propose a buffer cache policy, named I/O-Cache, that regroups and synchronizes long sets of consecutive dirty pages to take advantage of HDDs' fast sequential access speed and the non-volatile property of NVRAM. In addition, our new policy can dynamically separate the whole cache into a dirty cache and a clean cache, according to the characteristics of the workload, to decrease storage writes. For disk arrays, although numerous cache policies have been proposed, most are either targeted at main memory buffer caches or manage NVRAM as write buffers and separately manage DRAM as read caches. To the best of our knowledge, cooperative hybrid volatile and non-volatile memory buffer cache policies specifically designed for storage systems using newer NVRAM technologies have not been well studied. Based on our elaborate study of storage server block I/O traces, we propose a novel cooperative HybrId NVRAM and DRAM Buffer cACHe polIcy for storage arrays, named Hibachi. Hibachi treats read cache hits and write cache hits differently to maximize cache hit rates and judiciously adjusts the clean and the dirty cache sizes to capture workloads' tendencies. In addition, it converts random writes to sequential writes for high disk write throughput and further exploits storage server I/O workload characteristics to improve read performance. For modern complex HPC systems (e.g., supercomputers), data generated during checkpointing are bursty and so dominate HPC I/O traffic that relying solely on PFSs will slow down the whole HPC system. In order to increase HPC checkpointing speed, we propose an NVRAM-based burst buffer coordination system for PFSs, named collaborative distributed burst buffer (CDBB). Inspired by our observations of HPC application execution patterns and experimentations on HPC clusters, we design CDBB to coordinate all the available burst buffers, based on their priorities and states, to help overburdened burst buffers and maximize resource utilization

    BAG: Managing GPU as Buffer Cache in Operating Systems

    Get PDF
    This paper presents the design, implementation and evaluation of BAG, a system that manages GPU as the buffer cache in operating systems. Unlike previous uses of GPUs, which have focused on the computational capabilities of GPUs, BAG is designed to explore a new dimension in managing GPUs in heterogeneous systems where the GPU memory is an exploitable but always ignored resource. With the carefully designed data structures and algorithms, such as concurrent hashtable, log-structured data store for the management of GPU memory, and highly-parallel GPU kernels for garbage collection, BAG achieves good performance under various workloads. In addition, leveraging the existing abstraction of the operating system not only makes the implementation of BAG non-intrusive, but also facilitates the system deployment
    corecore