2 research outputs found

    Power system performance improvement in the presence of renewable sources

    Get PDF
    Electromechanical oscillations is a phenomenon in which a generator oscillates against other generators in the power system, the damping of these oscillations has therefore become a priority objective, The objective of our work is to ensure maximum damping of low frequency oscillations and to guarantee the overall stability of the system for different operating points by the use of power stabilizers (PSSs). To achieve this goal, we developed an improved metaheuristic optimization method based on the crows search algorithm (CSA) applied on an objective function extracted from the eigenvalue analysis of the power system. A comparative study was made, with a classic stabilizer, genetic algorithm-based PSS (GA-PSS), a particle-swarm-based PSS (PSO-PSS) and other stabilizers based on recent algorithms. The performances of these optimization methods were evaluated on a single machine connected to an infinite bus (SMIB) via a linear model time domain simulation. On the other hand, the effect of integrating a photovoltaic PV generator on the stability of the power system is presented, as well as solutions to increase the amount of integration of the PV generator without losing the stability of the system

    Artificial Superintelligence: Coordination & Strategy

    Get PDF
    Attention in the AI safety community has increasingly started to include strategic considerations of coordination between relevant actors in the field of AI and AI safety, in addition to the steadily growing work on the technical considerations of building safe AI systems. This shift has several reasons: Multiplier effects, pragmatism, and urgency. Given the benefits of coordination between those working towards safe superintelligence, this book surveys promising research in this emerging field regarding AI safety. On a meta-level, the hope is that this book can serve as a map to inform those working in the field of AI coordination about other promising efforts. While this book focuses on AI safety coordination, coordination is important to most other known existential risks (e.g., biotechnology risks), and future, human-made existential risks. Thus, while most coordination strategies in this book are specific to superintelligence, we hope that some insights yield “collateral benefits” for the reduction of other existential risks, by creating an overall civilizational framework that increases robustness, resiliency, and antifragility
    corecore