34 research outputs found

    A Model-based Repository of Security and Dependability Patterns for Trusted RCES

    Get PDF
    International audienceThe requirement for higher Security and Dependability (S&D) of systems is continuously increasing, even in domains traditionally not deeply involved in such issues. Nowadays, many practitioners express their worries about current S&D software engineering practices. New recommendations should be considered to ground this discipline on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating S&D by design to foster reuse. Model driven approaches combined with patterns can be extremely helpful to deal with these strong requirements. In this work, we present a framework for trusted Resource Constrained Embedded Systems (RCES) development by design, by defining both a model to represent S&D pattern language and an architecture for development tools. The implementation of a repository of S&D patterns and their complementary property models is discussed in detail

    Model-Driven Engineering for Trusted Embedded Systems based on Security and Dependability Patterns

    Get PDF
    National audienceNowadays, many practitioners express their worries about current software engineering practices. New recommendations should be considered to ground software engineering on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating Security and Dependability (S&D) by design to foster reuse. The framework and the methodology we propose associate the model-driven paradigm and a model-based repository of S&D patterns to support the design of trusted Resource Constrained Embedded System (RCES) applications for multiple domains (e.g., railway, metrology, automotive). The approach has been successfully evaluated by the TERESA project external reviewers as well as internally by the Ikerlan Research Center for the railway domain

    Modeling of Secure and Dependable Applications Based on a Repository of Patterns: The SEMCO Approach

    Get PDF
    International audienceThe requirement for higher quality and seamless development of systems is continuously increasing, even in domains traditionally not deeply involved in such issues. Security and Dependability (S&D) requirements are incorporated to an increasing number of systems. These newer restrictions make the development of those systems more complicated than conventional systems. In our work, we promote a new approach called SEMCO (System and software Engineering with Multi-COncerns) combining Model-Driven Engineering (MDE) with a model-based repository of S&D patterns to support the design and the analysis of pattern-based secure and dependable system and software architectures. The modeling framework to support the approach is based on a set of modeling languages, to specify security and dependability patterns, resources and a set of property models, and a set of model transformation rules to specify some of the analysis activities. As part of the assistance for the development of S&D applications, we have implemented a tool-chain based on the Eclipse platform to support the different activities around the repository, including the analysis activities. The proposed approach was evaluated through a case study from the railway domain

    Interplay of Security&Dependability and Resource using Model-driven and Pattern-based Development

    Get PDF
    International audienceSeveral frameworks have been proposed to help designers of embedded system applications. However, we currently lack methodological tool support to take into account the interplay between security&;dependability and resource properties. In this work, we propose a modeling environment which associates model-driven paradigms with security and dependability patterns to ensure that the combination of security and dependability solutions fit on the targeted hardware platform. The resulted framework will serve as a tool to estimate the resources consumed by the security and dependability solutions at early stages of design to help the designer to avoid resource conflicts at run-time. In addition, we provide an architecture for development tools to support the design and the analysis of pattern-based secure and dependable applications. Finally, we apply it in practice to a use case from railway domain with strong security and dependability requirements

    A Model-Driven Methodology Approach for Developing a Repository of Models

    Get PDF
    International audienceTo cope with the growing complexity of embedded system design, several development approaches have been proposed. The most popular are those using models as main artifacts to be constructed and maintained. The wanted role of models is to ease, systematize and standardize the approach of the construction of software-based systems. In order to enforce reuse and to interconnect the process of models’ specification and the system development with models, we promote a model-based approach coupled with a repository of models. In this paper, we propose a Model-Driven Engineering methodological approach for the development of a repository of models and an operational architecture for development tools. In particular, we show the feasibility of our own approach by reporting some preliminary prototype providing a model-based repository of security and dependability (S&D) pattern models

    Engineering secure systems: Models, patterns and empirical validation

    Get PDF
    Several development approaches have been proposed to handle the growing complexity of software system design. The most popular methods use models as the main artifacts to construct and maintain. The desired role of such models is to facilitate, systematize and standardize the construction of software-based systems. In our work, we propose a model-driven engineering (MDE) methodological approach associated with a pattern-based approach to support the development of secure software systems. We address the idea of using patterns to describe solutions for security as recurring security problems in specific design contexts and present a well-proven generic scheme for their solutions. The proposed approach is based on metamodeling and model transformation techniques to define patterns at different levels of abstraction and generate different representations according to the target domain concerns, respectively. Moreover, we describe an operational architecture for development tools to support the approach. Finally, an empirical evaluation of the proposed approach is presented through a practical application to a use case in the metrology domain with strong security requirements, which is followed by a description of a survey performed among domain experts to better understand their perceptions regarding our approach

