
I n t e g r a t i n g L e g a c y M a i n f r a m e S y s t e m s :

A r c h i t e c t u r a l I s s u e s a n d S o l u t i o n s

An Investigation into Architectural issues raised by making the Mainframe a peer in a
distributed network in the Financial Sector.

By

John Butler, B.Sc.

University: Dublin City University
Supervisor: Renaat Verbruggen
School : Computer Applications

A dissertation presented in fulfilment of the requirements for the award of

M .Sc. in C om puter A pplications, F ebruary 2004

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Masters of Science in Computer
Applications is entirely my own work and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged within the text
of my work.

(Candidate) ID No. : 99145006

Signed:

Date: 1st February 2004

Firstly, I would like to thank Röisin for all her enthusiasm, support, and invaluable help with the
proof reading.

I would like to give special thanks to my parents and family for their support and constant
encouragement to keep going.

Sincere thanks is due to Renaat for all his advice, council and guidance throughout the research.

I would like to thank my employers ORBISM for facilitating this study in every possible way.

I am also indebted to my colleagues at Credit Suisse Zürich, for their help and knowledge sharing
in all areas of CORBA and large-scale systems.

Last but not least, I would like to thank Colm for his help with the proof reading and being there
to field any research related questions.

Acknowledgements

John Butler

Abstract

For more than 30 years, mainframe computers have been the backbone of computing systems
throughout the world. Even today it is estimated that some 80% of the worlds' data is held on such
machines. However, new business requirements and pressure from evolving technologies, such as
the Internet is pushing these existing systems to their limits and they are reaching breaking point.
The Banking and Financial Sectors in particular have been relying on mainframes for the longest
time to do their business and as a result it is they that feel these pressures the most.

In recent years there have been various solutions for enabling a re-engineering of these legacy
systems. It quickly became clear that to completely rewrite them was not possible so various
integration strategies emerged.

Out of these new integration strategies, the CORBA standard by the Object Management Group
emerged as the strongest, providing a standards based solution that enabled the mainframe
applications become a peer in a distributed computing environment.

However, the requirements did not stop there. The mainframe systems were reliable, secure,
scalable and fast, so any integration strategy had to ensure that the new distributed systems did not
lose any of these benefits. Various patterns or general solutions to the problem of meeting these
requirements have arisen and this research looks at applying some of these patterns to mainframe
based CORBA applications.

The purpose of this research is to examine some of the issues involved with making mainframe-
based legacy applications inter-operate with newer Object Oriented Technologies.

In tegra ting Legacy M ain frame Systems: A rch itec tu ra l Issues and Solutions

DECLARATION.............

Table of Contents

II

A C K N O W L E D G E M E N T S ...M

ABSTRACT.. IV

TABLE OF CONTENTS... V

TABLE OF FIGURES..XII

1 INTRODUCTION...1
1.1 M ainframes a n d early Technology Solutions.................................1

1.1.1 Using Information Technology to conduct Business... 1
1.1.2 The Mainframe as the early platform o f choice...............1
1.1.3 Liv ing with these older applications today... ,,, 1

1.2 Technology Requirements in the B anking Se c t o r............................. 2
1.2.1 The Nature o f the Banking Industry............................:..2
1.2.2 Use o f Technology in the industry.. 2
1.2.3 Furthe r pressures from new Technology............... — ..2

1.3 Problems arising...3
1.3.1 Why are these older applications a problem?.. 3
1.3.2 How widespread are these older applications?... 3
1.3.3 What is a Legacy System?..3
1.3.4 Who understands the application completely?... 3
1.3.5 How can the information be retrieved?...................4
1.3.6 Integrating the Legacy Systems........................... „4
1.3.7 The Real Challenge...4

1.4 Solutions to these problems... 5
1.4.1 Changing the way o f thinking o f Legacy Systems... 5
1.4.2 Standards Based Solutions.....*_______ ..5

1.5 Further D ifficulties a n d their Solutions.................................... 5
1.5.1 Example Standards Based So lutions...5
1.5.2 Problems arising in using these Standards..5
1.5.3 Sharing Solutions................................... 6
1.5.4 Patterns..6

1.6 Su m m a r y of the Issues a n d Research A ims.................................... 7
1.7 Research M otivation... 7
1.8 The Rest of the D o c u m e n t... 7

2 L E G A C Y APPLICATIONS IN THE FINANCIAL SEC T O R 9
2.1 N ature of the B anking B usiness...................... 9

2.1.1 Ea rly Banking... 9
2.1.2 General Functions........ - 9

2.2 A rchitecture of the M ainframe O perating Sy s t e m............................10
2.2.1 A B rie f H isto ry o f Computing...10
2.2.2 Categories o f Computers... 10
2.2.3 Ea rly Compatibility Issu e s...11

V

2.3 M ainframe Te c h n o l o g y.. 11
2.3.1 Mainframe Overview..11
2.3.2 From M VS to OS/390...11
2.3.3 M VS Products... 12
2.3.4 T P F (Transaction Processing Facility) and VM ...13
2.3.5 Storage considerations...13
2.3.6 Transactions... 14
2.3.7 Lim itations and Benefits o f the Mainframe Architecture... 14

2.4 First B anking A pplications... 15
2.4.1 What was available?... ...15
2.4.2 Applications performing Business operations... 15
2.4.3 Essentia ls o f a Business Applications...15
2.4.4 Composition o f a Business Application................. 16

2.5 N e w C ustomer D e m an ds a n d Pressures on the Syste ms........................ 16
2.5.1 Ea rly Technology Requirements..16
2.5.2 Changing Business Requirements...16
2.5.3 Evolving Technologies.. 17
2.5.4 New Opportunities... / 7

2.6 Challenges for the f u t u r e... 18
2.7 C onclusion...18

3 APPROACHES T O INTEGRATING L E G A C Y SYSTEMS........................... 20
3.1 Introduction... 20
3.2 Replacing the entire banking system....................................... 20
3.3 A pproaches to Integrating the Le g ac y Sy s t e m s.............................. 21

3.3.1 Level o f intrusiveness.. 21
3.3.2 Reusability and Robustness..22
3.3.3 Complexity.................................... ... 23

3.4 Em u l a t o r..23
3.4.1 TN 3270 Protocols........ ..23
3.4.2 Using the Emulator Approach..23

3.5 Screen Scraping (Presentation Layer Integration)........................... 24
3.5.1 What is Screen Scraping.. 24
3.5.2 Advantages and Disadvantages..24

3.6 Functional Level Integration... .24
3.7 U sing CORB A for Functional Level Integration....... 25

3.7.1 CORBA and Screen Scraping...25
3.7.2 CORBA Adapter Technology..25
3.7.3 F u ll Integration..26
3.7.4 Why CORBA...26
3.7.5 Using J2 E E Connectors.. 27

3.8 D at a Level Integration.. 28
3.8.1 X M L ...28

3.9 C onclusion.. 28
4 INSIDE C O R B A ... 30
4.1 H istory of D istributed transactional Com pu tin g............................30

4.1.1 Centralised versus de-centralised.. 30
4.1.2 G U Is and Smarter C lients... 30
4.1.3 The Client/Server Model... 31

Vi

4.1.4 3-tie r Computing............. ...- * v32
4.1.5 D ifficu lties with 3-tie r computing.. 32
4.1.6 Remote Procedure C a ll.. 32
4.1.7 Object Oriented n-tier computing...................,■.....33
4.1.8 Internet Revolution.. 33
4.1.9 Different Connectivity Models...34
4.1.10 Component Applications... *................ ;.................... 34
4.1.11 Improvements in Design..................... 35
4.1.12 General benefits and problems with N -tie r computing...35

4.2 Introduction to C O R B A ..36
4.2.1 D ifficulties o f Distributed Object Programming...36
4.2.2 What is an O RB...........36
4.2.3 The Object Management Architecture (OMA)... 37
4.2.4 The Nature o f CORBA Objects... 37
4.2.5 The Structure o f a CORBA Application..38
4.2.6 The Structure o f a Dynamic CORBA Application............ ...,^,..,....^...38
4.2.7 Dynamic Server Programming.. :..... 38
4.2.8 Interoperability between O RBs...38
4.2.9 The CORBA Services... 39
4.2.10 The CORBA Fa c ilitie s..................................... .. 39

4.3 Looking inside C O R B A ... 39
4.3.1 The Ba sic s.. 39
4.4.2 ID L Mappings...41
4.4.3 Finding CORBA Objects................................ ,.. 41
4.4.3.1 The Naming Service...42
4.4.4 Exception Handling... 42
4.4.5 ORB Interoperability... 43

4.4 Service-Based A rchitecture.. 43
4.5 Conclusion...44

5 PATTERNS...45
5.1 W hat are Patterns.. 45
5.2 HOW DOES A PATTERN COME TO BE.. 46
5.3 D esign Patterns.. 48
5.4 W hat aren't D esign Patterns... 49
5.5 A rchitectural Patterns..50
5.6 Categories of A rchitectural Patterns..................................... 51

5.6.1 From Mud to Structure...51
5.6.2 Distributed Systems... 52
5.6.3 Interactive Systems......................... 52
5.6.4 A daptable Systems........... ... 52

5.7 Implementing Architectural Patterns..................................... 52
5.8 Q ualities of Patterns.. -— 53
5.9 Conclusion a n d further developments..................................... 54

6 C O R B A P E R F O R M A N C E ISSUES.. 56
6.1 Introduction...56

6.1.1 Performance o f Distributed Systems...56
6.1.2 Other Performance Problems...57
6.1.3 Designing ID L fo r performance,„„¿.a............. ¡s.... iV. . . ¡ . . . i v . » 4 » ^ 58

vii

6.2 G eneral Solutions to the CORBA Performance Pr o b l e m s..................... 58
6.3 M inimise the n u m b e r of remote operations.................................. 59
6.4 O ptimising the type of data sent o r r e t u r n e d................................ 60

6.4.1 Orders o f Magnitude.................................... .. 60
6.5 O ptimising the a m o u n t of d a t a sent o r r e tu rne d......... 61
6.6 A dditional CORBA Patterns..63
6.7 C onclusion.. 65

SECURITY ISSUES... 66
7.1 M ainframe Security...66

7.1.1 RACF (Resource Access Control Fa c ility).. 67
7.1.2 RACF Record Keeping..67
7.1.3 Mainframe Security in a Client/Server Model..68

1.2 Banking Security Requirements...69
7.3 Threats to Banking Security..... 70

7.3.1 Internal Network Security... 70
7.3.2 Internet and Extranet Security.. 70
7.3.3 Security Threats...71
7.3.3.1 Deliberate Security Threats... 71
7.3.3.2 Accidental Security Threats..72

7.4 Required Security Services...72
7.4.1 Security Services.............................72
7.4.2 Applying Security Services...73
7.4.3 Addressing different System Areas..73

7.5 Firewall Te c h n o l o g y... 74
7.5.1 Firew a ll Security...75
7.5.2 Packet F ilte rs76
7.5.3 Proxy Servers... 76

7.6 D e-Militarised Zo n e s..77
7.7 Public K ey Infrastructure... 79

7.7.1 Secure Sockets Layer.. ...79
7.7.2X.509 Certificates..81
7.7.3 Certificate Authority..82
7.7.4 Other P K I Issu e s.. 82
7.7.5 P K I Locations..83

7.8 Integrating with other Security M o d e l s................................... 84
7.8.1 CORBA Security Service.. 84

7.9 Sample A rchitectures... 86
7.10 Security patterns...87
7.11 Conclusion.. 87
SCALABILITY... 89

8.1 Introduction...89
8.2 M ultithreading.. 90

8.2.1 Concepts behind Multithreading.............. 90
8.2.2 Multi-processing.........................90
8.2.3 Multithreaded languages... 90
8.2.4 Difference between threads and processes... 90
8.2.5 Choosing threads or processes.....................................91
8.2.6 Choosing Multithreading or Single Threading..91

viii

8.2.7 Using threads.. 92
8.2.8 Dangers o f Multithreading.. 92
8.2.9 Managing Threads.. 93
8.2.10 Structured Locking Techniques................................. 93
8.2.11 Threading Policies... 94
8.2.12 Limits... 94
8.2.13 CORBA Alternatives to Multithreading... 94

8.3 Connection M a n a g e m e n t... 95
8.3.1 Establishing Connections... 95
8.3.2 Reconnection.......................... 96
8.3.3 IIOP Connection Features.. 96
8.3.4 Callbacks...96
8.3.5 Direct IIOP Connection.. 96
8.3.6 CORBA Daemon... 97
8.3.7 Closing Connection... 97
8.3.8 Connection Limits................................. 97
8.3.9 Connection Patterns...97
8.3.9.1 Client Disconnects... 98
8.3.9.2 Concentrator...98
8.3.9.3 Server Disconnects.................... 98
8.3.9.4 Other Idioms... 99

8.4 Session M a n a g e m e n t.. 99
8.4.1 Sessions..99
8.4.2 Session Management Issues................ 99
8.4.3 Availability... 99
8.4.4 Termination.. 100
8.4.5 Service Architecture.. 100
8.4.5.1 Concurrent Clients... 100
8.4.5.2 Number o f Requests... 100

8.5 C onclusion.. 101
9 AVAILABILITY (LOCATING C O R B A SERVICES).............................. 102

9.1 Introduction.. 102
9.2 Locating a Service..102
9.3 Providing a n O bject Reference... 103
9.4 Interoperable O bject References... 104
9.5 Proprietary Solutions.. 104
9.6 G etting the O bject Reference.. 104
9.7 the CORBA N aming Service.. 105

9.7.1 Choosing a Naming Service Hierarchy.. 106
9.7.2 Extensions to the Naming Service.. 107
9.7.3 Naming Service Difficulties...108

9.8 THE CORBA TRADER SERVICE.. 108
9.9 Bootstrapping... 109
9.10 Cus to m O bject location... 109
9.11 Publishing Certain O bjects.. 110
9.12 Lifetimes of O bjects...Ill
9.13 C onclusion.. Ill

10 AVAILABILITY (FAILOVER)... 112

10.1 Introduction... 112
10.2 M ainframe A vailability..112
10.3 Failures... 113
10.4 Exception H andling... 113

10.4.1 Introduction to Error Handling.. 113
10.4.2 Early Error Handling.. 114
10.4.3 Dealing with Exceptions..114
10.4.4 Distributed Exception Handling... 114
10.4.5 CORBA Exception Handling... 115
10.4.6 CORBA User Exceptions.. 115

10.5 Fault Tol er anc e..116
10.5.1 Introduction... 116
10.5.2 Realising the failure.................... 117
10.5.3 Recoverable Servers... 117
10.5.4 Server Monitors__«ajgaBaasBaaas,.̂ ait».-... 118
10.5.5 Replicating Objects... 119
10.5.5.1 Primary-Secondary Replication... 120
10.5.5.2 Stateful Objects...................120
10.5.6 Multicast.. 121
10.5.7 Fault Tolerance Patterns.. 121

10.6 Lo a d Balancing...123
10.6.1 What is Load Balancing...123
10.6.2 Requirements o f a Load Balancing Policy.......................................124
10.6.3 Benefits ofLoad Balancing.. ,125
10.6.4 Dangers o f implementing a load balancing policy................................125
10.6.5 Real World Uses.. 125
10.6.6 Load Balancing Algorithms and Policies..........126
10.6.7 Implementing Load Balancing using the CORBA Naming Service..... 127
10.6.8 Network Based Load Balancing...127
10.6.9 Operating System Load Balancing... 128
10.6.10 Software approaches to implementing a Load Balancing S o l u t i o n 128

10.7 Conclusion.. 128
11 IMPLEMENTATION A N D R E C O M M E N D A T I O N S 130

11.1 Implementation Introduction...130
11.2 Credit Suisse M ainframe A rchitecture..................................... 130
11.3 Choosing a suitable Integration A rchitecture............................... 131
11.4 B uilding A n Architecture based o n M an ag ed Evolution.......................133

11.4.1 Services-modules instead o f components..........133
11.4.2 Bottom-up approach for the existing system134

11.5 Performance C oncerns.. 136
11.6 Security C onsiderations... 139
11.7 Scalability.. 142
11.8 A v ailability..143
11.9 Failover...144
11.10 O ther Idioms a n d U seful Solutions......................................146
11.11 Credit Suisse CORBA Infrastructure....................................147
11.12 Conclusion.. 148

12 F U T U R E .. 149

X

12.1 THE FUTURE OF MAINFRAMES..149
12.2 The Future of Legacy A pplications.. 149
12.3 The Future of D istributed Co m p u t i n g...................................... 150

13 C O N C L U SIO N A N D F U R T H E R W O R K .. 151

13.1 G eneral W ork for the future...151
13.2 Specific Research possibilities.. 152

A P P E N D IX A: W E B R E S O U R C E S .. 153

B IB L IO G R A P H Y ...154

xi

Table of Figures

FIGURE 2.1: A typical early A rchitecture... 12
FIGURE 2.2: Early M ultiple V irtual Storage...13
FIGURE 4.1: The Centralised M odel of computing.................................... 30
FIGURE 4.2: A TIMELINE FOR DISTRIBUTED TRANSACTIONAL COMPUTING....................... 30
FIGURE4.3: THE 2-TIER MODEL..31
FIGURE 4.4: The 3-tier o r n -tier m o d e l .. 32
FIGURE 4.5: BROWSER BASED CLIENT/SERVER...34
FIGURE 4.6: Com po nen t M o d e l...35
FIGURE 6.1: Interfaces D efine w h a t a CORBA Service will provide...................... 58
FIGURE 7.1: The Private C o m p a n y N e t w o r k ..66
FIGURE 7.2 : Resource A ccess Control Facility...................................... 67
FIGURE 7.3: RACF SECURITY ADMINISTRATION..68
FIGURE 7.4: BANKING SYSTEMS REQUIREMENTS... 69
FIGURE 7.5: Internal N e t w o r k Security Requirements 70
FIGURE 7.6: Internet a n d Extranet Security Requirements.............................71
FIGURE 7.7: PROTECTING THE BANKS RESOURCES.. 73
FIGURE 7.8: D ifferent Security A reas.. 74
FIGURE 7.9: FIREWALL TECHNOLOGY..75
FIGURE 7.10: CORBA PROXY SERVER...77
FIGURE 7.11: D e-Militarised Zo n e ..78
FIGURE 7.12: MULTIPLE PROXY SERVERS.. 79
FIGURE 7.13: SSL PROTOCOL LAYERED BETWEEN HOP AND TCP/IP...........................80
FIGURE 7.14: PUBLIC K ey CRYPTOGRAPHY/ASYMMETRIC K e y CRYPTOGRAPHY.................. 81
FIGURE 8.1: M aking CORBA Leg ac y A pplications SCALE............................... 89
FIGURE 9.1: OBJECT REFERENCE.. 102
FIGURE 9.2: O bject Location M o d e l ... 103
FIGURE 9.3: CosNAMlNG IDL.. 105
FIGURE 9.4: NAMING STRUCTURE..106
FIGURE 10.1 : A dding Exceptions to IDL.. 116
FIGURE 10.2: Keeping State for Recoverable Servers........................... 118
FIGURE 10.3: Server M onitor,.. 119
FIGURE 10.4: Before a Lo a d Balancing Solution.....................................123
FIGURE 10.5: Simple Lo a d B alancing Solution.......................................124
FIGURE 11.1 Credit Suisse Technology D etails...................................... 130
FIGURE 11.2 SERVICE-MODULES...133
FIGURE 11.3 Service A rchitecture.. 134
FIGURE 11.4 Credit Suisse Service A rchitecture O verview............................ 135
FIGURE 11.5: U se Sequences instead of N e t w o r k Calls............................... 137
FIGURE 11.6 U se Structures instead of m a n y attributes.............................. 138
FIGURE 11.7: INITIAL BUSINESS REQUIREMENTS...139
FIGURE 11.8: SECURE THE PERIMETER.. 140
FIGURE 11.9: A dding A D M Z .. 141
FIGURE 11.10: FINAL CORBA SECURITY INFRASTRUCTURE................................ 142
FIGURE 11.11 CORBA N aming Service..144
FIGURE 11.12 Replicated N aming Service...145
FIGURE 11.13 Lo a d B alanced Entries.. 146

1 Introduction

The integration of mainframe legacy applications and their architectures is the central focus of
this dissertation. This chapter will provide a general overview of the topics investigated. Firstly
there is an examination of mainframe systems and the Banking Sector with a focus on how the
requirements of this sector are rapidly changing. There are various solutions available in the
marketplace to help meet these requirements but even these solutions can cause further
difficulties. A new way of thinking and sharing of experiences can help overcome these problems.
Throughout the dissertation, examples of "real world" architectures and their integration strategies
will be provided.

1.1 M a in f ra m e s a n d e a r ly T ech n o lo g y S o lu tio n s

1.1.1 Using Information Technology to conduct Business

At the start of the 21st century, all of the world's large companies have an Information
Technology department and there are few that conduct business without technology. However,
quite a number of industries, especially in Banking Sector have particularly old applications that
they still use and rely on [Jordan 1996], This sector of industry was among the first to make use
of computers as part of their business model and as the first real use was over 30 years ago, some
of these corporations still rely on code that is as old as this for mission critical tasks.

1.1.2 The Mainframe as the early platform of choice

Typically these early applications were implemented on the mainframe platform and most
probably in a language such as COBOL or PL/I. These computers could reliably, and securely
provide a central server that many terminals could run applications from. During those early days,
the mainframe was comfortably able to meet the demands of the Banking Sector, in that it could
provide the various applications needed to conduct the core business of the institution and could
do so safely and reliably.

1.1.3 Living with these older applications today

Many Banking institutions that used the mainframe and its applications in these early days of
information technology must now face up to the requirements of today's business, which has
changed completely since these pioneering days. Such institutions have to decide what to do with
the "legacy applications" and how they can reinvent or reengineer them to provide what today's
customers now expect from a software solution.

1

1.2 T e ch n o lo g y R e q u ire m e n ts in th e B a n k in g S e c to r

1.2.1 The Nature of the Banking Industry

The role of a Bank in today's global economy is changing frequently. Traditionally, a Bank
safeguarded money and valuables, provided loans, credit and payment services such as checking
accounts, money orders, and cashier’s checks [Horswill 2000], As the banking industry is slowly
deregulated, banks are also offering more investments and insurance products that they were once
prohibited from selling.

1.2.2 Use of Technology in the industry

For quite some time now, the Banking Sector has relied quite heavily on Information Technology
to conduct its business. Many routine banking services that once required a teller, such as making
a withdrawal or deposit, are now available through Automated Teller Machines (ATM) that allow
people to access their accounts 24-hours a day. Direct deposit facilities allow companies and
governments to electronically transfer payments into various accounts. Debit cards and “smart
cards” instantaneously deduct money from an account when a card is swiped across a machine at
a store’s cash register. Finally, electronic banking by phone and increasingly via the Internet
allows bills to be paid and money transferred from one account to another.

1.2.3 Further pressures from new Technology

In today's ever demanding global environment, systems are required that are more accessible,
have greater functionality and provide all of the services detailed above with increased
performance and better security than before. In addition, Graphical User Interfaces (GUIs) are a
must for any new application, and these require more computing power [Froidevaux et al. 1999].

These increased demands, and the current high pace of process reengineering is stretching
existing systems to their limits. There are also extra pressures to move away from older
technologies coming with the arrival of Internet, Electronic-Commerce, Online Banking, Wireless
Application Protocol (WAP), GUIs, and Object Oriented Analysis and Design (OOAD).
Additionally, corporate mergers and company take-overs also often require the joining of the
Information Technology (IT) systems. All of these combined are putting older systems in a
position where they are simply not able to adapt and move forward with the changes required.
[Chen et al. 2000] outline some of the risks to business of increased advances in the technology
sector. These include

• Due to rapid changes in markets, information must be continuously updated. This adds an
extra cost of market intelligence.

• There is an increased market risk in the selling of new technology products that may not be
successful.

2

• Information Technology investment is a large fixed cost. Additionally, security, performance,
interoperability, and equipment depreciation add to this cost. Finally, the capital base required
for enterprise IT solutions can be massive.

• There is a human constraint introduced as technology interacts with the human user.

1.3 P ro b le m s a r is in g

1.3.1 Why are these older applications a problem?

Just as it is difficult for us today to anticipate all the demands that competitive business pressures
will place on an organisation 30 years from now, it was impossible for developers thirty years ago
to imagine where technology would be today. Indeed [Lauder, Kent 2000] warn of such a lack of
domain expertise. As will be seen, these architectures do not suit the development of new
applications as all aspects of computing, development and computer architectures have changed
considerably.

1.3.2 How widespread are these older applications?

To answer this question it is useful to look at some figures regarding the use of COBOL over the
last few decades.

From the late 1960’s through the 1980’s, 75% of all business applications were written in
COBOL [Kolodziej 1987]. Organisations spent half of their MIS budgets to produce
approximately five billion lines of COBOL code. [Parikh, Girish 1987] Towards the end of the
1990's it was estimated that there were more than 30 billion lines of COBOL code in operation.
[Lawrence 1996]

Coupled with the pressure for change, and given the widespread reliance on COBOL and older
applications, maintaining these applications and providing continued access to their data is among
the number one concerns for modem banking corporations. Such institutions are constantly
seeking way to modernise their systems.

1.3.3 What is a Legacy System?

When considering this question and the modernisation currently being attempted by large many of
the world's largest companies, it is useful to read one definition of Legacy Systems

A legacy system is one that significantly resists modification and evolution to meet new and
constantly changing business requirements [Brodie Stonebraker 1995]

1.3.4 Who understands the application completely?

It is clear as to why these legacy systems pose a problem in today's environment. Typically, many
such systems have been maintained over time by a series of software developers. Each of these
developers may not have completely understood the entire system or program. It is next to

3

impossible to properly rewrite systems that have been built over 2 or 3 decades without
considerable expense. One of the difficulties faced throughout the software industry is that often
people don't know exactly how the entire systems work. [Morris, Isaksson 2002] detail the
different levels of intrusiveness with different integration strategies and each of these will be
looked at in turn in later sections.

In addition, if a re-write was to take place of such an application today, it is likely that a
considerable amount of the original programming team have long since left the organisation.
Likewise, it is conceivable that all of the original documentation is not still available, and in fact,
it is the case that many of these applications are largely undocumented. Over the years, many
localised fixes are likely to have been applied to these systems (again as is in the nature of
application development) to make a feature work to meet an immediate deadline or requirement.
All of these factors have made the application "brittle" and requiring additional maintenance.
Likewise, it has made any uniform upgrade of the architecture of the entire system, highly costly,
and quite unlikely. [Jiang 1998] investigates the costs and benefits between Legacy extension and
Legacy Integration.

