410 research outputs found

    Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Get PDF
    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification

    Misdiagnosis and undiagnosis due to pattern similarity in Chinese medicine: a stochastic simulation study using pattern differentiation algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether pattern similarity causes misdiagnosis and undiagnosis in Chinese medicine is unknown. This study aims to test the effect of pattern similarity and examination methods on diagnostic outcomes of pattern differentiation algorithm (PDA).</p> <p>Methods</p> <p>A dataset with 73 <it>Zangfu </it>single patterns was used with manifestations according to the Four Examinations, namely inspection (Ip), auscultation and olfaction (AO), inquiry (Iq) and palpation (P). PDA was applied to 100 true positive and 100 true negative manifestation profiles per pattern in simulation. Four runs of simulations were used according to the Four Examinations: Ip, Ip+AO, Ip+AO+Iq and Ip+AO+Iq+P. Three pattern differentiation outcomes were separated, namely correct diagnosis, misdiagnosis and undiagnosis. Outcomes frequencies, dual pattern similarity and pattern-dataset similarity were calculated.</p> <p>Results</p> <p>Dual pattern similarity was associated with Four Examinations (gamma = -0.646, <it>P </it>< 0.01). Combination of Four Examinations was associated (gamma = -0.618, <it>P </it>< 0.01) with decreasing frequencies of pattern differentiation errors, being less influenced by pattern-dataset similarity (Ip: gamma = 0.684; Ip+AO: gamma = 0.660; Ip+AO+Iq: gamma = 0.398; Ip+AO+Iq+P: gamma = 0.286, <it>P </it>< 0.01 for all combinations).</p> <p>Conclusion</p> <p>Applied in an incremental manner, Four Examinations progressively reduce the association between pattern similarity and pattern differentiation outcome and are recommended to avoid misdiagnosis and undiagnosis due to similarity.</p

    Ontologies and Computational Methods for Traditional Chinese Medicine

    Get PDF
    Perinteinen kiinalainen lääketiede (PKL) on tuhansia vuosia vanha hoitomuoto, jonka tarkoituksena on terveyden ylläpito, tautien ennaltaehkäisemisen ja terveydellisten ongelmien hoito. Useat vuosittain julkaistavat tutkimukset tukevat hoitojen tehokkuutta ja PKL onkin jatkuvasti kasvattamassa suosiotaan maailmanlaajuisesti. Kiinassa PKL ollut suosittu hoitomuoto jo pitkään ja nykyään sitä harjoitetaan rinnakkain länsimaisen lääketieteen kanssa. Viime vuosikymmeninä tapahtuneen tietotekniikan kehityksen ja yleistymisen myötä myös PKL:n menetelmät ovat muuttuneet ja tietotekniikkaa on alettu hyödyntämään PKL:n tutkimuksessa. PKL:n tietoa on tallennettu digitaaliseen muotoon, minkä seurauksena on syntynyt suuri määrä erilaisia tietokantoja. Tieto on jakautunut eri tietokantoihin, joiden terminologia ei ole yhtenevää. Tämä aiheuttaa ongelmia tiedon löytämisessä ja tietoa hyödyntävien sovellusten kehittämisessä. Tässä työssä selvitetään, mitä PKL on, ja mikä sen asema on nykyään Kiinassa ja muualla maailmalla. Työn tarkoituksena on tutkia PKL:n tietoteknisten sovelluksen kehittämistä ja siihen liittyviä haasteita. Työssä perehdytään PKL:n ontologioiden ja semanttisten työkalujen toimintaan, sekä PKL:n laskennallisiin menetelmiin ja niiden tarjoamiin mahdollisuuksiin. Lisäksi kerrotaan uusimmista kansainvälisesti merkittävistä projekteista ja pohditaan tulevaisuuden näkymiä. Jo kehitetyt PKL:n tietotekniset sovellukset tarjoavat uusia mahdollisuuksia tiedon etsimiseen ja parantavat tutkijoiden mahdollisuutta jakaa tietoa ja tehdä yhteistyötä. Tietokoneavusteiset diagnoosityökalut ja asiantuntijajärjestelmät tarjoavat mahdollisuuksia lääkärin tekemän diagnoosin varmistamiseen. Tulevaisuudessa laskennallisia menetelmiä hyödyntäen voitaisiin tarjota terveyttä ja hyvinvointia edistäviä palveluja verkossa.Traditional Chinese Medicine (TCM) has been used for thousands of years in China for the purposes of health maintenance, disease prevention and treatment of health problems. Several published studies support the effectiveness of TCM treatments and the global use of TCM is constantly increasing. In China, Western and Chinese medicine are practiced in parallel. During the past few decades, the use of information technology in medicine has increased rapidly. The development of information technology has opened up new possibilities for information storage and sharing, as well as communication and interaction between people. Along with the growing use of information technology, a wide variety of patient databases and other electronic sources of information have emerged. However, the information is fragmented and dispersed, and the terminology is ambiguous. The objective of the thesis is to examine the position of TCM today, and to find out what changes and new opportunities the modern information technology brings for different aspects of TCM. This study describes how ontologies and semantic tools can be utilized when collecting existing knowledge and combining different databases. Also different computational methods and TCM expert systems are introduced. Finally, the most recent projects in the field of TCM are discussed and the future challenges are reflected. The computational methods for TCM, such as diagnostic tools and expert systems, could be very useful in anticipating and preventing health problems. E-science and knowledge discovery offer new ways for knowledge sharing and cooperation. TCM expert systems can be used to generate diagnosis or automatic clinical alerts. In the future, a comprehensive and easily accessible online health service system could be developed and used to improve the health and well-being of people

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB

    A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review

    Get PDF
    Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks

    PromptCBLUE: A Chinese Prompt Tuning Benchmark for the Medical Domain

    Full text link
    Biomedical language understanding benchmarks are the driving forces for artificial intelligence applications with large language model (LLM) back-ends. However, most current benchmarks: (a) are limited to English which makes it challenging to replicate many of the successes in English for other languages, or (b) focus on knowledge probing of LLMs and neglect to evaluate how LLMs apply these knowledge to perform on a wide range of bio-medical tasks, or (c) have become a publicly available corpus and are leaked to LLMs during pre-training. To facilitate the research in medical LLMs, we re-build the Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark into a large scale prompt-tuning benchmark, PromptCBLUE. Our benchmark is a suitable test-bed and an online platform for evaluating Chinese LLMs' multi-task capabilities on a wide range bio-medical tasks including medical entity recognition, medical text classification, medical natural language inference, medical dialogue understanding and medical content/dialogue generation. To establish evaluation on these tasks, we have experimented and report the results with the current 9 Chinese LLMs fine-tuned with differtent fine-tuning techniques
    corecore