    The Requirements Editor RED

    Get PDF

    Proceedings of the joint track "Tools", "Demos", and "Posters" of ECOOP, ECSA, and ECMFA, 2013

    Get PDF

    Ein mehrschichtiges sicheres Framework für Fahrzeugsysteme

    Get PDF
    In recent years, significant developments were introduced within the vehicular domain, evolving the vehicles to become a network of many embedded systems distributed throughout the car, known as Electronic Control Units (ECUs). Each one of these ECUs runs a number of software components that collaborate with each other to perform various vehicle functions. Modern vehicles are also equipped with wireless communication technologies, such as WiFi, Bluetooth, and so on, giving them the capability to interact with other vehicles and roadside infrastructure. While these improvements have increased the safety of the automotive system, they have vastly expanded the attack surface of the vehicle and opened the door for new potential security risks. The situation is made worse by a lack of security mechanisms in the vehicular system which allows the escalation of a compromise in one of the non-critical sub-systems to threaten the safety of the entire vehicle and its passengers. This dissertation focuses on providing a comprehensive framework that ensures the security of the vehicular system during its whole life-cycle. This framework aims to prevent the cyber-attacks against different components by ensuring secure communications among them. Furthermore, it aims to detect attacks which were not prevented successfully, and finally, to respond to these attacks properly to ensure a high degree of safety and stability of the system.In den letzten Jahren wurden bedeutende Entwicklungen im Bereich der Fahrzeuge vorgestellt, die die Fahrzeuge zu einem Netzwerk mit vielen im gesamten Fahrzeug verteile integrierte Systeme weiterentwickelten, den sogenannten Steuergeräten (ECU, englisch = Electronic Control Units). Jedes dieser Steuergeräte betreibt eine Reihe von Softwarekomponenten, die bei der Ausführung verschiedener Fahrzeugfunktionen zusammenarbeiten. Moderne Fahrzeuge sind auch mit drahtlosen Kommunikationstechnologien wie WiFi, Bluetooth usw. ausgestattet, die ihnen die Möglichkeit geben, mit anderen Fahrzeugen und der straßenseitigen Infrastruktur zu interagieren. Während diese Verbesserungen die Sicherheit des Fahrzeugsystems erhöht haben, haben sie die Angriffsfläche des Fahrzeugs erheblich vergrößert und die Tür für neue potenzielle Sicherheitsrisiken geöffnet. Die Situation wird durch einen Mangel an Sicherheitsmechanismen im Fahrzeugsystem verschärft, die es ermöglichen, dass ein Kompromiss in einem der unkritischen Subsysteme die Sicherheit des gesamten Fahrzeugs und seiner Insassen gefährdet kann. Diese Dissertation konzentriert sich auf die Entwicklung eines umfassenden Rahmens, der die Sicherheit des Fahrzeugsystems während seines gesamten Lebenszyklus gewährleistet. Dieser Rahmen zielt darauf ab, die Cyber-Angriffe gegen verschiedene Komponenten zu verhindern, indem eine sichere Kommunikation zwischen ihnen gewährleistet wird. Darüber hinaus zielt es darauf ab, Angriffe zu erkennen, die nicht erfolgreich verhindert wurden, und schließlich auf diese Angriffe angemessen zu reagieren, um ein hohes Maß an Sicherheit und Stabilität des Systems zu gewährleisten

    Integrating legacy mainframe systems: architectural issues and solutions

    Get PDF
    For more than 30 years, mainframe computers have been the backbone of computing systems throughout the world. Even today it is estimated that some 80% of the worlds' data is held on such machines. However, new business requirements and pressure from evolving technologies, such as the Internet is pushing these existing systems to their limits and they are reaching breaking point. The Banking and Financial Sectors in particular have been relying on mainframes for the longest time to do their business and as a result it is they that feel these pressures the most. In recent years there have been various solutions for enabling a re-engineering of these legacy systems. It quickly became clear that to completely rewrite them was not possible so various integration strategies emerged. Out of these new integration strategies, the CORBA standard by the Object Management Group emerged as the strongest, providing a standards based solution that enabled the mainframe applications become a peer in a distributed computing environment. However, the requirements did not stop there. The mainframe systems were reliable, secure, scalable and fast, so any integration strategy had to ensure that the new distributed systems did not lose any of these benefits. Various patterns or general solutions to the problem of meeting these requirements have arisen and this research looks at applying some of these patterns to mainframe based CORBA applications. The purpose of this research is to examine some of the issues involved with making mainframebased legacy applications inter-operate with newer Object Oriented Technologies
    corecore