1.3.5 How can the information be retrieved?

In essence, organisations are looking at how to best get at the knowledge and information already
existing in legacy applications. Quite often, these organisations have millions of Euro invested in
systems that were built in-house and although many were replaced at Year 2000 (Y2K) by
packaged Customer Relationship Management (CRM) and Enterprise Resource Planning (ERP)
systems, there are still enough legacy applications untouched to make it a highly discussed issue.
The big challenge in today's IT industry is to integrate these legacy systems with today's web and
Internet based technologies.

1.3.6 Integrating the Legacy Systems

Since the arrival of some modem operating systems and programming languages, there have been
methodologies and approaches available to make these newer paradigms work together with their
older predecessors. These approaches have varied from completely re-writing the legacy
applications to work with the newer platforms, to less intrusive approaches such as „wrapping“
the legacy application or simply getting access to the data the legacy applications represented.
[Reddy 2002] outlines a "Screen-Scraping" approach which is among the least intrusive
approaches of integration while [Froidevaux et al. 1999] outline a full-integration approach.

Each of these approaches has been tried and tested and certainly all have worked with differing
degrees of success depending on the application involved.

1.3.7 The Real Challenge

One of the greatest challenges with regard to legacy systems is to understand them completely.
Second to this comes the challenge of integrating them with the new paradigm. Many
organisations see the key requirements as being how to leverage what is currently there without
having to go inside and document it by hand. Even still, almost all answers as to how to utilise
these legacy systems are likely to require significant engineering expertise and monies. Even then

4

there is no guarantee of successful renovation and integration. However it what is widely agreed
is that there is significantly less risk in revamping these systems than in re-writing them from
scratch.

1.4 S o lu tio n s to th e se p ro b le m s

1.4.1 Changing the way of thinking of Legacy Systems

The role of the mainframe is changing with the dawn of the new century. Companies have already
spent a considerable amount readying their mainframe systems for the year 2000. This plus other
investments are forcing companies to once again view mainframe technology as a core resource in
their IT infrastructure.

1.4.2 Standards Based Solutions

Many Banking Institutions have opted for the “wrapping” approach as the method of choice to
bring their legacy applications into synchronisation with the rest of their computing environment.
Early attempts at this integration strategy used solutions proprietary to the organisation. This very
quickly leads to further legacy applications.

At the start of the 1990’s, the concept of standards based solutions started to appear on the market.
These solutions involved using standards for inter-platform and inter-operating language
communication and immediately it became clear that they could be used in this way to access the
legacy systems from new technologies such as the Internet and Java. [Murer 1999] outlines the
use of a standards-based solution in the Credit Suisse legacy integration project.

1 .5 F u r th e r D ifficu lties a n d th e i r S o lu tio n s

1.5.1 Example Standards Based Solutions

One of the most popular solutions available in the industry today is the Common Object Request
Broker Architecture (CORBA) by the Object Management Group (OMG). Another is the Java 2
Enterprise Edition (J2EE) by Sun Microsystems (in particular the Connector Architecture
specification). A third popular standard in the middleware industry is the DTP (Distributed
Transaction Processing) specification by the X/Open Group.

1.5.2 Problems arising in using these Standards

Early pioneer projects that used CORBA or J2EE Connectors as their chosen Architecture
solution for integrating their legacy applications soon ran into problems. The specifications
needed market implementations and these implementations deviated from the specification from
time to time. On other occasions the specification itself was simply not precise enough.

5

In addition, the implementations sometimes only provided the base architecture for integrating
legacy systems and the difficult parts of object location, thread management, transaction support
and security were left up to the individual organisations to implement themselves. [Koch Murer
1999] outline such problems seen in Credit Suisse.

1.5.3 Sharing Solutions

It quickly became apparent that throughout the banking sector the same problems were arising. It
also became apparent that once an organisation or project came up with a solution for the problem
that this solution could be useful to others trying to accomplish the same goals.

1.5.4 Patterns

One of the most useful additions to software development in recent times has been the concept of
a pattern. A pattern is a solution to a well-known problem that can be applied in different
instances to overcome this problem. One of the most influential books of the last 10 years has
been “Design Patterns — Elements of Reusable Object Oriented Software” by Gamma, Helm,
Johnson and Vlissides [Gamma 1995], This book provides many patterns or well-known
solutions to various problems encountered with software development using object-oriented
principles. These patterns do not claim to have all of the answers or a complete solution, but the
use of the principles inside can make the overall development process less error prone.

The concept of patterns in computing came from the field of Architecture and specifically
[Alexander 1977] and [Alexander 1979] which were revolutionary in that field and, in turn,
changed the way people though about problems in world of computing too.

A form of pattern that has started to become popular in recent times is the “Architectural Pattern”.
This type of pattern can be used in high-level architectures and Legacy integration projects to
ensure that any solution will work at the enterprise level as is mandated in the requirements of any
large scale project by today's Banking Sector.

In turn, people such as [Mowbray, Malveau 1997] researched and produced patterns for specific
areas and solutions so that a project choosing one integration strategy could benefit from the
experience of others that had been in the same situation previously.

6

1.6 Summary of the Issues and Research Aims

The following list comprises the research aims described in this document:

• Define the requirement of modem banking systems
• Investigate the approaches available for integration of the legacy systems
• Consider the critical problem areas and investigate solutions and patterns.

1.7 R e se a rc h M o tiv a tio n

Most of the large organisations within the Banking Sector have realised that today there is a
problem with their Legacy Systems. This problem is simply that they cant live with them because
of new technology and customer requirements, but they cant live without them for business
reasons. Those who have decided not to replace these systems are going for various integration
strategies to enable integration with newer technologies including the Internet and Java.

Among those who have already begun this process, there is a realisation that the task at hand is
not trivial. It is clear that to get to where they need to be on budget and on time they are wise to
use standards based approaches. To also look at “patterns” and solutions suggested by other
projects attempting the same task would further help this process.

The main aim of this research is to find out the possible blockages to a smooth integration of
legacy and object-oriented technologies. A second, more important aim is to find possible
solutions to these problems and offer advanced and industry recognised solutions to further
potential problems.

Throughout the research each of these goals and objectives will be re-examined to ensure that the
real-world problems of legacy integration projects are addressed and to evaluate the approaches
proposed in this context.

At the end of the research, it should be possible to compare any approaches recommended in
terms of is benefits to the Banking Sector. Any new overheads or difficulties should also be
reviewed, so that extra research could offer further solutions.

1.8 T h e R e s t o f th e D o c u m e n t

The following topics will be considered moving through this thesis:

Section 2 looks into the requirements of information technology in the Banking Sector and the
legacy systems that are already there. Section 3 considers the various approaches to integrating
these systems.

Section 4 investigates one of the approaches (CORBA). Section 5 looks at the concept of Patterns
and details the concept of architectural patterns in this context.

7

Sections 6,7,8 9 and 10 looks at some of the most difficult areas for integrating legacy systems.
These areas are Performance, Security, Scalability and Availability. Section 11 details a real
world implementation of such a legacy integration problem.

In the Conclusion there is a look at an overview of what has been investigated and other
considerations for the future.

8

2 Legacy Applications in the Financial Sector

2.1 N a tu re o f th e B a n k in g B u sin ess

2.1.1 Early Banking

Today’s banking industry is a cornerstone of countries' economy. It is interesting to learn
however, that the concept of a hank pre-dates even the use of coinage in society. It is believed that
banking first originated in Ancient Mesopotamia where the royal palaces and temples provided a
secure safekeeping place for grain and other commodities. [Glynn 1996]

This early form of banking included the use of receipts for transfers to both the original depositors
as well as to third parties. With the success of this banking, private houses also became involved
in similar banking operations and laws regulating these banking practices were included in the
code of Hammurabi, which was the rule of law in Mesopotamia.

The history of money and coinage goes back to very early times with increases in population
groups and the use of barter as means of exchange. Money as an accepted form of payment began
with the first finding of precious metals and eventually "token" money was accepted instead of a
metal of equivalent value to the product being bought.

Today, money serves various purposes. Among its concrete functions, it should be an acceptable
medium of exchange in trades for goods and services. It should be a standard of value for a good
or service, and should be a store of value so that it can be saved and used in the future [Glynn
1996]

2.1.2 General Functions

The primary function of a modem bank is to safeguard money and valuables. Other functions
include the providing of loans, credit and payment services, such as checking accounts, money
orders, and cashier's checks. Modem banks also offer insurance and investment products.

As [Jordan 1996] indicates, the functions of modem retail banks include

• Conducting exchange: clearing and settling claims
• Funding large-scale enterprises: resource pooling
• Transferring purchasing power across time and distance
• Providing risk management: hedging, diversification, and insurance
• Monitoring performance of borrowers: mitigating adverse incentives
• Providing information about the relative supply and demand for credit

Several types of banks exist in this marketplace that differ in the number of services they provide
and the clientele they serve. Commercial banks that dominate the industry typically offer a full
range of services for individuals, businesses, and governments. These banks come in a wide range
of sizes from large "money centre" banks to regional and community banks. Such banks tend to

9

get their primary revenue from the interest on loans to private or commercial parties. Of course,
they can use the money deposited in savings accounts to fund these loans and will give a lower
rate of interest on this money than the interest they charge on the loans, ensuring profitability.

Money centre banks are often located in major financial centres and are usually involved in
international lending and foreign currency, in addition to the more typical banking services.
Regional banks are usually concentrated in a geographical area and their numerous branches and
Automated Teller Machine (ATM) locations appeal to individuals. Community banks are based
locally and offer more personal attention that small businesses prefer.

There are also Savings banks catering to the saving and lending needs of individuals, Credit
Unions with members often from the same organisation or company, Federal Reserve Banks
which are Government agencies performing various financial services on behalf of the
Government.

2.2 A rc h ite c tu re o f th e M a in f ra m e O p e ra tin g S ystem

2.2.1 A Brief History of Computing

The mainframe operating system was among the first commercially available operating systems to
be used in the banking industry. The modem computer followed on from Charles Babbages' first
experiments with numerical machines. Some 70 years later, the first electronic computers were
created.

In some banks, use was made of electromechanical relays that served as on and off switches. It
could handle 23 decimal places and four arithmetic operations. It could also run special programs
to handle logarithms and trigonometric functions. These new machines could complete tasks that
would take a man six months in one day.

An example of such technology was the Mark I project from Harvard University in 1941. The
Mark I machine was soon replaced by the EN1AC (Electronic Numerical Integrator and
Computer). For full details on this technology see [Weik 1961]

The widespread use of computer in banks started in earnest with the era of the big or “super”
computers that began in the early 1960’s. There were three general categories of computers:

2.2.2 Categories of Computers

The Scientific computers were a family of computers that were primarily designed to perform
calculations with large numbers. Floating point arithmetic is the term for large number processing
and allows large or small numbers to be represented and manipulated. This type of machine was
popular with universities and large companies.

Decimal Computers were primarily designed to perform calculations with currencies. Decimal
arithmetic is the term for this type of processing and businesses wanting to process financial data
were the big customers.

10

Character Computers were character oriented and were more general purpose. Character oriented
computers were designed to address character strings such as names and addresses.

2.2.3 Early Compatibility Issues

All of these families of computers could perform decimal, number and character manipulation.
The architecture, however, was aimed at one type or the other and if an organisation wanted to
move more towards a different family, their application programs would require large changes.

Each family used different instructions to perform the same functions. The instructions were
different and conversion from one software system to another was traumatic for designers and
developers alike. Every application had to be completely rewritten from scratch to use another
hardware. [Johnson 1989]

The actual programming of such machines was also not a trivial task. This can be seen from a
programmer of such systems

“At first, programmers were given an IBM memory chart on which were printed 200 rows and 10
columns. The theory was that as you wrote your code, you would place your instructions and data
in an optimal location and then mark that memory location off on the chart. This sounded great
until you actually started modifying a large program that nearly filled the drum. You soon took
what you could get” [Kugel 2001]

2 .3 M a in f ra m e T ech n o lo g y

2.3.1 Mainframe Overview

With mainframe software architectures all intelligence is within the central host computer. Users
interact with the host through a terminal that captures keystrokes and sends that information to the
host.

MVS (Multiple Virtual Storage) is the operating system from IBM that is installed on most of the
mainframes and large server computers in the world. MVS is a generic name for specific products
that includes MVS/SP (MVS/System Product), MVS/XA (MVS/Extended Architecture), and
MVS/ESA (MVS/Enterprise Systems Architecture).

2.3.2 From MVS to OS/390

Historically, MVS evolved from OS/360, the operating system for the System/360, which was
released in 1964. It later became the OS/370 and the System/370. OS/370 evolved into the
OS/VS, OS/MFT, OS/MVT, OS/MVS, MVS/SP, MVS/XA, MVS/ESA, and finally OS/390 and
the newer Z/OS available in the last few years.

Throughout this evolution, application programs written for any operating system of this type
have always been able to run in any of the later operating systems due to IBM’s guarantee of
forward compatibility between operating systems.

11

2.3.3 M V S Products

An MVS system is a set of basic products and a set of optional products. This allows a customer
to choose the set of functions they need and exclude the rest. The main user interface in MVS
systems is TSO (Time-Sharing Option).

The Interactive System Productivity Facility is a set of menus for compiling and managing
programs and for configuring the system. This product also provides for versioning, auditing,
promoting code and configuration management to track all application components.

The main work management system is either Job Entry Subsystem 2 or 3 (JES2 or JES3). Storage
Direct Access Storage Device (DASD) management is performed by DFSMS (Distributed File
Storage Management Subsystem).

Cards

Magnetic Tape Reel

Floppy Diskette

Processor

CPU

T
DASD

Software Hardware

FIGURE 2.1 : A typical early A rchitecture

The Virtual Storage in MVS refers to the use of virtual memory in the operating system. Virtual
storage or memory allows a program to have access to the maximum amount of memory in a
system even though this memory is actually being shared among more than one application
program. The operating system translates the program's virtual address into the real physical
memory address where the data is actually located. The Multiple in MVS indicates that a separate
virtual memory is maintained for each of multiple task partitions.

12

16 MB

1 MB

OMb

Address Space 4

Address Space 3

Address Space 2

Address Space 1
OS/MVS
Data Areas
Common (Shared)

OS/MVS 370 Programs
System (Shared)

Private

FIGURE 2.2: EARLY MULTIPLE VIRTUAL STORAGE

The MVS operating system is considerably more complex and requires much more education and
experience to operate than smaller server and personal computer operating systems.

2.3.4 TPF (Transaction Processing Facility) and VM

Other IBM operating systems for their larger computers include or have included: the Transaction
Processing Facility (TPF), used in some major airline reservation systems, and VM, an operating
system designed to serve many interactive users at the same time.

The TPF platform is especially useful for business-critical systems. Airline reservation systems as
well as many systems for railroads, hotels, government as well as financial institutions rely and
trust this operating system.

2.3.5 Storage considerations

Back in these early days, central storage upon which the central processor processed operations
was a costly and scarce resource. System/360 system control software was characterised by
techniques for managing central storage:

PCP dedicated it to one application
MFT split it into several fixed pieces or partitions
MVT varied the number and size of these pieces, calling them “regions”

13

With the advent of virtual storage, systems were freed from the constraints of Central Storage by
supplementing them with less expensive, though slower, external software devices in a manner
transparent to most software by employing Direct Address Translation (DAT) hardware. This
allowed the migration of existing Central Storage operating systems into a virtual storage
environment. [Johnson 1989]

2.3.6 Transactions

The main purpose of most mainframe systems is the provision of different services to a multitude
of concurrent users. In a common scenario several thousand users interact concurrently with the
same mainframe system.

Computer memory is relatively cheap today, however twenty years ago, providing an individual
process for each user was not an option. To manage this large number of processes and store the
status information for each in memory would have been too expensive so the solution to this
problem involved each user sending requests for execution of a function. [Koch, Murer 1999]

This solution to the problem is what is known as a transaction. A transaction request contains all
required information in a set of parameters. The function itself is a stateless programming entity
(at least from the users point of view) and may be removed from memory as soon as the execution
is finished.

Many banking applications were built as transactions under popular mainframe transaction
monitors such as CICS and IMS for the very reasons outlined above. It is these applications that
will be considered when investigating possible integration strategies with modem technologies.

2.3.7 Limitations and Benefits of the Mainframe Architecture

These early mainframe software architectures were popular for the following reasons.

• They were reliable.
• They were secure.
• They scaled well.
• They met the early business requirements of the banks.

As technology advanced however, certain limitations appeared.

• They did not easily support graphical user interfaces(GUl) or access to multiple databases
• Produces substantial network traffic
• Requires a complex operating System
• Expensive to maintain

14

2.4 First Banking Applications

2.4.1 What was available?

Older systems running these applications were typically first developed in COBOL. Other
programming languages available included PL/1 and FORTRAN and Assembler. These
applications used the Virtual Storage Access Method access method for file management and
Virtual Telecommunications Access Method for telecommunication with users. IBM's primary
relational database management system RDBMS is DB2. Typical applications that were required
included payroll, accounts receivable, transaction processing, database management, and other
programs.

In the past, the banks' applications were almost exclusively realised as large program blocks
executed on the host computer. Almost all applications were developed in-house, apart from
elementary services such as databases and transaction monitors

2.4.2 Applications performing Business operations

Business operations applications perform the business transactions on behalf of the bank. These
applications are crucial to companies. Typically these applications would include any or all of the
following [Horswill 2000]

Cash for goods transactions
Any buyer/supplier transactions than can be translated into digital format
Internal business processes dealing with company resources
Credit Card Transactions
Cash Transactions from a banks ATM or cash dispensers
Stock market transactions for a stock exchange or brokerage
Information Transactions for collecting, collating and distributing news.
Payroll Transactions
Logistics transactions (scheduling of vehicles)
Voice application transactions
Sales transaction

2.4.3 Essentials o f a Business Applications

These Business Applications typically had the same features as each other. For example, in early
business applications, there was a computer at the centre with people being the focus of the
application.

The application's purpose was to keep accurate, up-to-date, secure operational business
information and deliver rapidly to end-users. It needed to be fast, accurate, secure and auditable
and information must be up to date and available to multiple users across a company, its suppliers,
customers and business partners

15

The Responsibilities of application should be divided and there should be support for the various
lifecycle requirements including Design, Development, Test and Update. There were certain
technical requirements that had to met including Accessibility, Availability, Communication,
Manageability, Prioritised use of hardware, Rapid Response, Reliability, Recoverability,
Scalability and Security

2.4.4 Composition o f a Business Application

A typical business application had code separated into components that managed the complex IT
system. There were different responsibilities within the overall application. [Horswill 2000]

These responsibilities have traditionally been broken into two types of components. (Business
Logic and Presentation Logic Components)

Business Logic Components typically had functions such as validating Input Data, searching the
database, Cross-validating input data and database data, updating data (including additions and
deletions) and log activities. These were all done according to the business rules.

Presentation Logic Components had as their responsibility, the presentation of data to the end user
and the receiving data from the end user. They invoked general-purpose presentation management
code controlling layout of data on screen or output device. They validated input, handled
interactions in correct sequence, confirmed completeness and invoked business logic as needed

2.5 N ew C u s to m e r D e m a n d s a n d P re s s u re s on th e S ystem s

2.5 .1 Early Technology Requirements

The first pressures for banking Technology to change came with the advent of Automatic Telling
Machines (ATM) and Smart Cards that could be used to electronically pay for goods.

Routine bank services that once required a teller are now available through these ATM that allow
people to access their accounts 24 hours a day.

Since the start of recent technology advances, the Internet and e-business have arrived and gone
past being just buzzwords in the industry. They are now real requirements. There are pressures for
change of existing banking applications coming from two major directions.

2.5.2 Changing Business Requirements

The fast pace of business process reengineering coupled with banking and corporate restructuring
and mergers has stretched the flexibility of existing system to their limits. [Froidevaux et al.
1999]

In addition, requirements for new Services and Real Time availability have left this older
technology creaking under the pressure.

16

2.5.3 E vo lv ing Technologies

With the old 3270 "Green Screens" being replaced with Graphical User Interfaces came a
requirement for more computing power. In addition the very nature of programming has changed
with the arrival of Object Oriented Analysis and Design and the necessity to have an e-presence
have also added to the pressures for change.

Specialisation and automation in banking have lead to dozens of special purpose systems (ATM,
phone banking, trading systems, etc.) with hundreds of specialised interfaces among each other.

The software required today is being developed based on logical components and managers are
placing emphasis on producing code that is transportable across the layers of n-tier architecture
and that is reusable among business applications. Application software development, which is
based on the business-component factory model strongly, supports business objectives of cost
efficiency enhanced customer service, and quick time-to-market. [Summers 2000]

The previous chapter outlined some of the other concerns about how legacy systems are coping
with these pressures for change. [Kudrass et al. 1996] outline a real-world example where,
because of a lack of documentation and in-house know-how concerning the legacy MIS it has to
be analysed and documented before being replaced.

In this case, the documentation is supposed to act as an online help system for the MIS
administrator. The documentation should further include an analysis of the system's interfaces in
order to maintain these more efficiently.

In this scenario, another well-known problem can be seen, where, as a result of multiple
modifications over time the data structure of the MIS is messy and the data is partially
inconsistent.

All of these concerns, when combined place a very real pressure on today's banks to either replace
or upgrade their existing applications.

2.5.4 New Opportunities

However, banks do not have to simply be reactive and wait for difficulties to rise, rather,
information technology provides some new opportunities. [Chen et al. 2000]

They can expand their product range using new technology and the resulting product innovation
and diversification. This will expand the earning base and increase earning stability. In addition,
automation of services becomes easier, an expanded customer becomes a target and the cost of
market entry is lowered by this technology. Examples of this can be seen in the new purely-
intemet based online banks of the dot-com period.

17

2.6 Challenges for the future

As outlined in [Murer 1999], there are conflicting challenges in the new role of IT in the banking
sector. On one hand, new distribution channels require new technologies but a high reliability
requirement along with enhanced security and performance, adds extra risk to the introduction of
this new technology. There is further trade-offs between short project cycles required for the
integration of standard applications compared with possible long project cycles due to cost
restraints.

It is clear as discussed in Chapter 1 that as it is difficult for us to know how IT systems will look
in 30 years time, it was equally as difficult for mainframe developers of 30 years ago to foresee
where technology would be today. As a result these older architectures do not suit the
development of new application that meet today's requirements.

Having said that it is also accepted that the mainframe is still at the core of many of the World's
systems. It is also accepted that the full expertise as to how these systems work does not exist, but
there is still a need to get at the information contained within.

Banks will be motivated to overcome obstacles such as systems incompatibility and consumer
privacy concerns, to achieve greater operating efficiencies and to protect their valuable payments
franchise. In addition, on-line purchases of sales and securities by individuals will also continue to
increase, providing a growing source of commission for banks and financial institutions [Me
Donough 1999]

As shall be seen in the next chapter, there now exists a catch-22 situation where it is agreed that
there is a need to modify these legacy applications but that there could be large risks involved. As
a result several strategies for integration or reengineering are required.

The extra complexity of these new banking applications is also cause for some concern. Operating
risk, in particular, has attracted more attention in recent years, partly because improvements in
technology and data storage permit institutions to retain and analyse more data and also because
the increased volume and complexity of bank transactions have, arguably, increased this risk for
many banks. [Ferguson 2002]

2.7 C o n c lu s io n

In this section it has been discussed how the nature of the banking sector relies on technology to
service its customers. A short look has been taken at early mainframe architectures and it can be
seen how these are no longer adequate for today's business and technological requirements. In the
next section there will be an investigation about various methods for integrating these older
systems with today's technology.

As outlined in the aims and objectives of this research, a key focus is to see possible difficulties
with integrating older mainframe technology with modem object-oriented technologies. This
chapter gave an overview of the mainframe operating system plus the applications that run on it.
Some of the pressures from business and technology that are forcing industry to integrate these
different technologies were seen.

18

It is possible to see that there is really no alternative but to integrate or replace the legacy systems
and the next step in the research will be to see what options are available today to facilitate this
migration.

These results make the objectives of this research somewhat clearer. There are pressures on
modern Banking IT Systems to adapt to newer technologies. However, the existing systems in
place are not easily replaced. The next step of the research is to examine some integration
strategies available today.

19

3 Approaches to Integrating Legacy Systems

3.1 In tro d u c tio n

This chapter introduces the various approaches that are available in today’s market place for
integrating legacy systems. Each of the approaches is being used in real world projects but some
are more suited to different kinds of projects.

There are currently many definitions of legacy systems. As outlined in Chapter 1, the definition
by [Brodie Stonebraker 1995] best matches the problem facing the Financial Sector today.
[Bennett 1995] extends this to state that legacy systems are those that cannot be easily changed
with but that are vital to the organisation. A narrower definition for our purposes, and as defined
by [Juric et al. 1999], states that

A le g a c y sy s tem h as ex is tin g code, is u sefu l to d a y a s w e ll a s in use to d a y a n d the

arch itec tu re o f the sy s te m it re s id e s on is n ot d is tr ib u te d a n d n o t o b je c t o rien ted .

This is commonplace with old mainframe based IMS and CICS transaction. This definition is a
somewhat limiting, as a legacy system does not have to be an old system. However, as this thesis
focuses on legacy systems as those running on the mainframe platform, it is a valid definition.

Another view of these systems is outlined in [Lauder, Kent 2000] where it can be seen why
organisations are afraid of replacing their legacy systems, as it is a significant drain on the
organisation’s resources. Another reason is that they have undergone years of debugging effort
and truly reflects the workings of the business.

This chapter will look at exactly these of types of legacy systems and consider how best to bring
them into synchronisation with the newest technologies and the changing business requirements.

3 .2 R e p lac in g th e e n t ire b a n k in g system

In principal, the simplest solution to the problem of outdated banking applications would be to
replace the whole system and start from scratch. Looking a little deeper into this solution
however, one can quickly see how difficult this would be in reality. As mentioned in the previous
chapter, many banking applications have had up to 30 years of continuous development and have
reached a degree of integration and sophistication that would be extremely difficult to replace
without major effort.

[Lauder, Kent 2000] warn how the legacy system itself is often the only source of recorded
domain expertise. The question that arises is whether the new systems will really contain all the
functionality of the older systems. The danger of building such a new system would be that it just
contains the knowledge of which the business is aware and misses much of the implicit
knowledge added into the older systems over decades. Missing this knowledge could result in
further updates required to the new systems, which are costly in development terms and customer
trust terms.

20

However this solution was found also to be not financially viable [Erlikh Goldbaum 2001] and
could take many years to implement at a cost of many millions and even then it is particularly
difficult to describe the requirements for a banking system five years into the future. [Koch
Murer 1999] outline how a first estimate for Credit Suisse showed that it would cost roughly 800
million Euro over a period of 5 to 7 years to replace their existing mainframe solutions.

Another approach would be to adapt the system from another organisation that had already
migrated their legacy technology. This would be a way of getting a mature system quickly. But it
has been found that this has only really worked historically in merger situations and has not
solved the problem for large organisations [Koch, Murer 1999]. It was also found to be not
possible to buy a complete solution, as there simply is not a large scale, complete application that
matches all of the requirements of a modem bank in existence.

