488 research outputs found

    Progressive construction of a parametric reduced-order model for PDE-constrained optimization

    Full text link
    An adaptive approach to using reduced-order models as surrogates in PDE-constrained optimization is introduced that breaks the traditional offline-online framework of model order reduction. A sequence of optimization problems constrained by a given Reduced-Order Model (ROM) is defined with the goal of converging to the solution of a given PDE-constrained optimization problem. For each reduced optimization problem, the constraining ROM is trained from sampling the High-Dimensional Model (HDM) at the solution of some of the previous problems in the sequence. The reduced optimization problems are equipped with a nonlinear trust-region based on a residual error indicator to keep the optimization trajectory in a region of the parameter space where the ROM is accurate. A technique for incorporating sensitivities into a Reduced-Order Basis (ROB) is also presented, along with a methodology for computing sensitivities of the reduced-order model that minimizes the distance to the corresponding HDM sensitivity, in a suitable norm. The proposed reduced optimization framework is applied to subsonic aerodynamic shape optimization and shown to reduce the number of queries to the HDM by a factor of 4-5, compared to the optimization problem solved using only the HDM, with errors in the optimal solution far less than 0.1%

    Optimization Algorithms for Machine Learning Designed for Parallel and Distributed Environments

    Get PDF
    This thesis proposes several optimization methods that utilize parallel algorithms for large-scale machine learning problems. The overall theme is network-based machine learning algorithms; in particular, we consider two machine learning models: graphical models and neural networks. Graphical models are methods categorized under unsupervised machine learning, aiming at recovering conditional dependencies among random variables from observed samples of a multivariable distribution. Neural networks, on the other hand, are methods that learn an implicit approximation to underlying true nonlinear functions based on sample data and utilize that information to generalize to validation data. The goal of finding the best methods relies on an optimization problem tasked with training such models. Improvements in current methods of solving the optimization problem for graphical models are obtained by parallelization and the use of a new update and a new step-size selection rule in the coordinate descent algorithms designed for large-scale problems. For training deep neural networks, we consider the second-order optimization algorithms within trust-region-like optimization frameworks. Deep networks are represented using large-scale vectors of weights and are trained based on very large datasets. Hence, obtaining second-order information is very expensive for these networks. In this thesis, we undertake an extensive exploration of algorithms that use a small number of curvature evaluations and are hence faster than other existing methods

    Implementing a smooth exact penalty function for equality-constrained nonlinear optimization

    Full text link
    We develop a general equality-constrained nonlinear optimization algorithm based on a smooth penalty function proposed by Fletcher (1970). Although it was historically considered to be computationally prohibitive in practice, we demonstrate that the computational kernels required are no more expensive than other widely accepted methods for nonlinear optimization. The main kernel required to evaluate the penalty function and its derivatives is solving a structured linear system. We show how to solve this system efficiently by storing a single factorization each iteration when the matrices are available explicitly. We further show how to adapt the penalty function to the class of factorization-free algorithms by solving the linear system iteratively. The penalty function therefore has promise when the linear system can be solved efficiently, e.g., for PDE-constrained optimization problems where efficient preconditioners exist. We discuss extensions including handling simple constraints explicitly, regularizing the penalty function, and inexact evaluation of the penalty function and its gradients. We demonstrate the merits of the approach and its various features on some nonlinear programs from a standard test set, and some PDE-constrained optimization problems

    Algorithm 873: LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization

    Get PDF
    A MATLAB 6.0 implementation of the LSTRS method is presented. LSTRS was described in Rojas et al. [2000]. LSTRS is designed for large-scale quadratic problems with one norm constraint. The method is based on a reformulation of the trust-region subproblem as a parameterized eigenvalue problem, and consists of an iterative procedure that finds the optimal value for the parameter. The adjustment of the parameter requires the solution of a large-scale eigenvalue problem at each step. LSTRS relies on matrix-vector products only and has low and fixed storage requirements, features that make it suitable for large-scale computations. In the MATLAB implementation, the Hessian matrix of the quadratic objective function can be specified either explicitly, or in the form of a matrix-vector multiplication routine. Therefore, the implementation preserves the matrix-free nature of the method. A description of the LSTRS method and of the MATLAB software, version 1.2, is presented. Comparisons with other techniques and applications of the method are also included. A guide for using the software and examples are provided.34
    • …
    corecore