10 research outputs found

    A multi-DOF robotic exoskeleton interface for hand motion assistance

    Get PDF
    This paper outlines the design and development of a robotic exoskeleton based rehabilitation system. A portable direct-driven optimized hand exoskeleton system has been proposed. The optimization procedure primarily based on matching the exoskeleton and finger workspaces guided the system design. The selection of actuators for the proposed system has emerged as a result of experiments with users of different hand sizes. Using commercial sensors, various hand parameters, e.g. maximum and average force levels have been measured. The results of these experiments have been mapped directly to the mechanical design of the system. An under-actuated optimum mechanism has been analysed followed by the design and realization of the first prototype. The system provides both position and force feedback sensory information which can improve the outcomes of a professional rehabilitation exercise. © 2011 IEEE

    Modeling and computed torque control of a 6 degree of freedom robotic arm

    Get PDF
    This paper presents modelling and control design of ED 7220C - a vertical articulated serial arm having 5 revolute joints with 6 Degree Of Freedom. Both the direct and inverse kinematic models have been developed. For analysis of forces and to facilitate the controller design, svstem dvnamics have been formulated. A non-linear control technique, Computed Torque Control (CTC) has been presented. The algorithm, implemented in MATLAB/Simulink, utilizes the derived dynamics as well as linear control techniques. Simulation results dearly demonstrate the efficacy of the presented approach in terms of traiectory tracking Various responses of the arm joints have been recorded to characterize the performance of the control algorithm. The research finds its applications in simulation of advance nonlinear and robust control techniques as well as their implementation on the physical platform. © 2014 IEEE

    A multi-robot educational and research framework

    Get PDF
    Robots have greatly transformed human’s life. Multi-disciplinary research in robotics essentially demands having sophisticated frameworks with diverse range of capabilities ranging from simple tasks like testing of control algorithms to handling complex scenarios like multiple robot coordination. The present research addresses this demand by proposing a reliable, versatile and cheap platform enriched with enormous features. The framework has been conceptualized with three robots having different drive mechanisms, sensing and communication capabilities. The proposed ‘Wanderbot’ family consists of ForkerBot, MasterBot and HexaBot. The ForkerBot is a four-wheeled robot equipped with ultra sonic range finder, wheel encoder, bump sensor, temperature sensor, GSM, GPS and RF communication modules. The robot, having a payload capacity of 8 pounds, supports both Differential and Ackerman drive mechanisms and can be used to validate advanced obstacle avoidance algorithms. The MasterBot is also a wheeled robot with an on-board camera and is skid-steered. The robot finds potential in research on image processing and computer vision and in analysis and validation of algorithms requiring high-level computations like complex path traversal. The third member in the Wander family, HexaBot, is a six-legged robot, which is able to exhibit the movement of tripod gait and can be used for investigating walking and climbing algorithms. The three members of Wander family can communicate with one another, thus making it a good candidate for research on coordinated multi-robots. Additionally, such a prototyped platform with vast attractive features finds potential in an academic and vocational environment

    Hand Exoskeleton to Assess Hand Spasticity

    Get PDF

    System Architecture of a Proactive Intelligent System to Monitor Health of Older Adults Living Alone

    Get PDF
    Worldwide improvements in the quality of life highlight immense need to have a remote health monitoring system that can provide critical biomedical data. This paper presents a low-cost health monitoring system, forming part of the Internet of Things (IoT), which aims at continuous, 24/7 monitoring of elderly people and disabled people. The system is implemented with a variety of sensors, for example, temperature, heart rate, and movement measurements, to observe a person’s status. Doctors may also prescribe this system with a specific number and type of sensor, depending on a patient’s condition. In a case study, three sensors measured the status of a person during the day. The measurements reflected the actions of the person as he/she relaxed or was active, in addition to monitoring his/her state of health. The observed data were recorded in a database that can be displayed by authorized caregivers. Results witnessed the efficacy of the proposed system. The proposed system finds enormous potential in giving remote healthcare facilities, especially to unaccompanied older adults

    A Wearable Exoskeleton for Hand Kinesthetic Feedback in Virtual Reality

    Get PDF
    This paper presents a novel two-fingers exoskeleton kinesthetic in-teraction in Virtual Reality (VR): the proposed design of the exoskeleton priori-tizes the performance of the device in terms of low weight, good adaptability to different size of the human hand. This design made also the exoskeleton well wearable and allows strong force feedback which is an important parameter for a realistic kinesthesis of manipulated objects in VR

    Exploring the Design of a Simultaneous, Parallel, Discrete Joint Control Orthosis for Hand Rehabilitation

    Get PDF
    This project explores the design of a hand orthosis for rehabilitation which builds upon several pre-existing designs to create a novel mechanism which can provide targeted therapy to one or more discrete joints simultaneously across the lower forearm. This work expands upon and improves the capabilities of hand orthoses to move beyond common design limitations such as controlling only entire fingers or immobilizing crucial regions such as the wrist

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    Modelling and EMG based Control of Upper Limb Exoskeletons for Hand Impairments

    Get PDF
    Functional losses associated with hand impairments have led to the growing development of hand exoskeletons. The main challenges are to develop the exoskeletons that work according to the user’s motion intention, which can be done by utilizing the electromyogram signals generated by forearm muscles contributed from the movement and/or grasping abilities of the hand. In this research, modelling and EMG based control of hand exoskeletons with the aim to assist stroke survivors in regaining their hand strength and functionality, and improve their quality of life is presented
    corecore