44 research outputs found

    Process Control of Crushing Circuits

    Get PDF
    Kivenmurskaus on keskeinen osaprosessi kiviaineksen, metallien ja sementin tuotannossa. Murskaamalla tuotetut raaka-aineet muodostavat nykyaikaisen infrastruktuurimme perustan. Huolimatta merkittävästä roolistaan, kivenmurskaus on yksi harvoista teollisista prosesseista, jonka prosessinohjaus toteutetaan edelleen kokemusperäisesti, ilman luotettavaa mittaustietoa suoritettujen ohjaustoimien vaikutuksista. Nykykäytäntö altistaa murskausprosessit prosessivaihteluille ja –häiriöille, ja johtaa viime kädessä tehottomaan tuotantoon ja kapasiteetin vajaakäyttöön. Pääsyinä nykytilaan voidaan pitää murskausprosessien puutteellista anturointia ja tutkimustiedon puutetta korkeamman automaatioasteen tuomista hyödyistä. Tässä väitöskirjassa pyrittiin ratkaisemaan edellä mainittu ongelma automaattisen prosessinohjauksen avulla. Päätavoitteena oli kehittää säätömenetelmät murskauspiirin suorituskyvyn saattamiseksi lähelle parasta saavutettavissa olevaa tasoa. Tämä tutkimus perustuu mallipohjaiseen säädönsuunnittelumenetelmään. Systemaattinen suunnitteluprosessi alkoi säätötavoitteiden määrittelystä ja dynaamisten prosessimallien kehittämisestä. Kehitettyjen prosessimallien avulla luotiin säätötavoitteet täyttävä säätöstrategia ja viritettiin strategian vaatimat prosessisäätimet. Lopuksi simulointimallien avulla kehitetty ja testattu säätöstrategia implementoitiin osaksi laitoksen automaatiojärjestelmää ja sen suorituskyky arvioitiin täyden mittakaavan prosessikokeiden avulla. Tämä väitöskirja on osoittanut, että murskauspiirin tehokas ja tarkoituksenmukainen toiminta vaatii eri kahden säätötavan toteuttamista: massataseen säätö ja hienonnusmäärän säätö. Massatasesäädön tavoitteena on varmistaa 100 % käyttöaste murskauspiirin pullonkaulassa. Hienonnusmäärän säätö varmistaa halutun murskaimen tuotemateriaalin partikkelikokojakauman. Kehitetyt hienonnusmäärän säätömenetelmät perustuvat itseoptimoituvaan säätötapaan, joka mahdollistaa likimain optimaalisen suorituskyvyn käyttämällä säätimessä vakio-asetusarvoa. Kun tämä asetusarvo valitaan optimaalisesti, mahdollistaa esitelty ohjausstrategia parhaan saavutettavissa olevan murskauspiirin suorituskyvyn. Työn merkittävä tunnuspiirre on erityisen kattava empiria. Kehitetyt menetelmät testattiin kattavasti useissa erilaisissa tuotantoskenaarioissa ja prosessikonfiguraatioissa. Täyden mittakaavan prosessikokeiden tulokset vastasivat hyvin lähelle simulaatioilla saatuja tuloksia. Tämä väitöskirja on merkittävä edistysaskel murskausprosessien säädössä. Työn tuloksena kehitetyt mittaus- ja säätötavat mahdollistavat tehokkaamman ja tarkoituksenmukaisemman raaka-ainetuotannon. Työn tuloksilla voidaan olettaa olevan merkittävä vaikutus siihen, miten ja millä tavoin murskausprosesseja ohjataan tulevaisuudessa. Työssä kehitetyn murskauspiirin automaattisen säätöstrategian voidaan olettaa toimivan perustana tulevaisuuden murskausprosessien prosessiautomaatio-toteutuksille.Crushing is an essential high-volume processing stage in the production of aggregates, metals and cement. Crushed products form the basis of our modern infrastructure and therefore play a major role in the economic growth and welfare. Despite its significant role in society, crushing is one of the few remaining industrial processes that is currently being operated using belief-based manual control without the possibility to quantify the consequences of performed control actions. This practice makes crushing processes vulnerable to process variation and exposes them to inefficient production and capacity underutilization. The aim of this thesis is to address this deficiency by bridging the gap between theoretically possible and realized crushing circuit performance, by means of automatic process control. This thesis covers the entire model-based control system design procedure – from the formulation of control objectives and development of dynamic process model(s), through the development of control strategy, to the control system implementation and performance evaluation – for crushing circuits. Research has led to significant advances within crushing process measurement and control. Developed methods have been rigorously tested in various production scenarios and circuit flowsheets, using both dynamic simulations and full-scale experiments. Experiments revealed expected behavior with a significant increase in performance. The results have shown that the efficient operation of a crushing circuit requires addressing two control tasks: mass balance control and size reduction control. The objective of mass balance control is to guarantee 100 percent circuit utilization, whereas size reduction control ensures the desired degree of size reduction. The ideal degree of size reduction is determined empirically to maximize the value of the used KPI. The developed control strategy delivers near-maximum circuit performance. This thesis represents a major leap forward in the area of process control of crushing circuits. It has opened entirely new possibilities by making it possible to quantify the instantaneous performance of crushing circuits and by introducing the ability to ensure consistent and efficient long-term production. These major breakthroughs can have a significant impact on how crushing plants will be operated in the future. Developed standard control practice can be expected to serve as a basis for future control system implementations of industrial crushing circuits