For many organisations, the only solution is to try and re-engineer their existing systems so that
they can work side by side with the newer technologies.

3.3 A p p ro a c h e s to In te g ra t in g th e L e g acy S ystem s

Some obvious choices for integrating our mainframe applications with new technologies include
emulation, screen scraping, using adapters to pass information, and full integration between the
two paradigms.

Generally, there are two possible solutions to modifying a legacy system [Jiang 1998]
• Legacy extension
• Legacy integration.

Legacy extension is a means of matching the short-term requirements placed on an existing
system by fixing system deficiencies and adding enhancements.

Legacy integration however, attempts to reuse the legacy system to implement a new architecture.
The idea is to hide these systems behind consistent interfaces that hide the implementation details.
It is a solution that tries not to propagate the weaknesses of past design and development methods.
Unlike legacy extension, this is a long-term solution as the use of interfaces allows for changing
or replacing the implementation at a later date without affecting other systems.

Each project will need to decide on an integration strategy that best suits the needs and
requirements of that project. This strategy would have to be based upon different criteria that will
be investigated throughout the rest of this section but include obvious topics such as cost, risk
involved, levels of intrusiveness etc

3.3.1 Level o f intrusiveness

As mentioned in an earlier chapter, one of the biggest headaches in re-engineering or integrating
legacy code is to really understand the older system. If a company has full access to all the
documentation and all the source code it might be relatively painless, but if there is not full
knowledge of how the older system worked, this might be impossible.

21

This knowledge of the existing system can be crucial in determining the level of invasiveness of
an integration strategy. [Morris, Isaksson 2002] compare the problems associated with the
different levels of invasiveness. When a solution actually intrudes upon the functional legacy code
there is a risk of tampering with the programming as the code is often old, may have been
extensively modified and the original developer may not be available. A non-invasive approach
usually involves working from the legacy green screens or source files.

If a more invasive approach in chosen, and attempts are made to change this original code, there is
a risk of compromising the integrity of the enterprise data. There are some benefits to the less
invasive approach:

• The Business logic has been tuned and refined over time
• Developers do not have to change mainframe application logic
• Strategic business processes remain intact
• Risks of reuse are minimal and returns typically high
• Development is rapid and costs are comparatively low

A common non-invasive approach is integrating purely at the presentation level, i.e. screen-
scraping. This involves an Object Oriented client navigating its way through the legacy
application screens and submits and retrieves results through screen fields. The advantages above
are clear but there is a negative side. These negative points include:

• System is still not truly understood
• Future changes difficult
• Inefficient

A Company could opt for integration at the functional level. Using this approach would involve

1. Modularising and componentising the existing legacy applications
2. Wrapping these components with an Object Oriented wrapper
3 . Integrating these Object Oriented components.

The benefit of choosing this approach above the others would be that it is now possible to share
functionality as well as data in a peer to peer relationship.

3.3.2 Reusability and Robustness

Any integration strategy needs to be considered in terms of its Reusability. When any of these
approaches are used and the system requirements change, the question will be posed as to how
easy will it be to implement or update the existing infrastructure.

Also in question will be the robustness of the system, if a screen-scraping approach is taken.
Compare this robustness to that of a system with full integration between the legacy system and
the rest of the system. A reason for this comparison is that projects that opt for a screen-scraping
solution run the risk of having a less robust solution because the internals of the application are
not modified and there is less chance to adapt the application to the new architecture. This is an
important area that must be investigated at an early stage.

22

There is a fundamental problem in that legacy applications do not look like distributed objects and
this makes it difficult to reuse these systems [Juric et al. 1999]. Attention must be focused on the
object interfaces, so that legacy applications are encapsulated in order that collectively they
implement reusable, virtual distributed objects.

Enterprise Systems require an infrastructure that contains the various components of the system.
Certain approaches require less work building such an infrastructure and this point can be linked
to the intrusiveness of a given approach.

3.3.3 Complexity

When an integration approach has been decided upon and is implemented, it must be estimated
how complex will it be to actually use this system. Some of the less intrusive approaches require
very little extra effort in terms of building an infrastructure but then to actually use the approach
can cause some headaches.

[Reddy 2002] outlines an example where the green-screen custom application that provided all
the information for a bank’s employee to do their jobs is replaced by a GUI enterprise package
application. In order for the employee to do their job, they must now navigate 14 different screens
as opposed to just one screen in the older customised application. In an example like this, no
amount of GUI or computing power will replace the ease of use of the older application.

3 .4 E m u la to r

3.4.1 TN 3270 Protocols

TCP/IP based mainframe connectivity is most often furnished by the TN3270 protocol [TN3270
2001] which enable TCP/IP nodes to emulate 3270 terminal sessions and deliver 3270
functionality to the desktop over TCP/IP networks. This protocol is one of the most popular
means of desktop to mainframe connectivity with an estimated 23.1 million clients in use in 2000.
The hierarchical structure SNA (Systems Network Architecture) devised by IBM for mainframe
connectivity is being abandoned in favour of TCP/IP - a protocol noted for its openness,
extensibility, manageability and real world functionality. These features make it ideal for
enterprise connectivity.

3.4.2 Using the Emulator Approach

Using an emulator simply brings 3270 screens to the desktop with no intrusiveness into the legacy
application and no GUI functionality as well. There is little overhead but there is no real gain in
terms of new GUI and OO technologies.

The original design of 3270 devices deliberately favoured high performance over user interfaces.
From the early 1970s, 3270 devices brought transaction processing to the end user. A key design
feature was to provide useful data to the end user over the network in less than one second. This
was to be completed with a bandwidth that would be considered to be abnormally narrow today.
[Horswill 2000]

23

3.5 S c reen S c ra p in g (P re s e n ta tio n L a y e r In te g ra tio n)

3.5.1 What is Screen Scraping

Screen Scraping is the presentation layer integration approach where an OO client navigates it's
way through the legacy application screens and requests and results are submitted and retrieved
through screen fields.

[Froidevaux et al. 1999] outline how this is achieved with traditional legacy systems. In the case
of IMS and CICS, transactions are terminal oriented. The transaction receives a request from a
terminal, processes the request and sends the response back to the terminal. There is a terminal
session manager that is responsible for managing terminal sessions. Terminals handle form-
oriented user interfaces. Forms contain constant text and a set of input and output fields. The user
fills in the input fields and after completion transmits the form. Input fields are transmitted to the
terminal session manager who sends the request on (to the TP monitor scheduler in a TP monitor
such as IMS). The TP monitor handles the request.

[Stroulia et al. 2000] outline an experiment to integrate a legacy system that uses a block-mode
transfer protocol between the mainframe application host and the user terminals such as the 3270
protocol. The idea behind the project is that during its interaction with a user, the legacy
application goes through a sequence of distinct behavioural states, which correspond to the
distinct screens that it forwards to the user. The implication then is, that identifying the distinct
screens that an application may forward to its users corresponds to identifying the behavioural
states that it goes through, during its interaction with the users. This is an example of a project
successfully using screen scraping to access their data.

3.5.2 Advantages and Disadvantages

The Screen Scraping approach to integrating legacy systems is known for being "quick and dirty".
This approach is relatively easy to implement and to get access to the legacy's applications core
via the screens is relatively straightforward. However, there is still no real insight as to how the
application works and any functionality changes that are required by new business requirements
cannot easily be met.

With the focus of screen scraping on the user interface rather than modifying core process models,
screen scraping offers the least benefits to business [Erlikh, Goldbaum 2001].

3 .6 F u n c tio n a l L ev e l In te g ra t io n

Another approach involves componentising the existing legacy system and wrapping these
components with an OO wrapper. This can then be integrated with OO components and
functionality and data are shared. The result of this approach is a peer to peer relationship between
OO and Legacy Systems.

Integration with wrapping makes legacy systems look like distributed objects. [June et al. 1999]
These wrapped objects are like any other object in the distributed system and clients do not have
to know about the implementation details

24

This is essentially the approach that adopts the middle ground. Intrusiveness is kept to a minimum
in as much as possible but there is also have a chance to get access to the functionality of the
legacy systems.

3.7 U sin g C O R B A fo r F u n c tio n a l L evel In te g ra tio n

The CORBA framework allows us to define interfaces for components and provides a transport
mechanism for requests between components. Appropriate components must be identified and
their interfaces defined. The next step is to design the newly integrated system to use these
components.

Even within the CORBA world, there are differing degrees of invasiveness.

3.7.1 C O R BA and Screen Scraping

There is a possibility with CORBA that allows our legacy applications to communicate with real
distributed objects in the system but not being wrapped themselves. This is a halfway solution but
still has all of the problems of traditional screen scraping.

Terminal oriented transactions can be re-used by simulating a terminal. A form is modelled by a
two-dimensional 25*80 character array. The CORBA client fills in the input-fields into the array
and submits the request to the terminal session manager. The response is received as a character
array and the CORBA client extracts the output fields.

IONA Technologies provide a static adapter for this purpose. This adapter is a standard CORBA
server that implements a fixed set of CORBA interfaces for mainframe communication. The
implementation of an operation might call a transaction for example. CORBA input parameters
would be serialised for the receiving transaction (in a string). The request is parsed and returned
as CORBA out parameters. Static adapters can be automatically generated from a CORBA
Interface Definition Language (IDL). If the adapter contains application logic, manually written
hooks (extra application code) have to be written.

3.7.2 C O R BA Adapter Technology

The CORBA Dynamic Adapter permits existing transactions to be exposed in IDL and thus
connected into the wider CORBA-based computing environment. An example of a dynamic
adapter is the Orbix IMS Dynamic Adapter from IONA Technologies.

From the CORBA perspective, strictly speaking, the Orbix IMS Adapter is a conventional
CORBA server. From the client perspective, it simply presents a set of client-callable IDL
interfaces. In practice the Adapter, upon receiving a request from an Orbix client, consults a pre­
defined mapping repository, looks up the appropriate IMS transaction name keyed on the
incoming interface and operation names, and submits the request to the relevant IMS transaction.

When the IMS transaction receives control via the normal IMS dispatching process, it uses a set
of Orbix-provided services to read in the operation’s arguments and to return a result. The adapter
will then return the results of the operation to the client.

25

A dynamic adapter performs the same operations as a static adapter but implements a dynamic set
of interfaces. Dynamic adapters can be built analogously to inter-ORB bridges. They are
implemented as CORBA dynamic skeleton interface (DSI) servers or as a GIOP (generic inter
ORB protocol) routers. Because the adapter does all the necessary marshalling and demarshalling
the request can be handled in the transaction without stub and skeleton code. [Froidevaux et al.
1999],

In the case of the Orbix IMS Dynamic Adapter, an adapter is a running CORBA process. It
imports its set of interfaces from an Interface Repository (IFR) and has a mapping file which
maps each interface to an IMS or CICS Transaction. When a client request reaches this adapter,
the request will be re-directed to the correct Transaction based on the interface name.

CORBA supports the use of this approach rather well. DSI objects allow the routing of requests of
any interface available in the Interface Repository (IFR).

3.7.3 Full Integration

Due to the nature of existing CICS and IMS transactions, it is difficult to have these as true
CORBA objects in a distributed system. However, there are industry solutions available that allow
them to be seen as CORBA objects without the use of Adapter technology.

Take for example a legacy CICS transaction. A lull integration with CORBA can allow a
transaction to receive CORBA IIOP (Internet Interoperability Protocol) requests without the use
of screen scraping and adapter technologies. This requires having a full CORBA implementation
existing inside CICS and due to the short running nature of traditional transactions this is still not
a perfected technology.

After deciding to adopt this approach the legacy system and our OO system must co-exist and co­
operate. There must be transparency of implementation and technology. There must be
consistency of interfaces and the system must act as peers. As has been seen earlier, CORBA
provides all of these and more and consequently is the approach best suited to such integration.

Another popular method of having CORBA on the mainframe is by building CORBA objects on
Unix System Services (a Unix Shell on OS/390), or as BATCH Jobs. It is possible to build C++
(or Java) CORBA objects on this platform that are true CORBA objects. Also possible is the use
of Linux for OS/390 to hold these CORBA objects.

3.7.4 Why CORBA

One of the worries for banks before introducing a CORBA system is the perceived complexity of
CORBA, particularly for the mainframe developers to understand the concepts of Object Oriented
distributed programming.

However, the benefits of using CORBA to integrate legacy applications usually outweigh these
fears. [Murer 1999] outlines just why Credit Suisse chose CORBA to integrate their mainframe
applications.

26

• There is clean construction of heterogeneous distributed systems
• CORBA is a clean model with complete middleware functionality
• There are clean interfaces for application integration
• CORBA supports bridges to other important component standards that may be available on

the market. This enables integration into standard software
• PL1 and COBOL CICS and IMS Transactions can be accessed from Java and Smalltalk

clients
• There is a decoupling of interfaces from technology
• CORBA has mature implementations on many platforms (including OS/390)
• CORBA is a standards based solution

CORBA is becoming a mature and trusted technology that can be used for integrating legacy
systems. However, technology is moving forward at a faster pace than ever at already there are
alternatives on the market to CORBA that could be used in its place.

Two of these alternatives, namely XML (Extended Markup Language) and J2EE (Java 2
Enterprise Edition) Connectors could, when fully mature reduce even further the complexity of
integrating Legacy Applications.

However, it should be noted that large corporations, especially banks are wary of non-mature
technology and are usually among the last to "jump on the bandwagon" of advances that will
"solve all their problems". The two technologies mentioned below are still in their infancies and
until they are proven in enterprise solutions, they will be only regarded from a distance by large
banks.

3.7.5 Using J2EE Connectors

[Hermansson, Akerlund 1997] outline the use of J2EE Connectors which are a part of the J2EE
specification and manage integration with existing Enterprise Information Systems, EIS.

The J2EE Connector architecture provides a Java solution to the problem of connectivity between
the many application servers and Enterprise Integration Systems already in existence. Using the
J2EE Connector architecture, EIS vendors no longer need to customise their product for each
application server.

This connector architecture is gaining popularity in the industry. It is also a standards based
solution, but does not make legacy CICS and IMS transactions available as distributed objects. It
is a Java based solution and does not completely suit the PL/T and COBOL based applications that
require integration. Finally, there are industry concerns about the performance of Java and Java
based applications within enterprise systems [Chang 2000]

27

3.8 Data Level Integration

This is another integration strategy that exists. In this approach, the OO and Legacy Systems share
access to a Database Management System (DBMS). All existing DBMS's are accessed via a Meta
DBMS.

With this approach there is only shared data, therefore the OO System cannot access the
functionality of the legacy system and there is still a need to rewrite the business functionality on
the client.

Using this form of integration has many of the same positives and negatives as screen scraping. It
can be relatively easy to get at the legacy data but again, any new business requirements that are
placed on the system will be problematic.

A newer form of Legacy Integration comes with the introduction of XML to the mainframe
world.

3.8.1 XML

XML is a World Wide Web Consortium (W3C) standard for representing complex data with
human readable labels and structuring.

XML allows complex data to be published with both context and structure preserved. This
complements the closed, encapsulated data structures of CORBA and OO languages.

XML is encouraging a new generation of data centric legacy integration solutions. These
solutions no longer need object wrappers or proprietary Enterprise Application Integration (EAI)
solutions. Any applications that use XML to communicate will need either to understand XML or
be wrapped in some form of translator.

XML essentially frees data from its dependence on software infrastructures. Its hierarchical data
model makes it well suited for storage in object-oriented databases, and database vendors have
been quick to leverage their edge by adding XML storage and query capabilities to their product
offerings. [Coyle 2000]

In terms of its relationship to a middleware technology such as CORBA, XML provides a
standard way to represent complex, object-oriented data without forcing all software components
to use the same underlying OO or relational database. This type of database independence
translates into greater flexibility when using a middleware technology such as CORBA to
integrate diverse types of components into a single distributed application.

3.9 C o n c lu s io n

In this section there has been a discussion of some of the approaches available on the marketplace
today for integrating legacy applications with object oriented solutions. These approaches vary
from "quick and dirty" solutions to full integration. Moving forward, after examining the factors

28

affecting an integration strategy, there will be an investigation of the best approaches for
integrating sample legacy applications using CORBA.

There was a brief overview of some new technologies that are gaining momentum as integration
strategies. These however are immature technologies and the banking industry will not be
prepared to jump in until they are tried and tested.

As pointed out by [Harding 2001] finding people to program the older applications is becoming
increasingly difficult so by making these systems available with CORBA in the distributed world
can take away from some of these headaches.

At the moment CORBA offers the best solution for long term success while still maintaining the
power of the legacy applications.

Alternatives to CORBA include messaging systems from large IT companies, such as IBM’s MQ
Series product. Typically if an organisation wants asynchronous communication they will chose
MQ Series, but if synchronous communication is required, CORBA is the favourite.

As outlined in the previous sections, the first aim of this research is to investigate possible
strategies for integrating the mainframe based legacy systems with modem Object Oriented and
GUI-based technologies. The approach that is recommended by this research is the CORBA
standard by the OMG.

The next step in the research is to examine this CORBA standard a little more closely to see if
actually provides all of the advantages outlined in this section. One of the aims of this research
was to provide a solution for integrating mainframe based applications and it would appear that
the CORBA standard is the best approach that provides this.

29

4 Inside CORBA

4.1 H is to ry o f D is tr ib u te d T ra n s a c tio n a l C o m p u tin g

4.1.1 Centralised versus de-centralised

The history of the computing industry has switched between a centralised model of computing
and a de-centralised model. The early banking systems investigated previously were very much
oriented towards a central server with many clients [FIGURE 4.1].

FIG U R E 4.1: Th e C entralised M o de l of c om pu t in g

In recent times there has been a definite move away from this centralised model to a scenario
where de-central platforms can perform their own computing.

1960 1970 1980 1990

o ---------- o -------------o ---------------------- o --------------------- ►

Centralised Personal Computers 3 & n-tier computing EJB/J2EE

Hosts 2-tier computing Internet CORBA/RMI/DCOM

FIGURE 4.2: A TIMELINE FOR DISTRIBUTED TRANSACTIONAL COMPUTING

4.1.2 GUIs and Smarter Clients

The dominance of the central platform began to change in the early 1980's when client/server
computing began to appear.

This movement started around the same time as the arrival of the Personal Computer and
immediately proved popular due to the possibility of stylish GUIs (Graphical User Interfaces).

30

Some of the computing power and business logic was also moved to the client side and these
clients became "smarter".

The technical roots of object technology led to the development of several other object languages,
in particular C++ [Stroustrup 1991] [Stroustrup 1992] and Smalltalk [Goldberg, Robson
1989]. Only later was object technology applied in other areas such as databases, operating
systems and the analysis and design of information systems.

4.1.3 The Client/Server Model

As more power went into the clients, the industry saw a shift further towards the decentralised
model. Some immediate benefits were felt as PC development environments quickly became
available and evolved to make client side GUI development a popular role.

These early Client/Server systems were very much 2-tier models. Such a model would include a
"Fat" PC client connecting to a database server. These "Fat" clients would contain both GUI
presentation logic and business logic as well as the code to access the database. The client would
use database APIs for transactions.

Presentation Logic b.
Database

Business Logic
Data Access Logic

-

Client Server

FIG U R E 4.3 : THE 2-TIER MODEL

The immediate disadvantages of this 2-tier model were apparent very quickly. When presentation
logic, business logic and data access logic are all mixed together, reuse, and performance
immediately lose out.

Database servers suffered frequently from bottlenecks and, as a result, the scalability of the
system suffered. This was heightened by the fact that a database connection for every client
caused even more scalability difficulties.

Maintenance was difficult as application and database drivers needed to be installed and
configured on every client and so some versioning or deployment strategy was required but was
not easy, as the entire software would need to be reinstalled for upgrades.

The fat clients make maintenance and reuse difficult. Update and maintenance costs are high,
because changes have to be re-deployed on every client. Any change in the logic must be
redistributed to all clients. They are also difficult to use because applications are tightly bound to
data schema since the client contains SQL queries.

31

They can also cause high network traffic because data is transferred for processing at the client.
Finally, database connection costs are high because there is one database connection per user with
no connection pooling or multiplexing.

The advantages of such systems included fancy GUIs and nice user interaction, especially when
compared to the 3270 Screens many operators were used to.

4.1.4 3-tier Computing

Given the problems with the 2-tier approach, it did not take very long for a new approach to come
on the scene. This was the 3-tier model of computing.

The difference between the 2-tier and 3-tier model was quite simple: separate the presentation
logic from the business logic

Each of these tiers would be implemented on a separate machine. The middle tier would take care
of the business logic and the business methods would run on the server.

The client would then make "requests" that the server would execute these methods. The client
and server use a protocol that represents a conversation at the level of business transactions,
instead of at the level of SQL.

4.1.5 Difficulties with 3-tier computing.

The 3-tier and n-tier models solved many of the problems of 2-tier computing. With this model,
clients were far easier to keep up to date as they separated presentation logic from business logic
and re-use became a possibility.

Various new problems became apparent however. For example, applications became significantly
more difficult to program as programmers needed to manage multithreaded concurrency,
transactions and security themselves.

4.1.6 Remote Procedure Call

Remote Procedure Call came along with the advent of n-tier computing. RPC is a standard and
transparent way to call procedures remotely. This is a type of protocol that allows a program on

32

one computer to execute a program on a server computer. Using RPC, a system developer need
not develop specific procedures for the server. The client program sends a message to the server
with appropriate arguments and the server returns a message containing the results of the program
executed.

4.1.7 Object Oriented n-tier computing

RPC was not object-oriented and the next phase in the distributed computing world was 3 tier
computing using objects. Here there was more than one choice.

CORBA: Object Request Broker is equivalent to object oriented RPC. It allows clients to
communicate with remote objects. Interoperability with a wide variety of software
follows. The communication protocol OOP is an inter-orb protocol so the Financial
Institution is not tied to a specific implementation.
RM I: This is the Java Object Request Broker from Sun Microsystems. It is also like an
object oriented RPC. It is simpler to use than CORBA but only for Java to Java
communication. There is now RMI over IIOP allowing Java to non-Java communication.
DCOM: This Microsoft product allows modules to communicate remotely, like a binary
RPC. But distributed computing, with multiplexing, connection pooling, concurrency and
multithreading is difficult to program.

Only the first of these three (CORBA) was going to prove useful for interacting with legacy
systems as most of these older systems were not written in Java or C++ and were not Microsoft
based. CORBA was the only option that really allowed communication with any older platform
and language.

This does not just apply to the Banking Industry, for example [Sang et al. 1999] outline how
many scientific applications in aerodynamics and solid mechanics are written in Fortran and that
refitting this legacy Fortran code with CORBA objects can increase the code reusability.

4.1.8 Internet Revolution

The next revolution to come to the industry that everyone wanted to be a part of was the Internet.
This really changed the way companies did business and as was seen, the banking sector needed
to be a part of this change if they wanted to stay ahead.

Geographical barriers of enterprise LAN no longer became an issue and the format of clients
started to change to much "thinner" browser based clients.

However, the quick pace towards decentralisation started to go into reverse. With the arrival of
HTTP, HTML, Java, Applets, JSP etc, the concept of the "fat" clients became redundant and large
number of "thin" clients became popular as they could have the same functionality as their large
counterparts.

Because of this defined, but limited, set of functionality, this created the trend of centralising
business logic on the server. The server in this context was no longer a mainframe or mini­
computer, but any machine running a web server.

33

4.1.9 D iffe re n t C onnectiv ity M odels

Applications that were starting to be based on this new model with an Internet Browser based
client immediately had to choose between one of many connectivity models. Examples of these
included CGI (Common Gateway Interface), NSAPI (Netscape Application Programming
Interface), and ISAPI (Internet Server Application Programming Interface) to name a few.

The web server concept also caused headaches as it tried to provide the connectivity between the
browser-based client and each individual enterprise applications. Maintenance was once again
very difficult, as was the programming of these applications.

Using the Internet was obviously a big advantage in terms of business requirements, as the
application became available to any user with a desktop and browser.

Disadvantages include the fact that mission critical transaction oriented applications can not be
done easily and maintain-ably with CGI and Perl.

In most of these cases a monolithic application was created on client and server sides. This
monolithic application was typically composed of one binary file. Any changes meant
recompiling and redeploying the application. This made it difficult to maintain because the
requirements and environment may change and updates may be needed.

4.1.10 Component Applications

This changed for the better with the advent of component applications. These software
components can be changed or updated without recompiling and replacing the entire application,
like hardware components can be changed. They simplify the deployment of updates. Upgrades
and bug fixes are easier to make.

34

Client Request

Business
Presentation Logic

Business
Process

Server Side

FIGURE 4.6: C o m po n en t M o d el

With components, the application is separated into logical separate pluggable parts like
presentation parts, business process parts, business logic etc. Component programming allows
building an application using pre-built components with well-defined interfaces. Implementation
is separated from the interface, meaning that the implementation can be changed without
changing the interface and the other components using the interface. This reduces complexity,
because other developers do not have to understand how it is implemented, just how to use it.

4.1.11 Improvements in Design

Dividing an application into components improves the application’s design. Component
programming forces developers to define the application in terms of well-structured objects,
which have well defined interfaces so that they can interact properly with each other. Business
logic can be reused; multiple instances of the same component can be used in multiple
applications. Updates are easier because it allows the changing of a part without changing the
whole. Development is easier because it allows the testing and building of small parts
incrementally, and to divide development into smaller parts developed by different people.

4.1.12 General benefits and problems with N-tier computing

N-tier computing has various advantages. One tier can be changed without changing the rest,
there will be lower development costs and maintenance costs are a reality. Resources can be
pooled and re-used. Applications become more flexible, scalable and performant. Thin clients can
be made available on the Internet.

It does however match these advantages with a new level of complexity when programming
multi-user sessions. Thin-client multi-tiered applications are hard to write because they involve a

35

lot of complex code to handle transaction management, multithreading, database connection and
resource pooling, performance issues etc. Developing distributed applications is difficult and
requires highly skilled and experienced people

4.2 In tro d u c tio n to C O R B A

4.2.1 Difficulties of Distributed Object Programming

Today's IT Systems have become even more diverse that their counterparts of the early days of
computing. This is especially true in the world of network programming where the diversity of the
networks needing to be integrated makes the task quite a challenge. Coupled with this, there are
many programming languages available and in-use today. Sometimes even these languages will
perform differently on different operating systems.

In the area of object technology, much work is being done to make objects interoperate in a
heterogeneous networked environment. The standardisation efforts of the Object Management
Group lead to a general API for distributed objects, the Common Object Request Broker
Architecture. The most recent version of this specification is the CORBA 3.0 Specification.

As per this OMG Specification, CORBA (Common Object Request Broker Architecture) is a
standard that defines a framework for developing object-oriented distributed applications.

Using the CORBA architecture makes network programming easier by allowing a developer to
create distributed applications that interact as though they were implemented in a single
programming language on one computer.

CORBA enables the distributed applications to be developed in an object-oriented manner. It
allows us to design a distributed application as a set of co-operating objects and to reuse existing
objects in new applications.

4.2.2 What is an ORB

An ORB (Object Request Broker) is a software component that mediates the transfer of messages
from a program to an object located on a remote network host. CORBA defines a standard
architecture for ORBs.

Essentially the role of the ORB is to hide the underlying complexity of network communications
from the programmer.

An ORB allows you to create standard software objects whose methods can be invoked by client
programs located anywhere in your network. A program that contains instances of CORBA
objects is often known as a server.

When a client invokes a member method on a CORBA object, the ORB intercepts the method
call. The ORB then redirects the method call across the network to the target object. The ORB
then collects results from the method call and returns these to the client.

36

4.2.3 The O bject M anagem ent A rch itectu re (O M A)

An ORB is one component of the OMG's Object Management Architecture (OMA). This
architecture defines a framework for communication between distributed objects. The OMA
includes the following elements.

- Application objects
- The ORB
- The CORBAServices
- The CORBAFacilities

Application objects are objects that implement programmer-defined IDL interfaces. These objects
communicate with each other, and with the CORBAServices and CORBAFacilities, through the
ORB. The CORBAServices and CORBAFacilities are sets of objects that implement IDL
interfaces defined by CORBA and provide useful services for some distributed applications.

4.2.4 The Nature of CORBA Objects

CORBA objects are standard software objects implemented in any supported programming
language. CORBA supports several languages, including C++, Java, COBOL and PL/I.

By making calls to an ORBs' application-programming interface (API), it is possible to make
CORBA objects available to client programs in the network.

Clients can be written in any supported programming language and can invoke the member
methods of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming languages, each
CORBA object has a clearly defined interface, specified in the CORBA Interface Definition
Language (IDL).

The interface definition specifies what member methods are available to a client, without making
any assumptions about the implementation of the object.

To invoke member methods on a CORBA object, a client needs only the object's IDL definition.
The client does not need to know details such as the programming language used to implement
the object, the location of the object in the network, or the operating system on which the object
runs.

The separation between an object's interface and its implementation has advantages. For example,
it allows you to change the programming language in which an object is implemented without
changing clients that access the object.

It also allows you to make existing objects available across the network.

37

4.2.5 The Structure o f a C O R B A A p p lica tio n

To start developing a CORBA application, you must define the interface to the objects in your
system using CORBA IDL. These interfaces should then be compiled using an IDL compiler.

For example, an IDL compiler can generate Java or COBOL from IDL definitions. This code
includes client stub code, which allows you to develop client programs, and server skeleton code,
which allows you to implement CORBA objects.

When a client calls a member method on a CORBA object, the call is transferred through the
client stub code to the ORB. If the client has not accessed the object before, the ORB refers to a
database known as the Implementation Repository, to determine exactly which object should
receive the method call. The ORB then passes the method call through the server skeleton code to
the target object.

4.2.6 The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the IDL associated
with your objects and use the generated code in your applications. This means that your client
programs can only invoke member methods on objects whose interfaces are known at compile
time. If a client wishes to obtain information about an object's IDL interface at runtime, it needs
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the IDL interfaces
implemented by objects in your network. A client program can query this database at runtime to
get information about those interfaces. The client can then call member methods on objects using
a component of the ORB called the DII (Dynamic Invocation Interface).

4.2.7 Dynamic Server Programming

CORBA also supports dynamic server programming. A CORBA program can receive method
calls through IDL interfaces for which no CORBA object exists. Using an ORB component called
the Dynamic Skeleton Interface, the server can then examine the structure of these method calls
and implement them at runtime.

4.2.8 Interoperability between ORBs

The components of an ORB make the distribution of programs transparent to network
programmers. To achieve this, the ORB components must communicate with each other across
the network.

In many networks, several ORB implementations coexist and programs developed with one ORB
implementation must communicate with those developed with another. To ensure that this
happens, CORBA specifies that ORB components must communicate using a standard network
protocol called the Internet Interoperability Protocol.

38

4.2.9 The C O R B A Services

The CORBAServices define a set of low-level services that allow application objects to
communicate in a standard way. These services include the following:

The Naming Service: Before using a CORBA object, a client program must get an identifier for
the object, known as an object reference. This service allows a client to locate object references
based on abstract, programmer-defined object names.

The Trading Service: This service allows a client to locate object references based on the desired
properties of an object.

The Object Transaction Service: This service allows CORBA programs to interact using
transactional processing models.

The Security Service: This Service allows CORBA programs to interact using secure
communications.

The Event Service: This service allows object to communicate using decoupled, event-based
semantics, instead of the basic CORBA function-call semantics

4.2.10 The CORBA Facilities

The CORBAFacilities define a set of high-level services that applications frequently require when
manipulating distributed objects. The CORBAFacilities are divided into two categories.

The horizontal CORBAFacilities consist of user interface, information management, systems
management, and task management facilities.

The vertical CORBAFacilities standardise IDL specification for market sectors such as healthcare
and telecommunications.

4.3 L o o k in g in s id e C O R B A

4.3.1 The Basics

IDL is a part of the OMG's CORBA specification and it is an ISO (International Organisation for
Standardisation) standard. However it is not a programming language and in fact it enables
interfaces to be developed independently of the languages used to implement these interfaces.

An interface definition provides all of the information needed to develop clients that use the
interface. Essentially it provides a description of the functionality provided by the CORBA
objects.

39

Interfaces are the basic unit in IDL and define the interface to a service/object. An interface is
composed of operations and attributes.

Conceptually, attributes correspond to the variables that a component implements. Attributes
indicate that these variables are available in a component and that clients can read or write their
values.

Attributes normally map to a pair of functions in the programming language used to implement
the component. These functions allow client applications to read or write the attribute values. If
proceeded by the keyword readonly, clients can only read the attribute value.

IDL operations define the format of methods that clients use to access the functionality of a
component. An IDL operation can take parameters and return a value, using any of the available
IDL data types.

CORBA must know the direction in which a parameter is being passed in order to manage these
parameters. There are three modes for parameter passing

In: The parameter is passed from the client to server
Out: The parameter is passed from the server to client
Inout: The parameter is passed both in both directions

An interface can be defined within a module: this allows interfaces and other IDL type definitions
to be grouped into logical units.

Names defined within a module do not clash with names defined outside the module. Essentially a
module defines a naming scope within an IDL file.

An IDL operation may raise an exception indicating that an error has occurred. This will be
investigated in more detail in a later chapter.

Inheritance in IDL is a method for using the properties of an existing interface in a new interface.

IDL provides preprocessing directives that allow macro substitution, conditional compilation and
source file inclusion. The IDL preprocessor is based on the C++ preprocessor. For example, the
#include directive allows an IDL file to be included in other files.

A tvpedef declaration can be used to define a meaningful or a simpler name for a basic or user-
defined type. This definition can be used to make code easier to read.

An interface must be declared before it is referenced. A forward declaration declares the name of
an interface without defining it. This allows the definition of interfaces that mutually reference
each other. The interface definition must appear later in the specification.

40

4.4.2 ID L M appings

Mapping for basic types include short, long, unsigned short, unsigned long, float, double, char,
boolean, octet, any, string.

An IDL string is a one-dimensional array of characters with a variable length

Mapping for constructed types include struct union, enum

A struct is an IDL data type that can package a set of named members of various types.

A union provides a space saving type whereby the amount of storage required is the
amount necessary to store the largest possible element. Only one element will be held.

An enumerated type allows the members of a set of values to be depicted by identifiers.

Other mappings are provided for arrays and template types such as sequence.

An IDL sequence is a one-dimensional array with a variable length.

4.4.3 Finding CORBA Objects

A common problem is distributed programming is enabling a client to find the correct object. The
purpose of CORBA is to enable a client to use remote objects if they were local. Local object
references acts as a proxy for the remote object. Every time operation is invoked on a local object,
the ORB passes the request onto the remote server.

The client (or client proxy) needs details of where the service is located in order to forward the
request.

The information needed includes the interface name, machine name or IP address and the port
number

A CORBA Object Reference (OR) or an Interoperable Object Reference (IOR) hold this
information. An IOR is an OMG specified string that uniquely defines the location of a CORBA
object but also adheres to the CORBA 2.0 specification that introduces interoperability between
ORBs

Real-world distributed object computing requires much more than a communication mechanism;
it requires infrastructure. [Curtis 1997]

• Applications need to find objects that are migrating about the network

• Objects that the applications need may be dormant and require activation

41

• Applications need to obtain services based on general property descriptions rather than
specific identities

• Applications need transactional integrity among groups of distributed objects

• The software components that constitute a distributed system need to be administered and
managed through standard interfaces

• The underlying mechanisms that support communication, location, and other basic services
must be reliable, able to recover from errors and re-configure themselves as necessary to
provide high availability

These requirements are met by a distributed computing infrastructure, an architecture of
underlying mechanisms and basic services that provide a stable, powerful platform upon which
applications can be built. The OMG Object Management Architecture (OMA) (see section 4.2.3)
provides this platform, including the core CORBA ORB specification and a set of object services
(called CORBAServices).

4.4.3.1 The Naming Service

The Naming Service is a simply another CORBA server. It maps IORs to a humanly readable
name. A server program can then publish its IOR in the Naming Service database and a client
program can retrieve the IOR using the provided name.

The names that are used to identify objects in the Naming Service are made up of contexts and
application objects. Application objects are actual objects that you can invoke operations upon.
Contexts hold the application objects. A single context can hold multiple application objects. The
root context is the primary context (or first point of contact). All names must start from the root
context.

The typical sequence of events that takes place is the server starts and its name will be registered
with the NS. The client then starts and resolves to the root context (top of the naming structure) of
the NS and then resolves the name and retrieves the IOR for the object. It can then use this IOR to
invoke a remote operation.

4.4.4 Exception Handling

IDL operations can raise exceptions to indicate the occurrence of an error. CORBA defines two
types of exceptions

System Exceptions are a set of standard exceptions defined by CORBA

User-defined Exceptions are exceptions that you define in your IDL specification.

All IDL operations can implicitly raise any of the CORBA system exceptions. No reference to
system exceptions appears in an IDL specification.

42

To specify that an operation can raise a user-defined exception, first define the exception structure
and then add an IDL raises clause to the operation definition. An IDL exception is a data structure
that contains member fields.

4.4.5 ORB Interoperability

Since its inception in 1991, CORBA has proven itself as a solid basis for heterogeneous object-
oriented distributed systems. Like all technologies, however, CORBA must evolve in order to
remain viable. [Vinoski 1998]. It must allow for different ORB implementation to co-exist and
co-operate within the same company network.

ORB Interoperability allows communication between independently developed implementations
of the CORBA standard. ORB interoperability enables a client of one ORB to invoke operations
on an object in a different ORB via an agreed protocol. Thus, invocations between client and
server object are independent of whether they are on the same or different ORBs. The OMG has
specified two standard protocols to allow ORB interoperability, GIOP and HOP

The OMG-agreed protocol for ORB Interoperability is called the General Inter-ORB Protocol
(GIOP). GIOP defines on-the-wire data representation and message formats. It assumes that the
transport lawyer is connection oriented. The GIOP specification aims to allow different ORB
implementations to communicate without restricting ORB implementation flexibility.

The Internet Inter-ORB Protocol (IIOP) is an OMG defined specialisation of GIOP that uses
TCP/IP as the transport layer. Specialised protocols for different transports such as OSI, NetWare,
IPX) or for new features, such as security can also be defined by the OMG.

4.4 S e rv ice -B ased A rc h ite c tu re

[Koch, Murer 1999] outline how that analysing the characteristics of large-scale systems lead to
the concept of a managed evolution and a service architecture. Service Architecture is based on
the idea of using large-grained Services instead of fine-grained objects to represent the objects in
the banking system. This leads to an architecture where fine-grained components, like customers
or accounts, reside within large grained components. There will be further discussion of this
approach in chapters on Performance [Chapter 6] and Scalability [Chapter 8].

The benefits of using a Service-Based Architecture include

• Simplify evolution by decomposing systems into services
• Encapsulation of Data
• Having well defined interfaces
• Useable independent of technology (Implementation Independence)
• Renewable (easier to upgrade) without affecting other parts of the system, reducing risk
• Leads to more IT efficiency when building new applications
• Better reuse of Services
• Less risk for complete system, due to isolation by service interfaces

CORBA is a suitable choice for a Service-Based Architecture for the following reasons:

43

• Clean Model for construction of heterogeneous distributed systems
• Potentially complete middleware functionality
• Clean interfaces for application integration
• Bridges to other important standards available, therefore integration into standard software

possible.
• Provides a technical bridge - i.e. Java Client to PL/I IMS Transaction
• Decouples interfaces from technology

4 .5 C o n c lu s io n

In this chapter there has been a closer examination of a standard known as CORBA (Common
Object Request Broker Architecture) and how applications can be built using this standard. It is
clear from the previous chapter why CORBA is a popular solution for integrating legacy systems
and in the next chapter there will be an investigation into how a real legacy application can be
integrated with modem technologies using CORBA.

The OMG is a very active consortium. Its many task forces and special interest groups cover
nearly the entire spectrum of topics related to distributed computing, including real-time
computing, Internet, telecommunications, financial systems, medical systems, object analysis and
design, electronic commerce, security database systems, and programming languages.

As a result, Request for Proposals (RFPs) and technology adoptions in almost all of these areas
have either already occurred or soon will

In the last chapter, CORBA was put forward as one possible solution to the integration problems
that modem Banking Sector companies are facing. This chapter focused on looking deeper inside
CORBA to see some of the extra benefits that could be used. One interesting usage of CORBA,
the Service-Based Architecture, was discovered. This approach meets the requirements of an
integration strategy but also provides for larger and enterprise scale banking systems.

The use of a Service-Based CORBA Architecture is now the preferred solution moving forward in
this research. The next few chapters will assume the use of this approach and look at potential
problems using it will cause to such large-scale integration projects.

Before this however, there will be a brief look at the concept of Patterns. These are a way of
providing well-known solutions to every day problems and this research will be looking for such
solutions to the potential problems with large-scale integration projects.

44

5 Patterns

5.1 W h a t a r e P a t te rn s

The concept of a pattern in software development has arisen over the last few decades. Essentially
a pattern is a solution to a well-known or recurring problem that occurs during the software
development cycle.

As software development has evolved over the years, teams of developers have come across the
same problems over and over again. Often a development house would provide a Frequently
Asked Questions (FAQ) list of common problems for other developers in the company.

However, in the last twenty years there has been a movement towards sharing this knowledge
with all developers who could use this information. Experienced programmers began to recognise
the similarity of new problems to problems they had solved before. With a little more experience,
they realised that the solutions for similar problems follow recurring patterns. As these
programmers become used to the concept of a pattern, they can learn when to apply this solution
to a situation without having to stop and analyse the problem and investigate possible strategies.

This concept of sharing solutions to well known problems originally came from the field of
architecture. In the late 1970's there were two revolutionary books published by Christopher
Alexander. These books "A Pattern Language, Towns, Buildings, Construction" (Oxford
University Press, 1977) [Alexander 1977J and the "Time Timeless Way of Building" (Oxford
University Press 1979) [Alexander 1979] described patterns in building architecture and urban
planning. These patterns could be applied again and again in different areas of architecture and
building. Taking one of these patterns, "Pedestrian Street" for example:

Context: The simple social intercourse created when people rub shoulders in public is one of the
most essential kinds of social "glue" in society.
Problem: This glue is largely missing, in part because much of the process of movement is taking
place in indoor corridors and lobbies.
Solution: Pedestrian street. Arrange buildings so that they form pedestrian streets with many
entrances and open stairs directly from the upper storey to the street, so that even movement
between rooms is outdoors, not just movement between buildings.

The field of software development was quick to see the usefulness of this concept and in 1987,
Ward Cunningham and Kent Beck [Beck Cunningham 1987] used some of Alexander's ideas to
develop five patterns for User Interface Design. This paper "Using Pattern Languages for Object-
Oriented Programs" was published at the OOPSLA-87 conference.

Following on from this was the book "Design Patterns" by Erich Gamma, Richard Helm, John
Vlissides and Ralph Johnson [Gamma 1995], This book was first published in 1984 and is
considered one of the major advances in software development in the last 20 years.

Most of the developers in today's IT projects will know some or all of these and other patterns.
Experienced developers will know when and where to use some or all of them and in which
circumstances they do not add to the solution but simply add more complexity.

45

There are many benefits to having various patterns in your "toolbox" for use when programming
IT solutions, just as any builder would have similar solutions when building a house but there are
also drawbacks. In some way patterns have been over-hyped and there are solutions available
today that are not really patterns but rather idioms or rules-of-thumb. The trick to being a good
developer is to know which patterns are useful but more importantly in which circumstance they
apply.

This "toolbox" mentioned comes in the form of a "Pattern Language" where a number of patterns
are used together (and are even designed to facilitate each other) to solve various problems that
arise in the system as a whole. These problems can occur either at an application design level or in
a larger scale at the system architecture and design level.

For example, Enterprise systems are often developed without security in mind, as applications
programmers are more focused on trying to learn the domain than worrying about how to protect
the system. In response to this requirement [Yoder, Baraclow 1997] define a collection of
patterns to be used when dealing with application security.

5.2 H o w does a p a t te r n com e to be

As outlined above, programmers come across many problems in their daily work effort, the trick
is to find patterns that can be applied to similar problems in different environments. A recognised
way of doing this is to articulate the problem/solution pair in words. One this can be done, the
pattern can be discussed among programmers who know the pattern to collaborate on the details.

When the pattern is in words, it can be explained to others who are not familiar with the problem.
It can be fine-tuned and changed as the discussion develops so that what is there at the finish is a
solution that can be applied not to one problem domain but to many situations in different
projects.

[Levine, Schmidt 2000] offer a fascinating slant on using patterns within software design and
architecture by comparing it to becoming a Chess Master.

To how become a Chess-Master involves following some steps

• First learn the rules and physical requirements such as names of pieces, legal movements,
chessboard geometry and orientation etc.

• Secondly learn the principles such as the relative value of certain pieces, strategic value of
centre squares and power of a threat etc.

• To become a master of chess, one must study the games of other masters. These games
contain patterns that must be understood, memorised and applied repeatedly. There are
hundreds of these patterns.

In the same way, to become a software design master has certain steps

• Firstly, learn the rules such as the algorithms, data structures and languages of software

46

• Secondly, lean th e p rincip les such as structured program m ing, m odular program m ing, ob jec t
o rien ted program m ing, generic program m ing etc.

• T o tru ly m aster softw are design, one m ust study th e design o f o ther m asters. T hese designs
contain patterns th a t m ust be understood, m em orised , and applied repeatedly.

T here is a recogn ised form fo r a pattern defin ition to take. T his w ritten form w ill contain the
fo llow ing details:

• D escrip tion o f th e pattern
• C oncrete exam ple
• Specific solution fo r th is exam ple
• Sum m ary o f issues invol ved in the initial fo rm ulation o f th e general solution
• T he G eneral Solution
• A ny consequences o f using th is pattern
• P ros and C ons o f the pattern
• L is t o f re la ted patterns

T his list, in its com plete form is designed to give any dev e lo p er w ho has no t p rev iously com e
across th is p rob lem an insigh t into the pattern th a t can be app lied . O ne com m on fo rm o f pattern
defin ition presen ts these details using th e fo llow ing headings:

PATTERN NAME

N am e, B ib liography reference (w here d id pattern com e from)

SYNOPSIS

D escrip tion o f the pattern th a t conveys th e essence o f the so lu tion prov ided by th e pattern. This is
d irected a t experienced p rogram m ers w ho m ay recogn ise them .

CONTEXT

T he prob lem th e pattern addresses as part o f a concrete exam ple and a suggested design solution.

FORCES

Sum m arise the considerations th a t lead to the general so lu tion p resen ted in the solu tion section.

SOLUTION

T his is the core o f th e pattern . D escribes the general-purpose so lu tion to the problem th e pattern
addresses.

CONSEQUENCES

IMPLEMENTATION

E x p la in s t h e i m p l i c a t i o n s - b o t h g o o d a n d b a d o f u s in g t h e s o lu t io n .

4 7

D escribes the im portan t considerations to be aw are o f w hen execu ting the solution. It m ay also
describe som e com m on v aria tions o f sim plifications o f the solution.

CODE EXAMPLE

C ontains a code exam ple show ing sam ple in form ation fo r a design th a t uses the pattern.

RELATED PATTERNS

L ist o f patterns related to the o n e described

5.3 Design Patterns

A d istinc tion should be m ade b e tw een the various types o f pa tterns th a t are popu lar in industry
today . T yp ically th e com m on flavours are D esign P atterns and A rch itec tu ral Patterns. These differ
in m ain ly in scale. D esign patterns are m edium scale patterns th a t are used to organise subsystem
functionality in an application dom ain independen t w ay w hereas A rchitectural patterns typically
are used to define th e structure and h igh-level arch itecture on a la rger scale.

There are also o ther so lu tions to these problem s th a t do n o t f it th e defin ition o f a pattern . A
framework fo r exam ple is a se t o f co -operating classes th a t m akes up a reusable design for a
specific c lass of softw are [Gamma 1995], T hese fram ew orks can be used in specific cases bu t are
n o t general so lu tions to industry -w ide problem s.

S uch a fram ew ork does how ever p rov ide arch itectu ral gu idance by partition ing th e design into
abstrac t c lasses and defin ing th e ir responsib ilities and co llaborations. A developer custom ises the
fram ew ork to a particu lar app lica tion by sub-classing and com posing instances o f fram ew ork
classes.

O ne defin ition o f a design pattern is th a t is describes a com m only recurring structure o f
com m unicating com ponents th a t solve a general design problem in a particu lar context.

D esign pa tte rns fac ilita te a rch itec tu ra l level reuse by p rov id ing "blueprin ts" th a t guide the
defin ition , com position , and evaluation o f key com ponents in a softw are system . In general a
large am oun t o f experience reu se is possib le at th e arch itectural level. H ow ever, reusing design
patterns does n o t necessarily re su lt in d irec t reuse o f algorithm s, detailed designs, interfaces, o r
im plem entations. [Schmidt Stephenson 1995]

Examples of Design Patterns

It is possib le to group design patterns in to categories o f re la ted patterns. T hese groupings can look
like

• S tructural D ecom position
• O rgan isation o f W ork
• A ccess C ontrol
• M anagem ent
• C om m unication

4 8

T here are qu ite a num ber o f D esign P atterns th a t fit in to each o f these categories. C ertain ones
such as Proxy, Facade and Iterator w h ich f it in to the A ccess C ontro l group apply in the case o f
in tegrating C O R B A and L egacy Solu tions and these w ill be looked a t later. L ikew ise the
C om m unication G roup contains patterns such as Forwarder-Receiver, Client-Dispatcher-Server,
an d Publisher-Subscriber th a t are inheren t in an y C O R B A solution .

5.4 What aren't Design Patterns

T here a re a lso m any so lu tions to w ell-know n problem s in the so ftw are w orld th a t do no t m ake
good design patterns. T ypically th ese are know n as Id iom s w hereas o thers th a t can have m ore o f a
negative effect on a system s are know n as anti-patterns.

Id iom s can be though t o f as low -level patterns specific to an particu lar im plem entation problem .
T hey describe how to im p lem en t particu la r aspects o f com ponen ts o r the re la tionsh ips betw een
them using features o f a g iven p rog ram m ing language. T hese can include nam ing conventions,
source code form ats, m em ory m anagem ent ru les etc.

T he easiest w ay to d istinguish betw een design patterns and id iom s is th a t id iom s are less portable
im plem entations o f design patterns. T hey canno t be easily adapted to o ther sim ilar solutions but
shou ld no t be com pletely fo rgo tten abou t as they can also help in p roblem solving and tra in ing o f
new team m em bers.

E very softw are-arch itecture ty p ica lly b u ild s on certa in p rincip les. T he understanding and
accep tance o f these princip les is crucia l in understand ing th e arch itec tu re because they guide
arch itectu ral decisions. T he m o st im portan t difference betw een a p rinc ip le such as Inform ation
H id ing and a pattern is th a t patterns define structure and interactions. P rincip les, on the other
hand, do no t have a specific structure , th ey a re m ore gu idelines, o r rationale, fo r the structure o f
specific patterns.

[V o lte r 2000] outline how p rincip les can also be regarded as h igh-level goals, w h ich w e w an t to
reach by app ly ing the patterns. M any patterns w ill reference the princip les in order to explain w hy
a pattern has som e specific structure.

[F o o te Y o d e r 1997] docum ent vario u s "anti-patterns" tha t detail real-w orld architecture problem s
as seen in the design and g row th o f m ajo r cities over tim e. A n an ti-pattern outlines both w hat
shou ld n o t be done in a system bu t a lso w h a t does happen in the rea l w orld . M any o f these are
app licab le to softw are arch itec tu re and particu larly to th e m ission-critical m ainfram e system s th a t
have evo lved over recen t decades.

B IG B A L L O F M U D

W hen a system has reached a sta te equ ivalen t to B IG B A L L O F M U D , it is a lready in a state that
m akes change o r adaptation d ifficu lt o r im possible. Such system s can continue to function in their
cu rren t state bu t any a ttem pt to ch an g e it w ill be resisted.

4 9

T H R O W A W A Y C O D E

T his pattern details a fa irly com m on problem in softw are developm ent. W hen the developers or
designers are producing th e p roof-o f-concep t o r pro to type fo r a system , th ey do no t w orry about
the e legance or efficiency o f that system . R ather they are concerned to show th a t it w orks and w ill
be re-w ritten correctly a t a later stage. T he danger com es w hen th is p ro to type is chosen in its
cu rren t sta te fo r release. T his can easily happen fo r tim e and budget reasons and w ill lead to
fu rther p roblem s at a later stage.

P IE C E M E A L G R O W T H

M any m ainfram e applications have fallen v ic tim to the P IE C M E A L G R O W T H situation.
E ssen tia lly th ey began the ir life as sm all, sim ple applications th a t p rov ided certa in functionality .
A s tim e w en t on, ex tra featu res w ere con tinuously added and these in them selves m ay have
required ex tra features. L ike m any cities o f today , these applications becam e m assive, system
critical en terprise system s even though th ey w ere no t p lanned to be.

K E E P IT W O R K IN G

T his is one o f the m ost com m on situations in a com pany th a t relies on m ainfram e system s. The
business has com e to rely on these system s an d the da ta behind it. I f the system w as to becom e
unavailab le it w ou ld cause chaos in the day-to -day business. T hese system s are m ission critical
and m ust be kep t runn ing at a ll costs. So m any system s th roughou t the w orld are in exactly this
state.