    Inferential measurement models for semi-autogenous grinding mills

    Get PDF

    Investigation into the effect of wind power based embedded generators on distribution networks.

    Get PDF
    Wind turbine-generators are usually integrated into utilities' electrical networks at distribution voltage levels, and they are commonly known as "Embedded Generators" (EGs). Recently, it has been reported that the integration of wind power-based embedded generators (WPBEGs) into distribution networks could cause maloperation of automatic voltage control (AVC) relays. Further investigation is therefore required to improve the performance of AVC relays in the presence of EGs. On the other hand, the dynamic effects of WPBEGs on distribution networks (DNs) have been investigated for many years, but no attempt has been made to evaluate the effects of WPBEGs on the "Critical Clearing Time" (CCT) of faults on load feeders emanating from the substation where EGs are connected to the network. Based on these findings, the work conducted and reported in this thesis covers two main aspects. The first aspect is related to the effect of EGs on the operation of AVC relays, including the compensation of voltage drop along distribution feeders. This is preceded by an introduction to the operating principles of conventional AVC relays. A new model of an AVC relay based on the application of Artificial Neural Networks (ANN) is then presented. The model is designed and trained to calculate the AVC voltage that is used to initiate the operation of the tap-changer of an appropriate transformer as conditions necessitate. In the process of the development of an ANN-based relay, a power flow program has been specially designed to generate training files using FORTRAN. The second aspect reported in this thesis deals with the investigation of the effect of WPBEGs on the CCT of faults on load feeders. It has been concluded that CCT of faults, which is required to maintain the stability of WPBEGs, can be several times less than that of the operating time of conventional protection schemes usually used on distribution feeders. The results obtained from the investigation related to both aspects are presented and discussed. In summary, this thesis reports on the outcome of the investigation related to the design of an ANN based AVC relay capable of accommodating EGs and the effect of the dynamic behaviour of EGs on the CCT of faults on load feeders

    Development of performance functions for economic performance assessment of process control systems