SW E E PIN G IT U N D E R T H E R U G

A nother com m on situation w ith m ain fram e system s is h id ing the m ess. A s w ith the run-dow n
areas o f a large city , the system can be m ade to look c leaner by pu tting cleaner, new er m odules
th a t h id e the m ess and com plexity o f som e o f th e o ther code and m odules.

R E C O N S T R U C T IO N

This situation is som ew hat less com m on in th e m ainfram e w orld . In large cities, there com es a
tim e w h en the only solu tion to a p rob lem bu ild ing is to dem olish and start again. This can happen
w hen th e ex isting build ing sim ply can n o t be ex tended o r enhanced to m eet the requirem ents. In
the m ain fram e w orld the costs o f such an approach and be prohib itive and there is the p roblem o f
w hat to do w h ile the new er system is be ing built.

5.5 Architectural Patterns

W hile so ftw are patterns are usefu l fo r developers w riting code to solve business requirem ents, our
in terests lie in a slightly d ifferen t place. T here also exists the concept o f an architectural pattern,
w h ich is used to specify th e fundam enta l s tructure o f a softw are system .

A n arch itec tu ra l pattern does no t on ly express a fundam ental structural organisation schem a for
so ftw are system s. It also prov ides a set o f p redefined subsystem s, specifies the ir responsibilities
and inc ludes ru les and guidelines fo r o rgan ising the re lationsh ips betw een them . It can be

5 0

considered as a h igh-level stra tegy th a t concerns large-scale com ponents and the global properties
and m echan ism s o f a system .

[Keshav, Gamble 1998] define an in tegration arch itecture to be the softw are architecture
descrip tion , u sing in teg ration elem ents, o f a so lu tion to in teroperab ility problem s betw een a t least
tw o in teracting com ponen t system s. In th is regard , w e w ill look a t various architectural patterns
th a t are a lready availab le and used in the industry.

Such type o f pattern is particu larly usefu l fo r us in the C O R B A -L egacy In tegra tion architecture
design. O u r predecessors w ill a lready have com e across th e problem s o f ensuring th a t our
in teg ra ted so lu tion is secure, scalable, re liab le , availab le and m eets the perform ance requirem ents
w e need.

T hese patterns can have a large im pact and im plications, w h ich a ffec t th e overall structure and
arch itec tu re o f such a system and as a re su lt have received m uch a tten tion over the last few years.

The arch itecture o f a softw are system is unique. It depends on the con tex t in w hich it is developed
and on various aspects: E xpected lifetim e, cost o f developm ent, fo reseen evolutions, experience
o f arch itec ts and developers etc.

F o r a particu lar problem , th ere does no t ex ist o n e optim al arch itecture bu t ra ther an architecture
adapted to a g iven context. [G u e h e n e u c J u is s e n 2001]. Therefore, w e focus on general and
con tex t-independen t arch itec tu ra l p roblem s.

Softw are and D esign patterns often sim ply p rov ide a "better" w ay to code an application so tha t a
developer w ill avoid various p itfa lls th a t are inheren t w ith th is process. T he A rchitectural patterns
th a t w e w ill consider are a im ed a t g e tting the System A rch itec tu re co rrec t in the first place.

In th is research into C O R B A and In teg ra tion approaches, w e have already com e across tw o
possib le A rchitectural P atterns

M anaged E volu tion [Section 4 .4] involved an evo lu tionaiy approach w hen m igrating to a new
technology.
S tandard-B ased Solutions [Section 1.4.2] are solutions w ith a industry-w ide consensus com ing
together to prov ide standards on a certa in technology

5.6 Categories of Architectural Patterns

A rch itec tu ral P atterns can be broken dow n into the fo llow ing subcategories according to their
properties.

5 .6 .1 F ro m M u d to S tru c tu re

T his type o f pa ttern is used in the c rea tion o f the initial system . Som e w ell-know n patterns tha t fit
in to th is category are Layers, Pipes and Filters, Blackboard.

51

T he L ayers pattern fo r exam ple, structures th e system in to g roups o f subtasks w ork ing on a
particu lar level o f abstraction . This pattern can be useful w hen re -using the d ifferen t layers and
supports standardisation. In add ition th e v a rious dependencies are k ep t local. O n the negative side
there can be changing behaviour, low er effic iency , unnecessary w ork and difficulty in
estab lish ing the co rrec t granularity . E xam ples o f th is pattern include O SI and the In ternet Protocol
Suite.

5 .6 .2 D is tr ib u te d S y s te m s

D istribu ted System s patterns are the type o f A rch itec tu ral patterns th a t have special in terest for
those o f us try ing to im plem ent d istribu ted so lu tions in an en terp rise situation. The types o f
p a ttern th a t can be applied in th ese cases include Broker, Pipes and Filters, Microkernel.

T he B roker pattern is used to co-o rd inate com m unication betw een d istribu ted softw are system s in
o rder to enable rem ote u se o f serv ices. C O R B A , O L E and A ctive X are exam ples o f th is pattern
in use.

5 .6 .3 In te ra c tiv e S y s te m s

In teractive System s patterns are very m u ch geared tow ards user in teraction and hum an
involvem ent in an application o r arch itecture . Such patterns include Model-View-Controiler,
Presentation-Abstraction-Control.

T he Presentation-Abstraction-Control pattern (P A C) defines a structure fo r interactive softw are
system s in the form o f a h ierarchy o f co -operating agents. E very ag en t is responsib le fo r a specific
a spec t o f th e app lication 's fu nc tiona lity an d consists o f th ree com ponents: presentation,
abstraction , and control. T h is subd iv ision separates the hum an-com puter in teraction aspects o f the
agen t from its functional core and its com m unication w ith o ther agents.

5 .6 .4 A d a p ta b le S y s te m s

F inally w e have A dap tab le System s patterns w hich w ill need to be used in system s th a t can be
easily adapted . T hese include Reflection, Microkernel.

T he Microkernel pattern app lies to softw are system s th a t m ust be ab le to adap t to changing
system requ irem ents. I t separa tes a m in im al functional core from ex tended functionality and
custom er-specific parts. T he M icrokernel also serves as a socket fo r p lugg ing in these extensions
and co-o rd inating th e ir co llaboration .

5.7 Implementing Architectural Patterns

W hen A rch itec ts and System D esigners com e toge ther to design th e ou tline o f an enterprise
p ro jec t o r evo lv ing an ex isting one, they do n o t w an t to start from scratch. T hey w ill be aw are o f

5 2

patterns th a t ex ist and w ill use these in con junction w ith experience and conven tion to lead them
to apply com m on w ays to so lve com m on prob lem s they w ill encounter.

A rchitectural patterns aid developers in reso lv ing coarse-g rained in tegration problem s am ong
com ponents. T hese patterns are assem bled from functionality slices th a t resolve various
com m unications problem s betw een applications. H ow ever little a tten tion has been paid to how
interoperab ility problem s and th e ir reso lu tion a re em bodied in these patterns.

[Davis Gamble 2001] notice tha t m apping these p roblem s to specific functionality prom ises
insight into com posing in teg ration arch itec tu res by illum inating the consistent, h igh-level
so lu tions th a t reso lve ind iv idual conflicts.

F o r exam ple, in the case o f som e attem pting to design a u ser-in tensive system , one proven w ay to
organise the abstractions is to use a m odel-v iew -con tro ller pattern , in w h ich you clearly separate
ob jec ts (the m odel) from th e ir p resen ta tion (the v iew) and the agents th a t keep the tw o in sync
(the controller).

A nother exam ple w ould be, i f y o u are bu ild ing a system fo r so lv ing cryptogram s, one proven w ay
to organise yo u r system is to use a b lackboard arch itecture , w h ich is w ell su ited to a ttacking
in tractab le p roblem s in opportun istic w ays.

O bject-o rien ted patterns and fram ew orks describe arch itectural aspects o f softw are. B oth are
based on the c lass/ob jec t concep ts w hich are availab le in ob jec t o rien ted analysis and design
m ethodo log ies an d in o b jec t o rien ted p rog ram m ing languages [Jacobsen et al. 1997]

It is c lear to see th a t patterns can help us to v isualise, specify , construct, and docum ent the
artefacts o f a so ftw are-in tensive system . In addition , w e can forw ard engineer a system by
selecting an appropria te se t o f patterns and app ly ing th em to th e abstractions specific to ou r
dom ain.

It is also possib le to reverse eng ineer a system by d iscovering th e patterns it em bodies, how ever
th is is no t really an e legant w ay to eng ineer such a system .

A be tte r approach w ould be, w hen w e deliver a system , w e can specify th e patterns it em bodies so
th a t w h en som eone la ter tr ie s to reu se o r adap t th a t system , its patterns w ill be c learly m a n ife s t

5.8 Qualities of Patterns

A s patterns as a concep t are a lm o st tw en ty years o ld, there is now som ew hat o f a broad consensus
as to w h a t qualities a pattern shou ld have to m ake it usefu l and n o t ju s t a ru le-of-thum b. [L ea
1993] ou tlines som e o f these qualities:

• E ncapsulation and A bstrac tion

Each pattern encapsu lates a w ell-d efin ed p roblem and its so lu tion in a particu lar dom ain. Patterns
should prov ide clear boundaries th a t help crystallise the problem space and the solution space.

• O penness and V ariab ility

5 3

Each pattern should be open fo r ex tension o r param eterisation by o ther patterns so th a t they may
w ork to g e th er to solve a la rger problem . A pattern solution should be also capable o f being
rea lised by an infinite varie ty o f im plem enta tions (in isolation, as w ell as in conjunction w ith
o ther patterns).

• G enerativ ity and C om posability

E ach pattern , once applied , generates a resu ltin g context, w h ich m atches th e in itia l contex t o f one
o r m ore o ther patterns in a pattern language. T hese subsequen t patterns m ay then be applied to
progress fu rther tow ard the final goal o f genera ting a “w h o le” o r com plete overall solution.

• E quilibrium

E ach pattern m ust realise som e balance am ong its forces and constrain ts. T his m ay be due to one
o r m ore invarian ts or heuristics tha t are used to m in im ise conflic t w ith in the solu tion space. The
invarian ts o ften typ ify an underly ing prob lem so lv ing p rincip le o r ph ilosophy fo r the particular
dom ain, and provide a ra tionale fo r each s tep /ru le in the pattern.

5.9 Conclusion and further developments

In th is chap ter w e have seen som e defin itions fo r th e concep t o f A rch itec tu ral Patterns. W e shall
see various uses fo r som e o r a ll o f th e se patterns th roughou t o u r investigation on Integrating
L egacy System s and C O R B A . M any o f the patterns w e see w ill have been used sim ilar projects
th roughou t the w orld-w ide banking industry and others w ill be little m ore th an idiom s o r rules-of-
thum b th a t can help w ith a particu la r im plem enta tion solution.

A s d iscussed in C hap ter 3, one o f the new est com petitors fo r C O R B A in the legacy in tegration
a rea is E n terp rise Java B eans. A lthough E nterp rise JavaB eans provide sim ple A PIs for relatively
com plex tasks, design ing an d im plem enting a scalable, m ain tainab le and reasonably fast
app lica tion based on EJB is n o t triv ia l. O v er tim e, a set of proven patterns has em erged and these
can be seen in [Wolff, Schmid, Volter 2001]

[Quinot et al. 2001] ou tline D R O O P I (D istribu ted R eusab le O bject-O rien ted Polym orphic
In frastructu re) , w h ich is a nov e l m idd lew are th a t w ill a llow in teroperab ility o f d istribu ted object-
orien ted applications across d istribu ted p latform s. This paper outlines the com pleted first step o f
th is project, w hich consists o f the defin ition o f a generic m idd lew are architecture. This
arch itec tu re in tegrates an d ex tends several aspects o f ex isting m idd lew are and is an in teresting
v iew o f w h ere th e fu ture o f m idd lew are in tegration pro jects could be headed.

In th e con tex t o f th is research , P atterns are an approach w e can use a t a later po in t w hen
encoun tering d ifficu lties and b lockages w ith large-scale in tegration pro jects. Specifically , the next
few sections deal w ith som e o f m a jo r areas w here such d ifficu lties are usually encountered.
K now ing th a t w e can use "w ell-know n" so lu tions o f o thers to overcom e these d ifficu lties w ill
m ake th e task o f this research s ign ifican tly easier.

In add ition , th is research does no t a im to find n ew patterns bu t to app ly ex isting patterns related to
C O R B A and In tegra tion to any o f issues arising in en terprise in tegration projects. To start this

5 4

process w e m u st d iscover w h a t p rob lem s are bein g faced w hen m ig ra ting legacy system s to
C O R B A .

F or exam ple, [Kim B ie m a n 2000] d iscuss how w e m ust so lve the fo llow ing problem s:

• Variety o f the interfaces to legacy systems: T here are m any in terfacing sty les in legacy
system s, th ey have d ifferen t im plem entations from each o ther and a re a lso dedicated. This
m akes it d ifficu lt fo r server-side ap p lica tion developers to im plem ent w rapper objects for
legacy system s even though they und erstan d som e o f th e in terfaces to th e legacy system s.

• Representation o f interfaces to legacy systems: To generate w rappers autom atically , a
server-side developer should subm it in terfacing inform ation fo r legacy system s to an
au tom atic w rapper generator. T hus, som e represen tations are required to describe easily the
in terfaces to legacy system s.

5 5

6 CORBA Performance Issues

6.1 Introduction

A nother o f th e areas o f uncertain ty th a t is in troduced into a B ank ing env ironm ent w hen older
system s are reeng ineered as peers in a d istribu ted com puting environm ent is perform ance.

T rad itional m ain fram e applications cou ld re ly o n good perform ance and as w e shall see, w hen w e
in troduce d istribu ted applications to th is p la tfo rm , th ere are various perfo rm ance overheads that
w ill be associated .

W h at w e need to look a t is various w ays o f m in im ising th is overhead so th a t access to critical da ta
can still be re trieved quickly, w heth er from a 3270 T erm inal o r a Java A pplet.

[K a h k ip u ro 1999] details som e o f th e w ays in w h ich the perform ance o f C O R B A based
applications can be com prom ised . T hese include

• D istribu tion transparencies
• M arshalling an d dem arshalling o f param eters
• Invocation rou ting
• N e tw ork bandw id th and latency
• U se o f N e tw ork connections
• Server C onten tion

A s no ted in [Gokhale, Schmidt 1998], th e success o f C O R B A in m ission-critical d istributed
com puting is dependan t on th e ab ility o f th e O bject R equest B roker to provide the necessary
quality o f serv ice (Q oS) to applications. T hese quality o f serv ice requ irem ents include h igh
bandw idth , lo w latency, an d scalab ility o f endsystem s and d istribu ted system s. W e w ill
investigate the first tw o o f th ese in th is chap ter and consider the la tter in a later chapter.

I t is im portan t to no te th a t fo r th is d iscussion w e w ill focus on w h a t can be done in the C O R B A
env ironm en t an d specifica lly in te rm s o f ID L and Service granu larity to im prove perform ance.
W e can assum e th a t a large o rgan isation is u sin g th e latest h ardw are and softw are technology and
th is does no t requ ire a d iscussion.

V arious o th e r issues such as the A vailab ility an d Scalability o f the system w ill also have real
a ffects on th e system s perfo rm ance an d in la te r chapters w e w ill look a t these top ics and at
various so lu tions th a t can be applied from th ese areas to the perform ance o f the system

6.1 .1 P e r fo rm a n c e o f D is tr ib u te d S y s te m s

T he very firs t th ing w e can assum e w ith d istribu ted system s is th a t there w ill be a perform ance h it
due to netw ork latency. It is accep ted th a t a call across the netw ork w ill alw ays be substantially
slow er than a local call. In reality , th is fac to r m ay be thousands o f tim es slow er. [K o ch , Murer
1999].

56

E ven th e m odem advances in technology and various C O R B A S ervices have no t overcom e this
p roblem . E xtend ing th is problem , it is also likely that in ter-process calls on the sam e physical
m ach ine w ill be slow er than ca lls th a t execu te in th e sam e process.

N atu ra lly th is perform ance h it th a t com es w ith d istribu ted system s is going to be o f big concern in
a C O R B A env ironm ent w here there can be d irec t com m unication betw een m any objects.

[Gokhale, Schmidt 1997] deta il how the Q oS requirem ents fo r delay-sensitive applications
include an abso lu te need fo r low -latency . M o d em banking h igh -speed netw orks (such as A T M s)
support quality o f service in term s o f bandw id th and latency. U sing C O R B A m eans significant
perfo rm ance overhead in such app lications, w hich have to be overcom e or low er level
com m unications w ould be p re ferred such as sockets, w h ich do no t have the o ther benefits o f
C O R B A such as re liab ility , f lex ib ility an d reusab ility .

In fact, [R ack I 2000] suggests th a t these requirem ents are head ing in tw o d istinct directions. He
m ain tains th a t on one hand, op tim ised p latform s fo r specific app lica tion dom ains like high-
perfo rm ance com puting are being developed bu t o n the o ther hand, in tegration solu tions like
C O R B A have im proved in teroperab ility as th e ir p rim ary goal, a llow ing com m unication betw een
d ifferen t m idd lew are products and the in teg ration o f legacy applications.

H ow ever, as seen from earlier chap ters, there is in fac t m any large organ isations tha t require both
im proved in teroperab ility and h igh perfo rm ance an d th is is th e ta rg e t w e need to reach.

6 .1 .2 O th e r P e r fo rm a n c e P ro b le m s

T he perfo rm ance degradation o f an app lica tion due to netw ork latency is n o t the only issue w e
need to consider in the C O R B A w orld . [Slama e t al. 1999] ou tline h o w w e m ust consider th e type
o f data be ing passed betw een C O R B A objects, and the am ount o f th is data being passed.

[Silva et al. 2000] also ou tline h o w th ere is a perform ance co st due to the creation and dele tion o f
C O R B A ob jects, specifically w ith the start-up o f th e Java v irtu a l m achine w hen th is is the
opera ting system o f choice fo r C O R B A servers. T his additional cost is added fo r the start-up o f
each server.

5 7

6 . 1 . 3 D e s i g n i n g I D L f o r p e r f o r m a n c e

T he In terface D efin ition L anguage defined by th e O M G for defines C O R B A interfaces have been
ou tlined in a p revious chap ter and it can be seen how ID L is a flex ib le w ay o f defin ing our
in terfaces and o ther associated elem ents.

FIGURE 6.1 : Interfaces Define what a C O R B A Service will provide

H ow ever ID L is m ore th an a usefu l too l. I t is the key to design ing o u r C O R B A Services and can
have a m assive im pact later on i f no t th o u g h t ou t p roperly in the early phase. O ne key com ponent
to rem em ber is th a t ID L is fo r design ing in terfaces fo r th e Service and no t the im plem entation.
T his is especia lly tru e w hen dealing w ith L egacy A pplications o r L egacy D ata . W e m ust design
the ID L irrespective o f h o w it is or w ill be im plem ented.

[Smith, Williams 1998] a lso recom m end considering perfo rm ance issues early in the
deve lopm en t p rocess to ensu re op tim al perform ance o f an app lication . They outline various
problem s w ith applications u s in g the "fix-it-later" approach.

6.2 General Solutions to the CORBA Performance Problems

[Grahn, Holgersson 2002] and [Slama et al. 1999] provide som e general perform ance guidelines
th a t can help to im prove the perfo rm ance o f a C O R B A based system . T hese are

- R educ ing th e n um ber o f rem ote opera tions
- O ptim ising th e am ount o f d a ta passed
- O ptim ising th e ID L s types used.

5 8

F or the reasons outlined above, the single best so lu tion to perform ance problem s in a d istributed
system is to reduce the num ber o f rem ote operations. The cost o f netw ork com m unication can be
sign ifican tly reduced i f each invocation deals w ith a reasonab le am ount o f w ork.

A nother perfo rm ance im provem ent can be m ade in recogn ising tha t d iffe ren t ID L datatypes cost
m ore to m arsha l and unm arshall th an o thers an d to design th e ID L w ith th is in m ind can reap big
benefits. In the sam e m anner, ID L can be designed so th a t the num ber o f rem ote operations is kept
to a m inim um . W e shall see how this is done later.

F inally , an o th er com m on so lu tion to im prov ing system w ide perform ance is to im plem ent a load-
ba lancing policy . T his po licy is a w ay o f en su rin g th a t the load o n the system is spread evenly so
th a t queues and bottlenecks are k ep t to a m inim um .
W e shall look a t som e o f these general so lu tions to ensuring th a t th e addition o f C O R B A to the
m ainfram e env ironm en t does no t have ca tastroph ic effects on perform ance.

6.3 Minimise the number of remote operations

W e should o ffse t netw ork latency a t an early stage o f th e applications developm ent lifecycle. As
w e have just seen, d istribu ted com puting adds sign ifican t overhead due to slow er com m unication
th an the trad itional cen tralised m ain fram e m odel.

(Kahldpuro 1999] outlines som e w ell-know n techniques, such as cach ing and pre-fetch ing to
reduce ne tw ork la tency and [Gokhale, Schmidt 1998] outline som e system level op tions tha t can
help. T hese include

• C hang ing socket queue size
• T urn ing on the TC P "N o D elay" op tion
• M odify ing the data buffer size
• C hang ing th e num ber o f servants on th e h o s t side.

T hese w ill o f course help reduce ex isting ne tw ork latency but to reduce the actual am ount o f
ne tw ork com m unication w ill lead to the increased perform ance benefits. [Koch, Murer 1999]
outline tw o general ru les to he lp us.

1 . U se sequences w henever severa l calls to the sam e operation m ay occur

A ne tw ork call is the m ost expensive p a rt o f d istribu ted com m unications. To m inim ise the num ber
o f ne tw ork ca lls w ill reduce th e overall perfo rm ance costs. Instead o f a c lien t calling a rem ote
operation n-tim es, it should c rea te a sequence o f n en tries and allow the operation to deal w ith all
o f these a t once . T h e size o f th e in an d o u t requests w ill be m uch larger but there w ill be ju s t one
netw ork call.

2. C om m unicate structures th a t contain a ll o r a t least several a ttribu tes o f an ob ject

A no ther approach to reduce the am ount o f netw ork calls is to group attributes inside a structure
and a llow the server to set o r g e t the ir va lues a t th e sam e tim e ra ther than individually.

5 9

T his type o f arch itec tu re know n as "S erv ice-based A rchitecture" results in sm aller g rained objects
such as custom ers o r accounts resid ing w ith in la rger grained com ponents. [McCauley 1999]. The
users o f th is system w ill then access a "Service" ra ther than a sm all grained object.

Such an arch itec tu re is particu larly su itab le fo r the m ainfram e env ironm ent w here existing CICS
and IM S T ransactions can be offered as serv ices on an in terface. This m akes th e integration or
w rapp ing o f such legacy transactions as C O R B A in terfaces ra ther sim ple.

6.4 Optimising the type of data sent or returned

A nother w ell-know n so lu tion to C O R B A perfo rm ance reduction is to consider th e types o f data
th a t are sen t in rem ote invocations. [G o k h a le , S c h m id t 1998] T he d ifferen t C O R B A data types
requ ire d ifferen t m arshalling and unm arshalling tim es depend ing on th e ir com plexity as som e are
m ore expensive to m arshal than others.

[Slama et al. 1999] detail how that every tim e a d istribu ted invocation takes place, th e data being
passed has to be copied from variab les in to a b u ffe r by th e sender and extracted from the buffer
into variab les by the receiver. T hese ID L d a ta typ es m ap to d ifferen t constructs depending on the
p rog ram m ing language and thus have d ifferen t costs associated w ith th is m arshalling and
unm arshalling .

T h is is ano ther C O R B A optim isation th a t can tak e place in the ID L design phase o f the
app lica tion developm ent lifecycle as w e can chose w h ich datatypes to use in our interface
definition.

H ow ever, th ere is also som e good new s w h en using C O R B A as ou tlined in [Khandker et al.
1995]. T he perfo rm ance m etrics fo r D C E , Java/R M I and several C O R B A vendor products show
C O R B A in a favourab le light. In fact, th e ir resu lts show an im provem ent o f a t least five-fold over
D C E fo r com plex da ta types w hen using Jav a an d C O R B A .

6 .4 .1 O rd e rs o f M a g n itu d e

A s ou tlined above, d ifferen t data types m ap to d ifferen t constructs depend ing on th e program m ing
language bu t there are general guidelines ou tlin ing w h ich o f the C O R B A data types are m ore or
less expensive to m arshal.

T he "sim ple" datatypes are th e easiest to m arshall and unm arshall. A n ID L short fo r exam ple w ill
be re la tive ly fast to m arshal and unm arshall since it is sm all and o f fixed size and m aps to a native
d a ta type. A n o c te t can be even faste r to unm arshall as it never has to undergo any character
conversion.

A n ID L string how ever w ill be m ore expensive since it is o f variab le length and in JA V A m aps to
an instance o f c lass S tring and in P L /I m aps to a pointer. A n A N Y is even m ore expensive
because no t on ly does it ho ld v ariab le length data, it a lso has to h o ld typecode inform ation
d eta iling the ty p e o f the da ta he ld in th e A N Y .

6 0

O bject R eferences are th e m ost expensive to m anage. They are o f variab le length as the size o f an
o b jec t reference depends on the length o f th e in terface, the size o f th e O R B -specific ob ject key
an d the num ber o f add itional p rofiles associated w ith the IO R .

T o unm arshall an IO R w ith in a receiv ing process involves m ore th an sim ply extracting data from
a buffer. A p roxy objec t m ust be instan tia ted and in itialised , w hich involves som e further
overhead

IDL Type

O ctet

Short

String

Sequence

A ny —

O bject R eference --

F IG U R E 6.4: M arshalling C osts o f th e V arious ID L D ataT ypes [Slama et al. 1999]

6.5 Optimising the amount of data sent or returned

A n o th er area w here w e can reduce perfo rm ance costs is w hen decid ing h o w m uch data w ill be
passed w ith each rem ote invocation . O ne resu lt o f our using a Serv ice based arch itecture is that
w e w ill now ten d to pass m ore in form ation per request th a t a non-op tim ised C O R B A system .

T he am ount o f da ta passed can affect a system perfo rm ance as, sim ply put, it takes longer to send
a lo t o f da ta th an it does to sen d a little data. T he m ore da ta being sen t the longer it w ill take.

61

T h e g r a p h o f T h r o u g h p u t v e r s u s M e s s a g e S iz e L o o k s l i k e :

T hroughput (M B /Second)

FIGURE 6.5: T hroughpu t versu s M essage Size [Slama et al. 1999]

H ow ever, stud ies by [Grahn, Holgersson 2002] and [Slama et al. 1999] have show n th a t th is in
no t a linear graph. Ju st by increasing th e am ount o f data passed p e r request does not alw ays
increase th roughpu t o f th e system .

The graph above ou tlines the app rox im ate resu lts o f a study on th roughpu t o f C O R B A requests.
N atu ra lly , th is graph is d iffe ren t depend ing on platform , opera ting system and language bu t
generally it tends to look like th is.

W ith th is in m ind, w e can once again decide a t design tim e, ju s t h o w m uch data w e expect to send
w ith each req u est and can design ou r ID L accord ing ly .

In a real w orld study o f A udio /V ideo stream ing using C O R B A , [Mungee, Surendran, Schmidt
1999] found tha t w hen sm aller buffer sizes w ere used in th e ir experim ents, there w as the largest
d isparity be tw een C O R B A an d T C P o r A /V stream ing im plem entations, w ith abou t 50% w orse
perfo rm ance w ith th e C O R B A option. H ow ever, w hen the buffer sizes w ere increased, th e O RB
perfo rm ance im proved considerab ly and a tta ined nearly th e sam e th ro u g h p u t as th e T C P and A /V
stream ing options.

6 2

Som e genera l solutions to th is problem involve reducing the am ount o f d a ta sen t across the w ire.
I f th e server w ere to pre-process the da ta fo r exam ple and send these resu lts to the client there
cou ld be an im provem ent.

T here is an Itera to r design p a tte rn tha t is qu ite com m on and ra ther pow erfu l but should be
considered carefu lly in the perfo rm ance contex t. [Frölich, Gal, Franz 2002] note tha t certain
p rogram m ing languages o ffer an iterator con stru c t to traverse encapsulated data structures in a
m odu lar m anner. T he Itera to r design pattern uses th is concept w hen there is a large am ount o f
d a ta to be passed w ith a C O R B A request/rep ly . R a th e r than re tu rn ing the en tire resu lt set to the
caller, a C O R B A server w ill re tu rn an initial ch u n k o f the data p lus an iterator.

T h is ite ra to r is an ob ject-reference w hich th e clien t can then use to m ake on to obtain further
chunks o f data. I f th e c lien t uses a subset o f the data th is can be a v e ry beneficia l solution.
H ow ever, i f th e c lien t is alw ays requ iring th e full set o f data, an iterator can have a negative
perfo rm ance im pact by adding m ore ne tw ork calls.

W h en and w here to use iterators very m uch depend on individual applications. I f there w ill be
sign ifican tly m ore netw ork ca lls as a resu lt then they m ay n o t p rovide th e b enefit expected.
H ow ever, w hen the da ta being sen t rea lly is large, th is pattern can ensure th a t the O RB is not
overw helm ed.

6 . 6 Additional CORBA Patterns

T here are a lso various w ell-know n C O R B A Patterns th a t can a lso be app lied in general cases to
enhance th e perfo rm ance o f a system . W e h av e already seen h o w a Serv ice B ased architecture is
p robab ly the m ost ideal fo r a m ainfram e based system but som e or call o f th e o thers can also be
considered.

Distributed Callback Pattern [Mowbray, Malveau 1997]

T his pattern is useful w hen a c lien t p rocess needs the resu lt o f a service, b u t canno t afford to w ait
during processing.

I f a c lien t is u sing synchronous m essaging , server-side p rocessing can entail s ign ifican t delays.
F o r exam ple, a c lien t app lication needs to guaran tee a reasonable response tim e to a user. A user
in terface program m ust have continual aw areness o f user events and respond accordingly.

In C O R B A term s th is pattern o ften en ta ils the use callbacks so th a t the c lien t does no t have to
w ait. W e w ill see som e m ore o f th is in th e sec tion on Scalability.

Fine Grained Framework Pattern [Mowbray, Malveau 1997]

T his pattern is used to define and use fine-g ra ined objects in a d istribu ted system w ithout
incu rring proh ib itive costs in te rm s o f perfo rm ance and system com plexity .

In a S erv ice based architecture, coarse-g rained objects are typ ically p referred bu t th is pattern can
also be considered.

63

I n d e p e n d e n t O b je c t s P a t t e r n [M o w b r a y , M a l v e a u 1 9 9 7]

This pattern is used to reso lve p rocessing bo ttlenecks due to tigh t coup ling o f im plem entations,
such as separating th e factory im plem enta tion from the ob jects th a t it creates.

Instant Reference Pattern [Mowbray, Malveau 1997]

T he Instan t R eference Pattern is used to o p tim ise perform ance o f ob jec t instances th rough shared
sever im plem entations. I t p rovides a m echan ism o f m apping from the im plem entation o f an
object's in terface to a specific ob jec t instance.

Library Skeleton Pattern [Mowbray, Malveau 1997]

T he L ibrary Skeleton Pattern can be used to lim it the am ount o f n e tw o rk calls by collocation o f
clients and objec t im plem entations. A gain , any attem pt to reduce the am ount o f netw ork calls in a
system w ill p rovide im m ediate perfo rm ance im provem ents.

Partial Processing Pattern [Mowbray, Malveau 1997]

The P artia l P rocessing Pattern can be used to im prove th e perfo rm ance o f a C O R B A -based
app lication by op tim ising th e am oun t o f parallelism .

Replication Pattern [Mowbray, Malveau 1997]

T his p a tte rn show s h o w to p rov ide im proved perform ance and reliab ility by rep licating an object
in m u ltip le d istribu ted locations.

Load B alancing is the techn ique o f sp read ing th e w ork o f a server over m any servers tha t support
the sam e im plem entation . R ep lica tion is m ost often used to im plem ent a load-balancing policy.
W e w ill investigate L oad B alancing an d R ep lica tion in a later chapter.

Flyweight [G a m m a 1995]

T he F ly w eigh t p a tte rn ou tlines a design pattern th a t can be uses sharing to support large num bers
o f fine-g ra ined o b jec t efficiently . In a S erv ice-based arch itecture there w ill typ ically be a few
large-gra ined objects th a t con ta in m any finer-g ra ined objects. A s a result, there is no t a need to
m anage large num bers o f fine-g ra ined objects.

Interceptor \from the OMG CORBA Specification]

The in tercep to r pa ttern enables the tran sp aren t adding o f services to a fram ew ork and for them to
be triggered au tom atically w h en certa in events occur. A s p er the C O R B A specification , there is a
req u est in tercep to r tha t is designed to in tercep t the flow o f a request/rep ly sequence through the
O R B a llo w in g a serv ice to tran sfe r co n tex t in form ation betw een c lien ts an d servers.

6 4

6 .7 C o n c lu s io n

W e have seen in th is section tha t the largest fac to r th a t affects the perform ance in a d istributed
system is ne tw ork latency. W hat w e have p rov ided here are various approaches to reducing th is
ne tw ork latency th rough the design o f perfo rm ance enhancing ID L and by adopting a Service-
B ased C oarse grained A rchitecture.

[DSRG 1999] p o in t ou t in th e ir report, th a t there is a lso a d ifferen t in perform ance betw een
d ifferen t O R B im plem entations and an o rgan isa tion shou ld be aw are o f these d ifferences before
com m itting to a product.

In th e S ections on Scalability and A vailab ility th ere are fu rther approaches and patterns tha t can
be used to fu rther enhance the perfo rm ance o f the netw ork by balancing the load on the system ,
by m anag ing the connections in the system , by m anag ing the sessions and by provid ing m u lti­
threading.

U nfortunate ly th e addition o f Security can im pose perfo rm ance overheads too bu t w e w an t to
reach a status quo w here th e C O R B A S erv ice o n ly adds a m arg inal perfo rm ance overhead w hen
com pared to th a t o f the legacy app lication tha t p receded it.

T he CORBA specifica tion does provide enhancem ents such as the in tercep to r pattern to fu rther
assist system designers, bu t [Schmidt et al. 1997] reckon th a t CORBA in general is no t w ell
suited fo r perfo rm ance-sensitive real-tim e applications due to lack o f standard quality o f service
policies and m echanism s.

They a lso argue th a t C O R B A has a lack o f real-tim e features as w ell as a lack o f perform ance
op tim isations. In add ition [Wang, Schmidt, Levine 2000] outline a possib le extension to the
O RB specifica tion defin ing a local keyw ord to th e ID L syntax th a t w ould support locality
constra ined o b jec t interfaces. This keyw ord w o u ld allow developers to define and use th e ir ow n
locality -constra ined ob jec ts to avo id unnecessary traffic and m arshalling /dem arshalling
operations. T his so lu tion is a lso an exam ple o f th e op tim ising p rincip le pattern Avoiding
gratuitous waste.

T here is an O M G R ealtim e Special In te rest G roup to consider all such extensions to the core
specification .

A m ong th e initial goals o f th e research w as to find areas such as system perform ance, w hich
could p rev en t th e en terprise in tegration p ro jec t being successful. W e have seen som e industry
standard so lu tions in fo r im proving perfo rm ance in a d istribu ted environm ent. In a later section
w e w ill see th e application o f th e approaches recom m ended here an d how they can be used in
rea l-w orld situations.

65

7 Security Issues

7.1 Mainframe Security

Prev iously , th e m ainfram e w as typ ically inside th e private com pany ne tw ork and so the chance o f
a ttack from the ou tside w as often no t o f considerab le concern for System A dm inistrators.
H ow ever, as w e are now m aking L egacy A p p lica tions available to the In tran e t and to external
In te rn e t users requ iring bank ing functions, th e industry needs to com pletely re-evaluate its
security m easures.

E x ternal A ttack

OS/390

Mainframe
Application

DB/2

Private
Company
Network

FIGURE 7.1: The Private Company Network

Typically , m ainfram e security u tilised the IB M R A C F o r C om puter A ssociates A C F2 on
O S390/M V S . T hese access contro l fac ility m odels are a cen tralised and w ell-proven security
m odel. T hey w o rk by con tro lling access to m ain fram e resources by leg itim ate users.

W here once it w as the case th a t no requests from outside the P rivate C om pany N e tw ork should
g e t th rough (w ith som e exceptions b u t over secure lines), w e now need to support requests from a
varie ty o f d ifferen t c lien ts (som e o f w hom w ill be external to the netw ork). T hese clien ts w ill end
up accessing secure data.

A s noted in [S lam a e t a l. 1999], en terp rise system s are m oving increasing ly into the In ternet
environm ent. This typ ically involves bu ild ing Jav a fron t ends to ex isting system s, o r developing
new In ternet-focused system s. W ith th is, com e requirem ents fo r th in c lien t m odels, and therefore
ligh tw eigh t security lib raries n o t typ ica lly availab le from , o r su itab le to, trad itional D C E/R A C F
security solutions.

H ow ever, even w ith th e trad itional security m echanism s, security is n ev er absolute. [Johnson
1989] states th a t the p robab ility o f a com prom ise m ay approach, bu t is never, zero. Securing a
system is the ac t o f m oving th a t p robab ility c loser to zero than it w as before

66

7 . 1 . 1 R A C F (R e s o u r c e A c c e s s C o n t r o l F a c i l i t y)

T he R A C F com ponen t o f O S/390 w orks to g e th e r w ith th e system to p ro tect critical data in the
en terprise and give only au thorised users to th is data.

Terminal

Terminal

Terminal

FIGURE 7.2 : Resource Access Control Facility

R A C F uses a un ique u ser ID to identify each person try ing to access the system and a passw ord to
au thenticate th a t identity . A fte r the system has been accessed, R A C F th en contro ls the level o f
access au thority fo r each resource a user tries to g e t at. I t w ill check th e security classification o f
bo th th e u se r and th e data and give access i f th e required conditions are m et.

R A C F can be ta ilo red to in te rac t w ith the bank’s opera ting env ironm ent and adap t to its changing
security needs. T he R A C F rem ote sharing fac ility gives y o u the flex ib ility to m ove w ork from one
system to ano ther and adm in ister several system s from a cen tral database.

7 .1 .2 R A C F R e c o rd K e e p in g

O ne o f th e im portan t features o f a security m odel as w e shall see in m odem requirem ents is som e
form security logging.

R A C F keeps sta tistical inform ation , such as the date, tim e, and num ber o f tim es a user enters a
system , and th e num ber o f tim es a specific resource w as accessed by any one user.

R A C F also w rites security log records to he lp you verify the security o f the system . A nd, R A C F
p rovides u tilities th a t create repo rts from th is da ta to help y o u detect possib le security exposures.

6 7

FIGURE 7.3: RACF SECURITY ADMINISTRATION

7 .1 .3 M a in f ra m e S e c u r ity in a C lie n t /S e rv e r M o d e l

I t m u st b e no ted th a t the trad itional m ain fram e security m odel has been tried and tested and is
regarded as an adequate security m echanism w h en inside the private com pany netw ork. O pening
th is ne tw ork to ex ternal c lien ts in addition to in ternal d istribu ted system s w ith th e m ainfram e as a
peer, lead to im m ediate questions as to th e effectiveness o f th is m odel.

[Mowbray Malveau 1999] ra te security as an im portan t aspect o f m anagem ent o f IT resources.
T he secure contro l o f in fo rm ation and serv ices is becom ing m ore im portan t as system s becom e
increasing ly netw orked and In teroperab le

A s [Lang 1997] poin ts out, i t is m ore d ifficu lt to estab lish a basis o f tru st in d istribu ted system s.
M ore th a n one g lobal system s m echan ism needs to be trusted . The degree o f tru st in elem ents o f
d istribu ted o b jec t system s m ay change over tim e w hereas in m ainfram e system s trustw orth iness is
typ ica lly static.

In m odern ob ject-o rien ted system s, it is a lso true th a t ob jec ts canno t be tru sted to enforce their
ow n security , since app lica tion developers m ay lack th e necessary security know ledge o r m ay
sim ply no t w an t any security -related perfo rm ance overhead.

A s w e w ill see in la ter sections, P K I (P ub lic K ey Infrastructu re) and SSL (S ecure Sockets Layer)
are am ong the m ost popu lar security system s used in decentral com puting system s. I f w e can use
a com bination o f PK I, SSL and trad itional m ain fram e security to p ro tec t the key da ta w e can go a
long w ay tow ards satisfy ing th e m ost nervous o f M anagers th a t th e critical da ta is safe.

R A C F h as been designed how ever so th a t it can be in tegrated into a system th a t uses public key
SSL techno logy and th is w ill m ake ou r task som ew hat easier. I t has various defined m echanism s
to a llo w it use SSL in tegration w ith its ow n access contro l facility.

68

7 .2 B a n k in g S e c u r ity R e q u ire m e n ts

In C hap ter 2 w e d iscussed and form ulated the business requ irem ents o f m o d em B anks and w e
saw som e o f th e I.T . system s th a t w ere requ ired to m eet these requirem ents. A m odem bank w ill
require m any d iffe ren t types o f functionality in th e ir system s bu t w ill also requ ire additional
aspects such as m ail servers to handle e-m ail, w eb servers to handle m idd le-tie r CORBA and EJB
servers and in ternal applications to adm inister th e com pany.

H ow ever [Slama et al. 1999] righ tly po in t ou t th a t w ith these additional requirem ents, m ore
possib le a ttack po in ts are c rea ted and p ro tec tion o f non-pub lic inform ation from unauthorised
users is as critical as ever before . E ssentia lly , th e b iggest challenge facing developers o f secure
system s tod ay is try in g to find a com prehensive solu tion tha t can address all o f the features
required o f th e system , w h ile still p rovid ing room fo r the system to evolve and grow .

FIGURE 7.4: Banking Systems Requirements

It is easy to see tha t the d iagram above is flaw ed and w ould be d ifficu lt to im plem ent. For
exam ple w ould w e rea lly w an t an external c lien t to have d irect access to a m ainfram e application?
Even i f th is w as to be a llow ed, how cou ld w e guaran tee the security o f th is connection . Rather,
th is d iag ram should be v iew ed in term s o f the requ irem ents o f the banking system s. It is the case
th a t ex ternal c lien ts m igh t w a n t access to th e ir accoun t in form ation resid ing on a m ainfram e but in
reality , th ey w o u ld no t be a llow ed d irect access.

69

7 .3 T h re a ts to B a n k in g S e c u r ity

For very obvious reasons, the security o f ones m oney in a bank is tak en fo r granted by th e average
consum er. I t w ould be unacceptab le to log-on to ones accoun t one m orning to find tha t "som eone
else had been there first". F ro m the B anks perspective , th is com plete fa ith from th e ir custom ers
tha t the ir assets are safe m ust be m et w ithou t question .

From a system s p o in t o f v iew , there are various th rea ts th a t apply to each part o f a bank 's system s
and these m ust be broken dow n and considered.

7 .3 .1 In te rn a l N e tw o rk S e c u r ity

The in ternal ne tw ork security th a t a bank m ust p rov ide includes au thenticating users to ensure
they say w ho they say th ey are. T here m ust be contro l over w ho has access to resources. These
security requ irem en ts app ly rig h t across th e in ternal enterprise.

In addition , the security m odel th a t w as used o n th e m ainfram e, R A C F fo r exam ple m ust be able
to be in tegrated w ith d ifferen t security m odels such as SSL and PKI.

FIGURE 7.5: Internal Netw ork Security Requirements

7 .3 .2 In te rn e t a n d E x tr a n e t S e c u r ity

M ost banks have as business requ irem ents pub lic in ternet access. T h is access is typ ically provided
to prov ide easy access fo r a B anks' custom ers bu t a t the sam e tim e th ere is a c lear requ irem ent to
p ro tec t the resources and to m on ito r unauthorised in trusions and actual attacks.

7 0

L ikew ise fo r E x tranet users th ere is a requ irem en t to au then tica te access and to prov ide access
control fo r au thorised users w h ils t a lso securing com m unications and ensuring confidentiality .

Communication Authentication
Access Control

FIGURE 7.6: Internet and Extranet Security Requirements

7 .3 .3 S e c u r ity T h re a ts

T here are d ifferen t categories o f Security T hreats in te rm s o f seriousness fo r the banks and
likew ise there are d ifferen t causes o f Security th reats and these can be broken dow n into
deliberate or accidental.

7 .3 .3 .1 D e l ib e ra te S e c u r i ty T h re a ts

D eliberate Security th reats typ ica lly com e from m alic ious individuals or g roups ou tside the
private com pany netw ork bu t increasing ly such attacks are com ing from d isgruntled or agitated
em ployees from inside th e netw ork .

E xam ples o f such attacks inc lude brute fore attacks w here all possib le com binations o f a
passw ord to a pro tec ted resou rce are tried , usually v ia a p iece o f softw are or m echanical tool.
A nother popu lar a ttack from o u tside hackers are w eb spoofing attacks w here a fa lse w eb page
m igh t be used and th e users o f th e bank m igh t be tricked into g iv ing th e ir inform ation.

71

O th er individuals a ttem pt to gain access to the pro tec ted resources by fa lsify ing IP addresses so
th a t a m alic ious packet can g e t th rough th e firew all o r rou te r th a t guard the en trance to th e private
netw ork. T he firew all o r rou te r be lieves the IP address to be valid and allow s th e packet through.

A n o th er a ttack on large o rgan isa tions th a t has been know n is d isab ling a particu lar service on a
n e tw o rk or the en tire ne tw ork fo r exam ple by using a specially constructed packet to crash the
netw ork or continuously sending packets until y o u flood and crash the server. T his form o f attack
is know n as denial o f service.

A ttacks from inside th e com pany m igh t inc lude delibera te ly dele ting pro tec ted resources so tha t
th e system as a w hole fails. G iv ing pro tec ted passw ords to ou tside parties is ano ther w ay o f
com prom ising security from th e inside as is m od ify ing data such as account balances and
overd raft lim its.

A ll o f these attacks a long w ith th e regu lar v iru ses and w orm s th a t can cause chaos w ith th e w orlds
com puters are very rea l th rea ts and need to be taken seriously . A ny security po licy th a t a bank
m ay im plem ent w ill take a look a t each o f these in turn.

7 .3 .3 .2 A c c id e n ta l S e c u r i ty T h re a ts

T here is also a th rea t to a B anks resources from accidental attacks on the p ro tected resource.
T hese usually happen w hen an ind iv idual m odifies or deletes restric ted resources by m istake and
m ay n o t even realise th e consequences o f th e ir actions.

L arge o rganisations have to be especially carefu l as to h o w gets access to the inner restricted
resources so th a t only tho se w ith know ledge o f w hat they are doing can m odify o r delete such
critical inform ation.

7.4 Required Security Services

T here are certain security serv ices tha t every b an k needs to p ro tec t its resources. The m ost basic
o f these need to be supported by any security p o licy im plem ented by the bank. T hese include:

7 .4 .1 S e c u r ity S e rv ic e s

A uthen tication - P rov ing th a t som eone is w ho they say th ey are.

A ccess C ontrol - G iv ing a u se r access to d ifferen t parts o f the system , also know n as
authorisation.

In tegrity - P rov ing th a t a m essag e sen t from a u se r has n o t been tam pered o r a ltered in any way.

C onfiden tia lity - M ain ta in ing th e p rivacy o f m essages sen t from a u ser

A ud itin g - L ogg ing o f u se r in teractions and track ing o f these actions fo r reporting purposes. W e
w an t to know w ho d id w h a t and w hen.

7 2

N on-R epud ia tion - U sers m ust tak e responsib ility fo r th e ir actions. W e m ust ensure tha t som eone
canno t do som ething and th en claim th ey did not.

FIGURE 7.7: Protecting the Banks Resources

7 .4 .2 A p p ly in g S e c u r ity S e rv ic e s

E ach o f th ese serv ices deta iled above has a very rea l p lace in m o d em banking system s. W h at w e
need to do is find th e d ifference in th e services o ffered an d w o rk ou t w here they shou ld be applied
in the d ifferen t p laces in ou r system .

A ny security po licy needs to be enforceable bo th techn ica lly and o rganisationally and needs to
address a ll aspects o f security . To address these aspects th e re m ust be a certa in am ount o f risk
m anagem ent app lied - i.e. a bank m ust decide w h a t needs to be pro tected and how w ell it needs to
be protected.

T here m ust also be an investigation in to th e cost o f security , there is no benefit in spend ing large
am ounts o n a security system th a t is p ro tec ting resou rces w h ich i f com prom ised w ill only co s t the
bank a fraction o f th is am o u n t in losses.

O ne o f th e m a jo r p rob lem s in find ing an adequate security solu tion is ou tlined by [Slama et al.
1999]. They no te th a t the to d ay 's m arket is show ing the stra ins o f having em erged quickly from a
D C E - and R A C F- dom inated w orld in to an In ternet arena th a t is focused on m ore ligh tw eight
technologies than th e estab lished D C E or R A C F solutions.

T here is a m yriad o f em erg ing standards, techno log ies, an d p roducts th a t solve one p iece o f the
security puzzle o r another, b u t do no t y e t in teroperate w ell.

7 .4 .3 A d d re s s in g d if fe re n t S y s te m A re a s

T here are d ifferen t areas o f a b an k s’ IT system th a t n eed to be addressed. These include the
p rocedural, the physical an d log ical security o f the system .

7 3

T he Procedural security is th e adm inistra tion o f the system . F o r a bank th is w ould include new
u ser accounts, d isaster p lann ing , backup procedures etc. T he Physical Security includes access to
build ings, room s, m ach ines, d isk drives, p rin ters, etc.
T he L o g ica l S e c u rity includes authentication , access contro l, integrity, confidentiality , non ­
repud iation and auditing.

Procedural Physical

- Account Admin -Building &RoomAccess

- Disaster Planning - Machine Access

- Backup Procedure - Disk & Printer Access

Logical

- Authentication & Access Control

- Integrity & Confidentialiy

- Non-Repudiation & Audting

FIGURE 7.8: Different Security Areas

T here are fu rther design and architectural issues to be considered w h en im plem enting any security
policy. A decision m ust be m ade w heth er to deny access to all services and only a llow those that
are required . P erhaps know n security vu lnerab ilities such as services and ports should be
restric ted and m aybe access to and from certa in hosts shou ld a lso be restricted. T he question o f
how m uch m onitoring is requ ired should also be looked into.

Som eone needs to decide h o w m uch tim e and m oney needs to be spent on the security system
b o th in te rm s o f m oney an d in term s o f hours spen t on im plem enta tion and design.

7.5 Firewall Technology

In a p rev ious sec tion w e have looked a t trad itional m ain fram e security th a t p rovided adequate
security fo r earlie r d istribu ted system s. H ow ever, as w as m entioned , since w e now required
heterogeneous and d istribu ted com puting b o th inside and ou tside the p rivate com pany netw ork,
new so lu tions have to be considered .

F irew alls are a techno logy th an can be used to p ro tec t the p erim eter as w ell as p rov id ing access
con tro l and aud iting to p ro tec t the system s resources. F irew alls are in essence like a brick w all in
a bu ild ing tha t p reven ts a fire from spreading. A n In ternet F irew all is a facility to secure a w eb­
sites perim eter.

7 4

Private Company
Network

External Clients

External Systems Internal Clients

Mainframe System

NT System

Unix System

Firewall

FIGURE 7.9: F irewall Technology

7.5 .1 F ire w a ll S e c u r ity

F irew all T echnology can be added a t the boundary o f a p rivate com pany netw ork and it can be
used to control access to and from the p rivate netw ork. E ssen tia lly it does th is by p rovid ing a
single en try p o in t to the system a t w hich po in t security au thorisa tions can be added and auditing
procedures im plem ented .

T he add ition o f th is au thorisation w ill restric t the serv ices th a t can be accessed and reduces
security vu lnerab ilities . L ikew ise, a firew all can stop unau then ticated in teractive log ins from the
In ternet to stop unw elcom e ind iv iduals accessing th e system resources. H ow ever, a firew all w ill
no t p ro tec t against v iru ses and o ther fo rm s o f ex ternal a ttack as de tailed previously .

A firew all can also w o rk in the o ther d irection and can be used to restric t in ternal em ployees
accessing ex ternal system s. T his technology w ill still no t p ro tec t again st d isgruntled em ployees
and those on th e inside w ish in g to do dam age.

It should be noted th a t a firew all by itse lf w ill no t p rov ide all the security required as there are
m any o ther w ays to com prom ise a banks security , o ther m easures w ill be required and w e can see
these in th e fo llow ing sections.

There are d ifferen t types o f firew alls include P ack e t F ilte r w hich are sim ple packet rou ters that
can m ake basic access decisions (som etim es called N e tw ork Level). P roxy servers understand
pro tocols and can filte r based on th is (som etim es-called A pplica tion level).

7 5

[S lam u e t a l. 1999] po in t ou t how , in the In ternet-o rien ted w orld, firew all techno logy is
understood and estab lished , bu t does no t solve all the issues around system and data protection . .

T he O M G prov ide now provide a C O R B A F irew all specification . T his details how , in a C O R B A
environm ent, firew alls are used to p ro tec t ob jects from clien ts in o ther netw orks o r sub-netw orks.
A firew all w ill e ither perm it access from ano ther netw ork to a particu lar ob jec t or w ill p reven t it.

W hen access th rough a firew all is perm itted th is m ay be at various levels o f granularity . For
exam ple, access could be perm itted to som e objects beh ind the firew all, o r access could be
restric ted to certa in opera tions o n particu lar objects.