    Get PDF
    Economic performance assessment (EPA) of control systems is receiving increasing attention in both academia and industry. It addresses the estimation of the potential benefits resulting from control upgrade projects and monitoring and improvement of economic performance of the control system. Economic performance of control systems can often be related to crucial controlled variables dynamically and when controlled variables move away from an optimal operating point either more profit will be made or more cost will be incurred. This relation can be modelled by performance functions (PFs). When the multivariate nature of a process’s economic model is not considered, PFs of different controlled variables are referred to as individual performance functions. Otherwise, PFs of dependent controlled variables are referred to as joint performance functions. PFs play an important role in the latest techniques of EPA. There appears, however, to be no systematic method for developing PFs. The lack of such a method restrains further research into EPA, as without well-established PFs an EPA cannot be conducted smoothly and therefore cannot effectively support decision-making for management. The development of PFs is a bottleneck in the further research into EPA. Furthermore, the multivariate nature of processes has not been taken into account sufficiently as far as the relevant literature is concerned, which hampers the accuracy of PFs and accordingly the accuracy of economic assessment results. The contributions of this thesis lie in the following aspects: • A methodology for developing PFs is proposed, based on the PF development for an electric arc furnace, a grinding mill circuit and a stage of a bleach plant. • A comprehensive case study of an EPA of three controllers of a grinding mill circuit is conducted using a newly published framework to show the significance of PFs and how to perform an EPA systematically. • The current practice and guidelines on the control and functional/economic performance assessment of grinding mill circuits are captured using a survey study. The multivariate nature of an electric arc furnace’s economic model is investigated and joint performance functions are built based on individual performance functions. A multivariate economic assessment is conducted that shows how joint performance functions can help to provide a more accurate estimate of the economic performance of a controlled process. A web-based survey study on grinding mill circuits in mineral processing industries is conducted. One of its objectives is to obtain general PFs of grinding circuits. The survey results provide instructive insight into the PFs of grinding circuits. Furthermore, an in-depth literature review is conducted and the relationship between the product’s particle size distribution of grinding mill circuits and mineral recovery in downstream flotation circuits is revealed. The PFs of a grinding mill circuit being considered are formed, based on the survey results and literature study. An investigation into the PF development of a stage of a bleach plant is performed and crucial ideas used for their development are abstracted. A methodology for developing PFs for the EPA of control systems is then proposed by synthesising the methods used in the PF development described above. This methodology mainly includes the following stages: Stage 1: Determine information required for PF development. • Process operation and control understanding. • Process economics understanding. Stage 2: Gain required information on PF development. • PF-related information elicitation using survey research. • PF-related information available in the literature, including textbooks, journal papers, conference papers. • PF-related information from plant tests. Stage 3: Obtain suitable performance measures. Stage 4: Make suitable assumptions. Stage 5: Determine PFs. Stage 6: Develop Joint PFs. An economic assessment of three controllers (a nonlinear model predictive controller, a decentralized controller and three single-loop proportional-integral-derivative controllers) of the considered grinding mill circuit is conducted, using an EPA framework published recently to show the central role of PFs in the EPA and how to perform an EPA systematically. The circuit’s PFs, developed as described above, are used for the assessment. The EPA also shows that the improvement in the economic performance with the nonlinear model predictive controller mainly results from the improvement of the operating point and the controlled variables’ variation reduction only contributes a small part to the overall improvement, due to the characteristic of the PF of the circuit’s product particle size distribution. In addition, a web-based survey study is conducted and the current practice and guidelines on the control and functional/economic performance assessment of grinding mill circuits are captured. The questionnaire used for the study includes five segments. The first part identifies the respondents and the second part is intended to obtain background information on the milling circuits. The third part concerns the choice of key process variables and their economic impact. Part four involves the control of milling circuits and control loop performance and part five covers economic issues.Thesis (PhD)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    Power from the people: the empowerment of distributed generation of solar electricity for rural communities in Malaysia

    Get PDF
    This paper describes the decreasing energy security in Malaysia and the likely impact on maintaining power supplies to low income groups. The most vulnerable group is the low-income people in the rural areas, who have limited access to generate their own power supplies. The paper reviews the potential of distributed generation (DG) using photovoltaics as a means of mitigating this problem. Examples from other countries are reviewed and alternative methods of funding PV installations are discussed. Strategies such as community-based approach and innovative financing scheme will be introduced and discussed. The main objective is to utilize solar energy as the main energy resources for generating electricity and places rural people as the main stakeholder to deploy the strategic model. This model is also ideal to be integrated with the distributed generation (DG) system as one of the key components in developing a suitable energy policy that can helps to sustain the energy development of rural community in the future. The paper concludes that distributed generation (DG) is feasible and that innovative funding schemes are required based on local knowledge

    Sustainability through subsistence: the case for de-urbanization in Malaysia

    Get PDF
    Industrialization was the catalyst for the growth of cities in Southeast Asia, in particular Malaysia. However, in many cities industrialization has peaked and is now declining. This raises the issue of increased urban poverty as a significant problem facing these cities in the 21st century. Evidence from other developing countries is that faced with the choice of urban poverty or rural subsistence, there appears to be a trend towards de-urbanization. As Malaysia is unique in imposing laws that protect rural land ownership, this study investigates the capacity of the available land to absorb migrants from the city and seeks to identify whether the returning migrants have the capabilities required to maintain a subsistence lifestyle. This paper presents a case study analyzing the trends of urban to rural migration in Malaysia. An audit of land capacity was carried out in a typical kampong and an investigation of the capability of migrants has been done in both urban and rural areas. In conclusion, this study has found that the land abandoned by the rural-urban migration of the 1970s is available and remains accessible for future use. The findings also identified several examples of returnees who have shown that they have adapted well to a rural lifestyle. The results indicate that there is evidence that de-urbanization can result in a sustainable lifestyle through subsistence living in Malaysia

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations
    corecore