A n enclave is a g roup o f ob jec ts p ro tected by a firew all. The firew all p ro tects the enclave's
netw ork (o r sub-net) by separating it from o ther enclaves and /o r th e In ternet a t large. The
separation is the resu lt o f the fact th a t all com m unication betw een the enclave and the outside
m ust pass th rough the enclave firew all (o r one o f its firew alls, i f there are several). F irew alls have
tw o d istinct duties: inbound protection and ou tbound p ro tection . Inbound pro tections are used to
control ex ternal access to in ternal resources. O utbound p ro tec tions are used to lim it the outside
resources tha t can be accessed from w ith in the enclave.

F o r a real-w orld exam ple, th e X tradyne D om ain B oundary C ontro ller (D B C) is a C O R B A
Firew all (app lica tion layer firew all) th a t securely transm its C O R B A requests and replies across
the dom ain boundaries including packet filte r firew alls and N A T R outers. A cting as a C O R B A
Firew all the D B C checks the correctness o f H O P m essages (o r R M I/IIO P m essages respectively)
and filters ou t hostile and destructive m essages.

7 .5 .2 P a c k e t F il te r s

P acket F ilters are rou ters th a t can base access decisions on source destination addresses and ports
in the IP packets. T here are generally m ounted on a single secured host, a bastion host and
separated from th e in ternal netw ork . They p rov ide a single p o in t o f access and are usually
transparen t to users. T here are som e m ore sophisticated products tha t ho ld internal info about the
sta te o f connections.

7 .5 .3 P ro x y S e rv e rs

P roxy Servers are p ieces o f app lication com ponen t so ftw are on a firew all tha t understand the
ap p lica tion protocol. T hese are especially usefu l w hen u sin g a standard such as C O R B A as there
ex ists on the m arketp lace such P roxy Servers th a t understand IIOP.

T hese P roxy S ervers can m ake m ore detailed access decisions based on the protocol m essage and
on ly a llow certa in types o f m essages to pass in e ither d irection.

T here are vary ing levels o f sophistication and som e P roxy Servers can perform user
au thentication and various aud iting procedures.

In th e C O R B A w orld , use o f th ese P roxy S ervers m ean th a t every IIO P request passing in or out
o f th e p riva te com pany ne tw ork w o u ld pass th rough and th is can im pact perform ance. T hey are

7 6

also typically protocol specific and if a new application or protocol were added to the system, then
a new Proxy Server would need to be added.

FIGURE 7.10: CORBA Proxy Server

In the diagram above, an HOP Proxy Server sits at the entrance to the private company network.
Valid IIOP requests are allowed to pass through to the CORBA server in the network and valid
HOP results are allowed to pass back in the other direction.

7.6 De-Militarised Zones

The concept o f a De-Militarised Zone (DMZ) is an additional way o f providing more security
when using firewalls. It completely isolates the internal network from the external internet by
placing an intermediate/buffer network in between them and this buffer network is the De-
Militarised Zone (DMZ).

77

Firewall

FIGURE 7.11: De -Militarised Zone

It can be arranged to have multiple subnets in the DMZ each with their own security level. This
provides another level o f security. The reason you might want to have such multiple subnets is
because often breaking into an unsecured host/subnet can then allow a hacker to abuse or utilise
trust relationships with more secure host/subnets. So by isolating hosts o f different security levels
from each other, you are providing another barrier to the hacker.

A DMZ can also act as a Network Address Translator (NAT). NAT is also known as IP
masquerading because it basically hides internal hosts from the outside world. It hides IP address
by converting them to the address o f the firewall, and so it hides all TCP/IP-level information
from hackers.

7 8

There can be multiple proxy-servers acting as firewalls. In the diagram above there is a firewall
between the Internet and the DMZ and another firewall between the DM and the internal network.
In this case an external client never has direct access to internal hosts (even Proxy Servers on the
internal network)

7.7 Public Key Infrastructure

Public Key Infrastructure is one o f the more popular solutions available on the market today. Its
role is essentially to support public key technologies that provide authentication, integrity and
confidentiality.

Public Key Technologies make use o f the SSL protocol and X.509 to provide the required
elements o f a security model that can provide secure communications by ensuring integrity and
confidentiality. Such a solution is an absolute requirement for banks that are looking at expanding
their mainframe based legacy systems to work as true peers in a heterogeneous distributed
environment.

7.7 .1 S e c u re S o c k e ts L a y e r

The Secure Sockets Layer (SSL) protocol was originally defined by Netscape and is a transport
layer security protocol layered between application protocols and TCP/IP. It is a lightweight
Internet security solution but is very useful for our requirements as it fits nicely between IIOP and
TCP/IP to provide a security layer. The SSL protocol uses RSA (Rivest Shamir Adlemann) public
key cryptography for authentication.

7 9

SSL authentication is based upon the use o f Certificates. These Certificates are signed messages
specifying a name, a public key and the name o f the Issuing Certification Authority. We will see
the full details in the next section on X.509 certificates.

Commonly known as "credit card security" as defined by [Siama et al. 1999]. SSL is extremely
w ell suited to the security needs o f Internet commerce systems. Fast, lightweight, but providing a
robust and strong level o f security, it is ideally suited to the Internet where public servers are
common, but protection o f sensitive information such as credit card details in transit is o f extreme
importance.

There are many successful products on the market that deal with these issues, providing full
support for SSL and X509 security standards, and that can be used with the CORBA security
services to manage a large-scale secure distributed system.

The thinking behind SSL Authentication involves the use o f public key cryptography. In public
key cryptography, each application has an associated asymmetric public key and private key pair.
Client messages are encrypted using the server's public key and the server decrypts the message
using its private key.

When sending a reply, the server encrypts this with its own private key and the client decrypts it
again using the server's public key. This Public Key Cryptography is also known as asymmetric
key cryptography. There is an overhead, in that the authentication handshake adds an extra 5-20%
performance overhead, but this is reduced for the remainder o f the connection.

Symmetric (or secret key) cryptography relies on the client and server sharing a single key, which
is used to both encrypt and decrypt a message. Symmetric key cryptography is faster and more
efficient than asymmetric key cryptography. The most widely known and used symmetric key
algorithm is the Data Encryption Standard (DES) and its more secure derivative Triple-DES
(3DES).

8 0

SSL also defines cipher-suites. These cipher-suites are groups o f mechanisms that the protocol
uses. It allows client and server to negotiate and agree common mechanisms by selection from a
list o f supported cipher-suites. Some cipher-suites are intrinsically more secure than others
because the mechanisms they used are deemed cryptographically stronger meaning that they are
harder to break.

Another o f the more beneficial features SSL provides is confidentiality. After authentication, SSL
client application sends a once o ff encoded data value to the server - the "session key". A Session
Key is a key to a secret key cryptographic algorithm, chosen for efficiency. Communications
between client and server are then encoded using the agreed secret key cryptographic algorithm.
This key is called a session key because it is only used once for single session between the client
and server.

SSL provides integrity as it adds a Message Authentication Code (MAC) to each message. This
MAC is like a hash value/checksum for the message.

7 .7 .2 X .5 0 9 C e r tif ic a te s

X.509 certificates are ASCII files that match public key and name. The X.509 is standard format
for certificates defined by the International Telecommunications Union (ITU). An X.509
certificate includes information such as the security name o f the entity identified by the certificate,
the public key o f the entity and the name o f the Certification Authority that issued the certificate.
This CA that is used for signing certificates can be either a private or commercial CA).

The Security Name part o f the X .509 certificate also contains further fields such as the Common
Name, the Organisation Unit, the Organisation, the Region and the Country as w ell as an expiry
date.

The Public Key is publicly available, allowing users to encrypt messages to the owner o f this key.
Only the holder o f the inverse Private Key (password protected) can decrypt the message.

81

7 . 7 . 3 C e r t i f í c a t e A u t h o r i t y

A Certificate Authority (CA) is the authority that is primarily concerned with proving the identity
o f users and generation o f X.509 certificates for those users. Trust o f these certificates is only
possible because they are signed by the CA, and this CA is trusted.

The CA can be trusted because their public key is so widely known or easily available that it can
usually be accessed from several sources and thus easily verified. The selection o f a CA used with
SSL is a very important first deployment decision. The CA under-pins the security o f your
network and can also aid in certificate management.

The CA is used during the authentication phase to introduce unknown processes to each other by
acting as a trusted third party. At runtime authenticated users are those users that have a valid
X.509 certificate signed by the CA chosen by an organisation. In a CORBA environment for
example, the public key o f the trusted CA must be distributed to all secure CORBA application.

Some companies choose to use a private CA. This entails having a trusted node that they
themselves set up to use and sign certificates. Securing the CA itself is also vital and in the case o f
a private CA, a bank has to ensure to take extra steps to ensure its security. Obvious measures are
not putting it on the network, providing physical security to the machine etc.

Other issues with using a private CA include the large overhead that comes with acting as CA.
The bank itself is now responsible for signing and deployment and this latter can be quite a task
for large-scale deployments. There must also be a plan in case CA keys get compromised. The
bank then needs to re-issue all certificates signed by the compromised CA

When using a commercial C A there is a company that signs certificates for many other
companies e.g. Verisign, Entrust, RSA. The benefits o f Commercial CAs' include a reduced
responsibility with regard to certificate management. The CA can be globally recognised and
therefore easier to extend the user base across the Internet or with other partnering companies.
Commercial CAs' usually also provide tools to help with the PKI/Certificate Management. There
is a downside to using a commercial CA and that is there is still a need to re-issue certificates if
the CA is compromised and issuing is outside your control

7 .7 .4 O th e r P K I I s su e s

They are various other certificate management issues that arise when a bank chooses the use o f
Public Key Certificates as a security model.

When a certificate is no longer legitimate and needs to be revoked, a certificate revocation
process can be a useful addition to the security model. The revocation process holds a list o f
revoked certificates and w ill check any certificate it is processing against this list to ensure they
are still valid.

If a user loses their private keys they can be in a certain amount o f difficulty as they will then be
unable to operate within the Public Key Infrastructure. For example they might not be able to
access documents they had encrypted with their key. A key backup mechanism is a solution to
re-issue the private key to the user.

8 2

O f course there are further security issues arising from this. Where should this backup information
be held securely while still protecting the user's private key as the private key usually remains in
the sole possession o f that user?

A central repository o f certificates would be an advantage for holding public keys to be
accessible to everyone. In a banking environment, the options available might include LDAP,
DNS, or the corporate database.

Automatic Key Update is a way o f automating the process o f updating certificates that reach
their expiry date. This can be done in a way transparent to the user.

Using Key History Management, w e have a way o f keeping a history o f expired certificates plus
the private keys as a user may have encrypted certain data with this older key and as a result this
cannot be decrypted with a new key. Key History Management should be automatic so that a user
does not have to intervene when trying to decrypt old documents.

Throughout this discussion on PKI we have only considered one PKI in one system. In reality
there are many PKIs on different systems throughout the world and these need to interoperate.
Cross-Certification is a way o f ensuring this interoperability.

As in most IT systems, timestamps provide a very usefiil record o f seeing what happened and
when. In secure systems, secure timestamps are a key element in providing non-repudiation.
They can show when something happened and thus can be used to decide whether an action
should be allowed to occur.

Repudiation is the denial o f having done something. Non-Repudiation support in security terms
means we can ensure that i f a user has completed an action, they cannot deny in the future that
they were responsible. A PKI w ill have the evidence to prove the user completed the action.

7 .7 .5 P K I L o c a tio n s

The use o f PKI raises further issues as w e have seen above. However some o f these issues are
more important in different systems and with different integration models in mind. W e should
have a closer look at these systems.

Internet PKI is essentially the security that is required when sending emails between friends or
when browsing the web securely. This type o f PKI essentially only requires the four basic
components for SSL. These are Authentication, Integrity, Confidentiality and Certification
Authority.

Extranet PKI is required when Extranet support is added to a system, as extra security needs to
be provided also. A secure browser is still used but because users may come from outside the
company more emphasis w ill be placed on validating certificates and ensuring that they have not
been revoked.

Therefore the security components required for extranet security include Authentication, Integrity,
Confidentiality, Certification Authority, Certificate Revocation and Key Backup

8 3

In the case o f inter-enterprise signed transactions Cross-Certification will be used as two secure
systems are interacting. Non-repudiation and Secure Time Stamping are required to ensure that all
actions are accountable in between the two enterprises. Authentication and Authorisation as
always real issues. This is known as Inter-Enterprise Signed Transactions PKI

Inter-Enterprise Signed Transactions require the most basic PKI components plus some additional
features. The list includes Authentication, Integrity, Confidentiality, Certification Authority,
Certificate Revocation, Key Backup, Cross-Certification, Non-Repudiation Support, Automatic
Key Update and Secure Time-Stamping.

7.8 Integrating with other Security Models

We have taken a look at Firewall technology plus Public Key Infrastructure Technology and have
seen how these can address the Internet side o f banking systems but not how to provide internal
security.

This internal security can be provided by RACF in the mainframe world but in general a
comprehensive solution is required to provide internal access control to properly controlled
resources and to provide internal auditing to aid intrusion detection and alarm and to provide
management and administration facilities.

To recall, the RACF (Resource Access Control Facility) on OS/390 is a centralised and well-
proven security model for OS/390. It controls access to mainframe resources by legitimate users.
It also has defined mechanisms to allow it use SSL integration with its own access control facility.

Other security models that exist are often operating system based models. For example NT
Security uses Domain, User Roles, File Permissions and Logging. The problem with these
solutions is that the problem then becomes too platform specific.

There are various Distributed Systems Models available. These include COM+, which can inherit
a security infrastructure from NT. Authentication, Authorisation (roles), privileges (provided by
NT). The problem is that COM+ is really NT based.

Another Distributed model available is DCE (Distributed Computing Environment) which has a
Kerberos based solution that uses Principals, ACLs (Access Control Lists), and tickets. This is a
good security solution but in reality is too heavy weight for most users. There is a large footprint
and considerable administration

A Banking System needs a solution that can cover a distributed heterogeneous system. In the
Banking Systems w e have been looking at there is typically an ORB used for the middleware, and
these need to be secured. CORBA Security can do this for us.

7 .8 .1 C O R B A S e c u r ity S e rv ic e

There are different levels o f the CORBA Security Service (CORBASec) available from the
specification. These include Level 0 (Internet Security), Level 1 (Security-unaware), applications,
Level 2. (Security-aware applications)

8 4

As noted by [Lang 1997] CORBA Security builds on the underlying mechanisms and adds
additional features which make it possible to use the mechanisms in a complex large distributed
object systems environment.

The CORBA Security Specification provides security via Authentication, Access Control,
Integrity, Delegation o f Credentials, and Auditing. Some o f the features it has available to provide
these services include X.509 Certificates, User ID's with password login, Secure ID tokens and
use o f SSL over TCP/IP. Often there w ill be a Master Security Server (M SS) which is the central
security server with runtimes for the clients and servers.

When Securing the Internal Network w e need an MSS to be a central point o f administration
which can be accessed by the server runtime to verily policy information. The Security runtimes
can be installed on both clients and servers and will facilitate security services in conjunction with
the MSS

CORBA integrates all these Security Technologies using the CORBA Security Service
Specification, the CORBA Firewall Specification and the CORBA/SSL Specification. It is
possible to use all o f these technologies and still work within a CORBA environment whilst still
having a standards based solution and working within a single, but distributed security model.

[Alireza et al. 2000] outline some o f the many problems that exist with the CORBA Security
specification but also offer some guidance:

• Take into account the security o f the entire system, not just the CORBASec components. It is
always necessary to look at the system as a whole and at the interplay o f its various
components.

• Detect and solve weaknesses o f CORBASec. (For example the management o f users or
domains).

• Develop creative solutions when needed, such as making the firewall ORB-friendly when it
isn't

• Ignore absurd issues in the specification, such as the predefinition o f the TCP ports for
IIOP/SSLIIOP

The CORBA security model is security technology neutral. For example, interfaces specified for
security o f client-target object invocations hide the security mechanisms used from both the
application objects and ORB (except for some security administrative functions). It is possible to
implement CORBA security on a wide variety o f existing systems, reusing the security
mechanisms and protocols native to those systems.

The CORBA security service can control access to an application object without it being aware o f
security, so it can be ported to environments that enforce different security policies and use
different security mechanisms. However, i f an object requires application level security, the
security attributes must be delegated and made available to the application for access control

In addition to the CORBA Security Specification from the OMG, there are now various other
security related options.

The OMG Common Secure Interoperability Specification, version 2 (CSIv2) defines the Security
Attribute Service that enables interoperable authentication, delegation, and privileges. The SAS

8 5

protocol is designed to exchange its protocol elements in the service context o f GIOP request and
reply messages that are communicated over a connection-based transport. The protocol is
intended to be used in environments where transport layer security, such as that available via
SSL/TLS or SECIOP, is used to provide message protection (that is, integrity and or
confidentiality) and server-to-client authentication.

The OMG Resource Access Decision Facility (RAD) provides a uniform way for application
systems to enforce resource-oriented access control policies. By standardising this service, we
enable the enterprise to define and administer an Enterprise Security Policy for use by all their
software components - and allow these components "plug-in" to the enterprise security.

The OMG The Authorisation Token Layer Acquisition Service Specification (ATLAS)
specification describes the service needed to acquire authorisation tokens to access a target system
using the CSIv2 protocol. This design defines a single interface with which a client acquires an
authorisation token. This token may be pushed, using the CSIv2 protocol in order to gain access
to a CORBA invocation on the target.

7.9 Sample Architectures

In this section w e will look at a few "real-world" examples and see how w e can combine the
technologies detailed above to provide the type o f security that a bank would need.

[Lang 1997] points out that since all requests and responses in the CORBA model are inevitably
sent through the ORB, and since objects cannot locate or call target implementations without
ORB services, security enforcement is guaranteed. This removes the responsibility for security
enforcement from potentially many application objects, which minimises the code responsible for
security policy enforcement

The fact that a high level o f security can be provided for applications completely unaware o f
security is one o f CORBA's top security features. It is possible to put objects in domains where
certain policies are automatically enforced during invocation and some security management is
done, even i f the object was not even designed to run on a secure system.

[Beznosov, Deng, Blakely 1999] present an approach in decoupling authorisation logic from
application logic for those CORBA based application systems, which resort to application level
access control in order to achieve fine granularity o f protection or to use factors specific to the
application domain in authorisation decisions or both.

They describe the design o f an authorisation service that allows any level o f access control
granularity, applying authorisation policies o f different types and from different authorities, as
well as providing application domain-specific factors for evaluating such policies.

Finally, [Bennett, Kannenberg 1996] describe a project where by migrating its student
administrative system from the mainframe to the Web, Stanford University provides functionality
for students in an easy to learn and use format.

This Web-based system allows students to register, apply for housing, see grades, file study lists,
update addresses and more. It is accessible day and night and provides a platform for increased
functionality in the future.

86

A study in the real world example showed that security issues could not be solved by a single
solution but rather by a combination o f approaches. (1) establishing an authentication and
authorisation approach (2) keeping data secure as it travels across the lines and (3) preventing the
misuse o f the Web access.

7.10 Security Patterns

[Yoder Baraclow 1997J outline some patterns for providing security

Single Access Point
Check Point
Roles
Session
Full V iew with Errors
Limited V iew
Secure A ccess Laver

Providing a security module and a way to log into the system
Organising security checks and their repercussions
Organising users with similar security privileges
Localising global information in a multi user environment
Provide a full view to users, showing exceptions when needed
Allowing users to only see what they have access to
Integrating application security with low level security

7.11 Conclusion

As w e have seen there are many options available for a Security solution. The key is in finding
optimal solution for particular needs. Therefore a bank needs to assess its risk, define a security
policy and implemented the policy using proven technologies. It needs to provide a single,
cohesive architecture than can be easily administered.

CORBA offers security solutions for distributed, heterogeneous systems and RACF provides the
various access control and authentication required by mainframe applications. The key is to make
us o f each technology in its place.

[Koch, M urer 1999] confirm that many CORBA products are now mature enough to be used in
an enterprise environment and that Necessary features like integration into a systems management
framework or logging facilities for accounting and security can be integrated with reasonable
effort

[Slama et al. 1999] also agree that for large-scale systems, while CORBA has comprehensively
addressed many o f the functional aspects for providing security in the system, manageability and
scalability issues have not been fully addressed.

Various issues have yet been addressed by CORBA, and there are no plans for these issues to be
supported. These include distributing and updating user authentication certificates or authorisation
credentials, maintaining records o f users that may not be permitted access to systems under any
circumstances, and the implementation details o f the storage o f the authentication information
(whether to use Smart Cards, secure tokens, or login and password). CORBA deals with
functionality specification rather than implementation details, so these issues must be solved
separately outside o f the CORBA security area.

8 7

A s p er th e prev ious section on P erform ance, th is section continues th e them e o f th is research o f
find ing w eakness areas in the en terprise in tegra tion system s th a t need to be rev iew ed. A gain, w e
can app ly som e w ell-know n patterns and industry so lu tions w here these w eaknesses arise.

A t a la ter p o in t in the research w e shall ap p ly these so lu tions to see how th ey can ensure th e
security o f an en terp rise in tegration p ro jec t can be as re liab le as tha t o f its m ainfram e predecessor.

G iv en th a t security is o f large concern to any financia l institu tion , th e o rig inal ob jectives o f th e
thesis, w h ich aim to find any w eaknesses a re s till b e ing reached . O nly a fte r w e app ly these new
found so lu tions can w e ascerta in w heth er th e advan tages w ill ou tw eigh any disadvantages.

88

8 Scalability

8.1 Introduction

Another important issue that needs to be considered when integrating legacy systems using
CORBA is the area o f scalability. It is relatively easy to wrap a legacy CICS or IMS transaction
using CORBA and make this service available to a number o f CORBA Java Clients within the
system. It is an entirely different matter however to ensure that the CORBA service scales to
supporting many thousands o f client requests per day, per hour or even per minute.

As outlined in the [ORBOS 1998], scalability can be thought o f in terms o f the number o f users
and/or objects that can be supported on either a single node or collectively on all nodes in a
system. It mentions how the exact methods for measuring scalability have been widely debated
but that measuring the throughput or capacity o f the system is one good definition. With this
proposal, there is a discussion about how scalability can be increased by adding additional
memory, or processing power.

I f we really expect to replace or reengineer legacy systems as CORBA Services w e must ensure
that these new Services scale as w ell as their predecessors and do so with no significant
performance degradation.

[LaLiberte Braverman 1999] defines scalability in a distributed system like CORBA as meaning
being able to meet the requirements o f clients o f the services being provided even when the
number o f different variables describing the size o f the system vary, sometimes dramatically

There are a number o f tools at our disposal that help us to ensure that these Service scale. These
are the concepts o f Multithreading. Session Management and Connection Management and we
will look at each in turn.

FIGURE 8.1 : MAKING CORBA LEGACY APPLICATIONS SCALE

Multithreading is a technique used at the application level to ensure that the application can
perform several different tasks at once. Connection management and Session management can be
applied throughout the enterprise to ensure that connections and sessions are only "alive" for as

8 9

long as is necessary. All three combined can be a powerful tool that can be applied to ensure that
we can support as many client requests simultaneously and at peak times as is mandated by the
business requirements.

8.2 Multithreading

8 .2 .1 C o n c e p ts b e h in d M u lti th re a d in g

Threads are concurrent paths o f execution within a process. Each thread has code, which it
executes and is usually provided as a function. Each thread also has its own stack and registers
and all the threads share the address space o f the process they run in.

[S h u ltz 2001] outlines how the use o f threads can significantly improve an applications structure
and make its development more intuitive by delegating specific tasks to threads which otherwise
would have required sophisticated mechanisms to integrate them into a single execution flow.

8 .2 .2 M u lt i-p ro c e s s in g

In today’s operating systems, it is common place to support multi-processing whereby the
operating system automatically arranges for slices o f CPU time to be allocated to multiple
processes to create the illusion that they are all running concurrently. The concurrency may be
real on a multiprocessor machine or time-sliced on a single processor.

8 .2 .3 M u lt i th re a d e d la n g u a g e s

A lot o f modern operating systems and languages are also multi-threaded. In this case within each
process there may be multiple threads o f execution which run concurrently, allowing an
application to be doing several things “at the same time”. The concurrency o f threads, like that o f
processes, is achieved by time slicing the threads to be run on the available processor(s).

In multi-processor machines there may be genuine concurrency when two threads are running on
separate processors - but since there are usually more threads than processors, time slicing still
occurs.

8 .2 .4 D if fe re n c e b e tw e e n th re a d s a n d p ro c e s s e s .

Both threads and processes are scheduled by the operating system on the available CPUs to
execute some piece o f code.

• Threads exist within a process whereas processes may contain threads.

• Threads share an address space whereas processes have their own address space

90

• Threads communicate easily via memory whereas processes only communicate via costly
inter process calls.

• Threads are intimately interrelated where as processes have a limited ability to affect each
other.

• Threads must use thread synchronisation to cooperate where as processes may use process
synchronisation to cooperate

• Finally it is relatively cheap to start or switch a thread whereas this is relatively expensive
with processes.

8 .2 .5 C h o o s in g th re a d s o r p ro c e s s e s

It can be more prudent to choose multiple threads for concurrent activities when there is a lot of
sharing o f information that can be kept in memory. Also when there is a need to communicate
very efficiently between each other and there is tight coupling that depends heavily on each
other's results, threads are the most efficient. Finally when the activities are developed together a
thread can be better.

It is usually w ise to use multiple processes for concurrent activities that do not share much
information or can share via an external repository such as a database or CORBA server.
Activities that need to be isolated from each other should be implemented as processes such as
activities being developed by different teams or that use incompatible libraries. Finally activities
that need to be run on separate hosts are other classic process material.

Popular example for thread usage are asynchronous blocking I/O, possibly long running or
blocking code sequences like database queries, sorting o f large amounts o f data or number
crunching. Multi-threading also allows to make full use o f the CPU resources provided in multi­
processor systems [Schultz 2001]

8 .2 .6 C h o o s in g M u lti th re a d in g o r S in g le T h re a d in g

There are various costs and overheads that are associated with multithreading. These include the
synchronisation costs that significantly complicate coding and debugging. The runtime overhead
o f thread creation and synchronisation can be another stumbling block and the overall
performance can decrease the performance o f compute-bound code on a single processor.

As [O'Ryan et al. 1999] outline, highly scalable systems may want to use a pool o f threads to
dispatch events, thereby taking advantage o f advanced hardware overlapping and I/O computation

The benefits o f multithreading include increased server or GUI responsiveness while long running
computations are handled. There is additional deadlock avoidance in re-entrant servers for
example and the throughput o f IO bound applications such as CORBA calls can be increased.
Finally, the harnessing o f multi-processors gives an obvious advantage.

The performance o f multithreading depends on several factors: [Chan 1998]

91

• Whether there is enough parallelism in the application such that a ready-to-run thread is
always available upon remote operation

• Whether the overhead o f context switching is high relative to the latency o f a remote
operation and

• Whether the locality effects o f sharing the same local portion o f the memory hierarchy are
positive or negative

8 .2 .7 U s in g th re a d s

When a process starts running, it contains a single thread o f execution called the main thread. This
thread may choose to start additional threads that will run concurrently with the main thread. The
application terminates when all threads have completed.

Thread packages provide a call to start a new thread. This call typically takes a function pointer
and some data or in object oriented APIs a thread object may provide a ‘start’ function to start a
thread. Once a thread is started, it executes concurrently with the remaining code in the thread that
started it.

A thread can be ‘joined’. This is where one thread can wait for the completion o f another thread.
The join statement blocks the calling thread until the requested thread has finished executing, so
statements following the join are guaranteed to occur only after the joined thread has completed.

8 .2 .8 D a n g e rs o f M u lt i th re a d in g

Threads share an address space, and can potentially read or write any memory in that address
space. This allows very efficient communication between threads, since they can read and write to
normal memory (without having to map it to the file system as processes must when they share
memory)

It is possible as a result for threads to badly damage each other by attempting to use common
memory at the same time. Access to shared data structures by concurrent threads must be
carefully synchronised.

A race condition occurs when threads attempt to access the same data, and because they are both
running concurrently they produce invalid results. This can happen i f the operations involve
several steps, and the steps being performed by one thread are interleaved with the steps being
performed by another in such a way that the threads operate with inconsistent temporary results.

A critical section is a section o f code which accesses shared data and could cause a race. To
prevent races we need to ensure that the operations in two critical sections do not occur
concurrently, i.e. in two threads. W e need to ensure that critical sections are executed atomically.

Implementing an Object Adapter in the CORBA world that works correctly and efficiently in a
multi-threaded environment is hard. [Pyarali et al. 2000] show how there are many opportunities
for deadlock, unduly reduced concurrency, and priority inversion that may arise from recursive

92

calls to an O bject A dap ter w h ile it is d ispatch ing requests. L ikew ise, excessive synchronisation
overhead m ay arise from locking perform ed o n a d ispatch ing table.

8 .2 .9 M a n a g in g T h re a d s

A m u te x is the sim plest th read synchron isation prim itive. It is a m echanism tha t allow s one
th read to get exclusive access to a resource and b lock o ther th reads until it is finished. T here are
tw o operations in a m utex , lock and unlock. O nly one th read m ay ho ld a m utex a t a tim e, o ther
th reads w hich to try to lock th e m utex are b locked until the h o ld e r re leases it w ith unlock. W e
m ust be extrem ely carefu l o f deadlock. T his m eans ho ld ing tw o m utexes at once or ho ld ing a
m utex w h ile w aiting fo r a signal.

T he Reader-Writer Lock is a varia tion on the sim ple m u tex th a t a llow s tw o d ifferen t k inds o f
lock. M any th reads m ay sim ultaneously h o ld a “read er” lock b u t on only one th read can ho ld a
“w rite r” lock.

A Semaphore is a ‘resou rce co u n te r’ A th read th a t n eed s a resource w aits on th is sem aphore.
This decreases th e counter, u n less the counter is 0, in w hich case the th read is blocked. A th read
tha t m akes a resource availab le can post to the sem aphore. T his increases the counter by one or
allow s one o f the w aiting th reads to proceed continue.

C ode th a t can be correctly execu ted by several th reads concurren tly is called thread safe. A ll
functions tha t u se only local v a riab les are th read safe as each th read has its ow n stack. Functions
tha t access shared data m ust be synchronised. They can use M utexes to serialise access to the
sensitive resources or use cond itions/sem aphores/E ven ts to w ait fo r o ther threads.

O verall how ever, using th read ing in a C O R B A server im proves overall throughput. [McCauley
1999] show how using th reads in a C O R B A environm ents can raise issues w here slow ID L
operations "hog" the system . It also show s how C O R B A prov ides good support for assign ing
th reads to incom ing requests v ia a filter. In th is exam ple, th ey use a th read pool and reader/w riter
locks to a llow m ultip le concu rren t read access to servants.

8 .2 .1 0 S tru c tu re d L o c k in g T e c h n iq u e s

T here are d ifferen t approaches to locking. F o r exam ple w e cou ld provide code locking w here
th ere is a m utex p e r g roup o f re la ted functions. W e w ould pu t a m utex around critical sections tha t
access shared data.

W e cou ld chose a data locking approach w here there is a m u tex per da ta item . T his involves
p lac in g a lock m utex around a ll accesses o f data.

O b je c t lo ck in g is an ob jec t-o rien ted com bination o f data and code locking. In th is case there is a
m utex p e r object. T here is no pub lic da ta and a lock m utex is p laced around critical sections in
m em ber functions th a t access p riva te data.

There is a pattern called The Strategised Locking Pattern addresses som e o f the challenges
associa ted w ith developing effic ien t, predictable, scalable, and flexible d ispatching com ponents
[Schmidt 1999]

93

8 . 2 . 1 1 T h r e a d i n g P o l i c i e s

D evelopers o f en terprise level applications need a m ethod to estim ate th e resources required to
scale th e ir applications to support thousands o f users across hundreds o r thousands o f servers
located on m ultip le platform s.

T hey need to e ither benchm ark th e ir ow n applications and /o r use ex isting com m ercial
b enchm arks in th is effort. F o r exam ple, th e th read ing po licy availab le w ith an O R B product and
the effic iency o f its im plem entation w ould g reatly in fluence d ifferen t benchm arks and hence,
determ ine w hich products w ere appropriate fo r a given application .

T here are d ifferen t p o lic ies th a t are com m only used w hen im plem enting a th read ing policy in an
en terprise banking system .

Thread per operation invo lves creating a new thread fo r every operation. W ith th is m ethod there
is m ax im um concurrency bu t it does n o t scale w ell as a solution.

A thread pool is s im ilar to th read -per opera tion bu t the to tal n u m b er o f th reads is lim ited . A pool
o f th reads is created a t start-up and th e first availab le th read in th e pool hand les each request.

A thread per object policy is less frequently used but can prov ide concurrency betw een objects.
A fin a l approach is th read p e r c lient, w hich again is n o t th a t com m on bu t can provide concurrency
betw een clients.

There are varia tions th a t can be applied w ith in each o f these po lic ies and they can be com bined to
in troduce add itional constrain ts. For exam ple special operations can get p referential trea tm en t by
adding operation prio rities to the policy . T here is a techn ique know n as overload control. A
server im poses a lim it o n its m ax im um load an d w ill s tart to re jec t requests w hen load becom es
too high. T his stops the server u sing all availab le m em ory and crashing.

8 .2 .1 2 L im its

C oncurrency can im prove th roughpu t o f an lO bound app lication bu t single p rocessor
concurrency cannot speed up com puta tion and in fac t con tex t sw itch ing and synchronisation slow
it dow n som ew hat and a ll w e can do is spread the w aiting a little m ore evenly.

A sever m ust alw ays be ab le to hand le its average th roughput. Q ueuing requests helps w ith
occasional bursts o f load bu t the server m ust be able to catch up at som e point. O verload control
ju s t m oves the prob lem to the client.

8 .2 .1 3 C O R B A A lte rn a tiv e s to M u lt i th re a d in g

C O R B A prov ides v a rious a lternatives to M ultith reading . IDL Oneways indicate th a t the m ethod
im plem entation w ill n o t b lo ck th e caller. O nce the resu lt is sent the caller w ill continue
processing . This m eans h o w ev er th a t no results can be retu rned from a onew ay call. A synchrony

9 4

can possib ly be achieved using a p a ir o f onew ays w here invocation resu lts w ould be returned to
the ca ller v ia a callback object. T his can be successfu l as long as th e w ork being perform ed is
suited to partia l processing, suspension and later resum ption.

Deferred Synchronous and DII can also be u sed w ith C O R B A . C O R B A offers th is m echanism
fo r m aking non-b lock ing calls, even w ith non-onew ay operations. I f a c lien t m akes use o f the
D ynam ic Invocation In terface, the O R B w ill a llow it m ake an invocation and later retrieve the
resu lts from th e ORB.

T his D II approach has lots o f d ifficu lties in practice and a sim p ler alternative is the use o f
Asynchronous Method Invocations (AIM) w h ich a re part o f th e C O R B A 3.0 M essaging
Specification. W ith th is, c lien t can m ake asynchronous calls to norm al tw o-w ay ID L operations.
T he use o f asynchronous calls is transparen t to the server and th e ID L com piler generates the
c lien t-side support.

[H en n in g 1999] show s th a t th e C O R B A PO A specifica tion also perm its a server application to
arrange fo r a callback i f the server-side run tim e canno t locate a servan t in the active ob ject m ap.
T his m echan ism allow s a server to b rin g ob jec ts into m em ory on dem and instead o f perm anently
hav ing a ll servants in m em ory.

8.3 Connection Management

F or a fixed system w ith a g iven th ro u g h p u t (e.g ., a single node), th ere is an inverse relationship
betw een th e response tim e an d th e num bers o f clients. T he m ore c lien ts subm itting requests the
longer the delays. [O R B O S 1998]

E xtending th is , because c lien t connections use resources (i.e ., m em ory and cycles), the m ore
c lien t connections (even i f th ey a re co llectively no t subm itting requests m ore requests) th e less
th roughpu t and hence the less scalab le th e system .

S im ilarly , w h ile adding add itiona l servers/ob jects to th e system could in itially im prove
th roughput (e.g ., i f there w ere less servers th an processors), a t som e p o in t the th roughput declines
as the instantiation o f the servers/ob jec ts increases.

Som e o th e r factors th a t cause sca lab ility problem s are ou tlined by [Luomala 2000]. T hese
include

• G row th o f u ser base and hence service requests and hence netw ork traffic
• S ize o f the data objects m ov ing in the netw ork
• A m o u n t o f accessib le da ta in th e system , (handling becom es m ore com plex)
• N on-un ifo rm d istribu tion o f u se r requests (tim e, geography)

8 .3 .1 E s ta b lis h in g C o n n e c tio n s

W ith C O R B A w e need to decide on the num ber o f connections th a t exist. C onnections are
estab lished w hen a c lien t ca lls a rem ote operation on a reference to a server (IO R) w hich it is not
already connected to . T his is basica lly th e first tim e a c lien t invokes on an object in a server. W e

9 5

shou ld note th a t it is only crea ted w hen invok ing on an o b jec t reference, no t w hen the reference is
created.

8 .3 .2 R e c o n n e c tio n

W hen a connection is closed it can be re-estab lished by the O R B . T h is can happen w hen a server
tim es ou t w hile a c lien t is connected and re-estab lish ing th e connection w ill re-launch the server.

8 .3 .3 I IO P C o n n e c tio n F e a tu re s

H O P o b jec t references con ta ins host and port fo r th e server and allow s T C P connection. There is
an object key th a t iden tifies th e ob jec t instance and th is is passed to th e server. The HOP
location forward reply can be re tu rned in response to any rem ote invocation and th is m eans that
th e requested objec t is no t availab le o n th is connection bu t p rovides a new objec t reference for
w h ere it can be found.

T he IIO P locate request probes fo r ex istence o f an ob ject on a connection . T he n O P locate reply
m ay prov ide the actual location is its n o t there.

8.3.4 Callbacks

W ith N orm al IIO P there w ill be one lis ten ing socket on each client. T here w ill be additional
connections p e r server th a t invokes any callbacks. C ertain O R B im plem entations support b i­
d irec tional H O P in w h ich case th ere w ill be one listening socket on th e c lien t and that's all. The
c lien t-server connection w ill be reu sed fo r callbacks.

[O'Ryan et al. 1999] outline how , in m any applications, only a sm all fraction o f the consum ers
are in terested in a particu lar event. T o reduce th e tim e requ ired to d ispatch an event by reducing
th e se t o f consum ers tested w o u ld im prove scalability .

8 .3 .5 D ire c t I IO P C o n n e c tio n

T he server can em bed its o w n p o rt d irectly in a reference. The clien t using th is reference can
co n n ec t d irectly to the server. T he server m ust ru n persisten tly o n a w ell-know n port.

A n o th er m ajo r source o f sca ling p rob lem s com es are ou tlined in [Ballintijn et al. 1999], These
com e from the lim itations o f serv ices th a t fo rm part o f m iddlew are. T he research show s how
u sin g a nam ing serv ice a llow s d iffe ren t users to find, access, and share d istributed resources.
C onsequently , i f scaling the im p lem en ta tion o f the nam ing service fails, it hard ly m akes sense to
pu t any effo rt in a ttem pting to scale o ther parts o f th e m iddlew are system .

A n o th e r m a jo r problem is w ith ob jec t re ferences w ith location in form ation encoded w ithin. O nce
th e o b jec t m oves to ano ther location , th e re ference becom es invalid [Ballintijn et al. 1999],

9 6

8 . 3 . 6 C O R B A D a e m o n

Som e O R B S use the concept o f a daem on to ac t as the m iddlem an betw een clien ts and servers.
T hese daem ons are C O R B A servers in th e ir ow n rig h t and can accept all incom ing clien t requests
and red irec t them to the relevant server im plem entation .

By em bedding th e daem on p o rt in ob jec t reference, th e daem on is able to launch servers even for
c lien t o f o th e r C O R B A com plian t O R B s. R eferences can be exported to foreign clients using the
nam ing serv ice o r object_ to_string()

I f th e tran sien t po rt is em bedded in a reference, then the server m ust be already running and
listening on the co rrect port to it needs to be launched persistently

T he decision to use a daem on or a fixed port is com pletely up to the ind iv idual p ro jec t and sim ply
boils dow n to w hether or not th e pro ject w an ts to use a daem on to m anage its connections. The
dangers to th is approach are th a t the daem on is a sing le po in t o f failure. O n the p lus side w ith a
daem on w e do n o t have to w orry abou t m anag ing lis ts o f po rts fo r the servers.

8 .3 .7 C lo s in g C o n n e c tio n

C onnections are on ly closed w hen T C P closes them . This is au tom atic w hen a c lien t or server
ex its or crashes. W hen a netw ork fails o r a host crashes it w ill only be detec ted i f T C P keepalive
is enabled. A pplications can exp lic itly close th e connection using various im plem entation specific
approaches.

8 .3 .8 C o n n e c tio n L im its

T here is a p er process lim it count on clients and servers tha t is m andated by the O RB lim it o f
connections p er process or th e opera ting system lim it on file descrip tors. I t should be noted tha t
no t all descrip to rs a re availab le fo r connections. F o r exam ple, sd tin /out/err, open files, o ther 1PC
libraries used by application e tc a lso use FD s. A ll servers m ust live w ith in these defined lim its.

T here are a lso per host lim its to be considered. A daem on typ ically has th e sam e connection lim its
as a norm al server. The sum o f c lien ts connecting to a host p lus the p ersisten t num bers running on
th e h ost a ll coun t tow ards th e lim it. T C P m ay im pose a per-host lim itation.

8 .3 .9 C o n n e c tio n P a tte rn s

T hree usefu l pa tterns tha t w ill he lp in connection m anagem ent are ou tlined in [Slama et al. 1999]

• C lien t D isconnects
• C oncen trato r
• S erver D isconnects

9 7

8 . 3 . 9 . 1 C l i e n t D i s c o n n e c t s

T he idea here is th a t clients w ould d isconnect w hen they are fin ished using a connection . The
T C P connection w ill close so the server file descrip to r w ill be closed also. In princip le the client
w ill know w h en it is fin ished w ith a connection.

T he issues th a t ex ist are th a t th e server depends on polite clients and there is no defence against
fau lty clients. In addition , the c lien t m ust k n o w w h a t co llections o f objects are sharing a
connection . T here is O R B functions tha t g ive th e descrip to r associated w ith a proxy. The
connection is re-estab lished i f th e c lien t uses ob jects again.

M any c lien ts fit th is pattern . T his is especia lly true o f servers th a t are used by clients at
application start-up such as the nam ing serv ice o r th e daem on. O nce a c lien t has in itialised , it no
longer needs th is server and can safely close th e connection . This helps central servers such as the
nam ing serv ice scale up and be ab le to serv ice large num bers o f clients.

8 .3 .9 .2 C o n c e n tra to r

A concen tra to r server is a fo rw ard ing server th a t sim ply passes on operation calls to som e
app lication server. C oncentrators can reduce th e num ber o f connections to any one process in the
system o r the overall n u m b er o f connections in the system as a w hole.

C oncen trato rs can be on d ifferen t hosts to avo id h ost connection lim its. T here are certain
im plem entation issues th a t need to be looked into. T here m ay be a need fo r m ultip le threads. I f a
static concen tra to r is used then it m ay be necessary to rebuild the funnel i f new interfaces are
involved. A dynam ic concen tra to r can be d ifficu lt to im plem ent.

T here w ill be an obv ious perfo rm ance overhead on each call bu t it can m ake fo r m ore scalable
system s. S ecurity and R esource M anagem en t issues can also be overcom e.

8 .3 .9 .3 S e rv e r D is c o n n e c ts

A server can close connections from c lien t u sing O R B functions. C lien t connections can be
detec ted usin g o ther O R B functions in a per-p rocess filte r inR equest filte r point. A n 10 callback is
called fo r every connection (listen ing socket, daem on, to o ther servers) n o t ju s t c lien t connections.
U sing an inR equest filte r p o in t w ill detect only c lien t connections, and w ill a lso detec t every use
o f a c lien t connection th a t a llow s connections to be tim e stam ped fo r id le tim e calculations.

T o tim e-out id le connections, one could check th e last used tim e in a filte r po in t o r period ically in
a separate th read . Instead o f tim ing ou t connections, a server could close connections w hen the
to ta l num ber o f connections passes som e th resho ld . A n IO callback can count the total
connections and initiate a c leanup o f o ld o r id le connections w hen the coun t gets to o high.

C losing a connection w hile there are still requests being p rocessed m ean th e reply canno t be sent
to the c lient, and w ill be d iscarded by th e server.

9 8

8 . 3 . 9 . 4 O t h e r I d i o m s

C onnection lim its are no t typ ically a large problem . In p ractice system s w ith large num bers o f
c lien ts w ill a lready need to be d istribu ted across m ultip le server p rocesses and /o r hosts for load
balancing and fau lt to le ran ce purposes.

C en tra lised services such as the N am ing Serv ice o r a daem on m ay need connection m anagem ent.

8.4 Session Management

8 .4 .1 S e s s io n s

T he concep t o f a session needs to be defined , as th ere are m any interpretations. A Session can be
any o f a login, an ex tended un it o f w ork, an instance o f a c lien t process.

W e m u st decide h o w long a session should last, and how can it be term inated . F inally w e need to
look i f there is a lw ays a hum an user involved in the session. In rea lity th e final defin ition o f a
session w ill depend on the en terprise bank ing application th a t is be ing architected .

C onstruction o f scalab le com ponents in C O R B A requires a solution o f w ell-know n trade-off. This
is betw een sim plicity o f navigation in a large co llec tion o f objects o n the one hand and a system
tim e o f reaction w h ich is a m a jo r scalab ility fac to r on the o ther. [Szymaszek, et al. 1998]

8 .4 .2 S e s s io n M a n a g e m e n t Is su e s

A com m on req u irem en t o f a banking system is th a t it m ain tains session inform ation on b eh a lf o f
the user. In th is case w e can define a session as a login, usually o f short duration and usually tied
to an instance o f a c lien t application.

L ong-lived app lica tion w ork in progress is no t a session as w e have defined it - it is w orkflow .
Sessions are typ ica lly associa ted w ith server resource allocation an d cleanup. C lient m ay m ake
invocations on m ultip le servers w ith in a session.

8 .4 .3 A v a ila b il i ty

W e m ust look a t w here in the system th e session is available. In a sing le availab le session the
session is only availab le th rough the server p rocess w ith w hich the clien t in itia ted the session. In
th is case o ther server instances w ill n o t recogn ise the session. In fac t the session m ay be im plicitly
tied to a T C P connection to the c lien t o r to an o b jec t instance.

In th e case o f m ultip ly availab le sessions, the session is availab le th rough any server process
supporting a g iven set o f in terfaces. A session key m ay be rep licated across servers o r m anaged
centrally as in the case o f a Security Service.

9 9

8 . 4 . 4 T e r m i n a t i o n

Sessions m ust be term inated a t som e po in t fo r business as w ell as resource reasons. Explicit
te rm ina tion is a com m on approach w here the c lien t explic itly te rm inates the session v ia a logoff()
invocation . T he server w ill im m ediately free any resources a llocated to the session.

In th e case o f im plic it term ination , w hich is also a com m on approach , the server w ill term inate the
session and free any allocated resources. T here is po ten tia l fo r losing in form ation bu t server
robustness w ill require th is. T his approach is used in backup m echanism s as w ell as session
tim eou t or id le detection m echanism s

8 .4 .5 S e rv ic e A rc h ite c tu re

In term s o f a Serv ice based A rch itectu re, the scalab ility o f the system can be broken into tw o
types o f scalability . T he first is the num ber o f concu rren t clients required and the second is the
num ber o f p rocess requests p er second.

8 .4 .5 .1 C o n c u r re n t C lie n ts

In a legacy app lication , the system could be expected to deal w ith m any th ousands o f concurrent
clients. W hen w e m ake these legacy app lica tions C O R B A com plian t, they m ust still be available
to m any thousands o f clients. The concen tra to r pa ttern seen w ith in the perfo rm ance section can
also be adop ted to ensure th a t a m axim um n u m b er o f concurren t connections are never reached.

8 .4 .5 .2 N u m b e r o f R e q u e s ts

Legacy app lications, especially those im plem ented using CIC S o r IM S can re ly on these highly
scalab le transaction-processing m onitors. A ny C O R B A app lication using these techno log ies m ust
scale to th e lim its o f CIC S o r IM S as th e overhead o f C O R B A is low com pared w ith the
app lica tion logic.

T his m eans th a t in large bank ing en terprises w e can expect to reach several hundred or even
several th ousand requests per second.

[F ro id e v a u x e t a l. 1999] sho w how w e can d ifferen tia te betw een scalability o f the num ber o f
concurren t clients and the sca lab ility o f the num ber o f p rocessed requests p er second.

[Ezhilchelvan et al. 2001] outline a real-w orld app lication w here the applications w ith large and
geographically d ispersed c lien t bases are curren tly supported in a cen tralised m anner:

C lien t requests are sen t (over the In ternet) to system s located in a central p lace for processing.
T his cen tralised approach has serious scalab ility p roblem s. A custom er w ho is close to the central
server can have faste r server access than a rem ote client, and thus m ay have an un fa ir advantage
o ver the latter. A s the num ber o f sim ultaneously arriv ing clien t-requests increases, the server load
increases - resu lting in perfo rm ance degradation .

100

T he solution involves describ ing a h ierarch ic a rch itec tu re to satisfy th e quality o f Service and
reliab ility requ irem ents o f a large num ber o f geograph ically d ispersed clients (o f an auction
system).

Ind iv idual p ro jects m ust m ake decisions abou t th e im portance o f scalability as detailed in
[Carzaniga e t al. 1999] . T hey env ision a w ide-area event serv ice as an effective p latform fo r the
in tegration o f d istribu ted heterogeneous objects. The rea lisa tion o f such an infrastructure sees tw o
m ajo r conflic ting challenges, nam ely scalab ility and expressiveness. Som e system s offer rich
selection m echan ism s b u t w ith a cen tralised arch itectu re , o thers adop t a m ore scalab le distributed
arch itecture , bu t th ey g ive scarce accuracy in filte ring events.

8.5 Conclusion

W e have seen a few approaches to p rovid ing th e scalab ility requ ired o f C O R B A Services. A s
m entioned th is is especia lly tru e o f Services th a t w rap o r reengineer Legacy A pplica tions because
these applications w ill have p rovided the scalab ility requ ired as per the m ission critical business
requirem ents.

T he ability to run d istribu ted applications over a se t o f d iverse p latform s is crucial fo r achieving
scalability as w ell as g racefu lly handling th e evo lu tion in hardw are and p latform design. [Shen et
al. 2000]

P rov id ing M ultith read ing , C onnection and Session M anagem en t w ith in a large en terprise system
w ill go a long w ay to w ard s reach th is goal.

[Vinoski 2000] sum s up the state o f scalab ility in C O R B A system s. H e sta tes how m any areas o f
the m iddlew are and th e app lica tion a ffec t m idd lew are scalability . T hese include server
im plem entation , p ersisten t storage, connection m anagem ent, object location techniques, binding
techniques, configurab ility , installa tion , version ing etc. O u r jo b is to apply som e o f the too ls and
patterns availab le to us to ensure tha t w e m ain ta in a h igh level o f system scalability.

G iven th a t scalab ility is o f h igh im portance in any in teg ra tion project, it au tom atically becam e one
o f th e ob jectives o f th is research . In th is section w e have seen som e m o d em techn iques and
patterns th a t can be used to overcom e th is possib le area o f w eakness in O bject-O rien ted based
system s.

A t th is p o in t in th e research w e have seen th ree o f th e m ajo r areas o f w eakness fo r an enterprise
in tegration project. T he n ex t area w e m ust investigate is the availability o f C O R B A Services in a
Serv ice-B ased A rchitecture.

101

9 Availability (Locating CORBA Services)

9.1 Introduction

In th e contex t o f en terprise C O R B A system s, the A vailab ility o f these system s is o f u tm ost
im portance. E ssentia lly it can be broken dow n into tw o separate areas. "H ow does a client find a
Service?" and "H ow does a c lien t continue to find a Service?"

In th e banking w orld , th e integration o f legacy system s w ith Java and O M G C O R B A has led to a
varie ty o f In ternet applications. T hese applications can experience com m unication and node
fa ilu res on occasions, w h ich a ffec t both the perfo rm ance and consistency o f the service being
provided . Such fa ilu res in com m ercial services can resu lt in a loss o f both revenue and credibility
[L ittle 1999]

A second re la ted issue fo r bank ing app lications is th a t p rob lem o f in itially ob ta in ing th e location
of, o r reference to , an o b jec t in a d istribu ted system . T his task , and th a t o f m ain ta in ing the
reference is often solved by nam ing an objec t and th en m aking th a t nam e know n to o ther potential
c lien ts v ia som e repository . [Falkner 2000]

T hese tw o areas th a t w hen com bined toge ther m ake banking applications "available" are o f
u tm ost im portance to th e success th e application . This chap ter w ill investigate th e first o f these
tw o topics, i.e. m aking a serv ice available to clien ts w ish ing to use it, w ith the la tter being
investigated in th e nex t chap ter on Failover.

9.2 Locating a Service

In any c lien t se rver com m unication , the clien t m u st first be ab le to find the server th a t contains the
ob jec t it w ishes to invoke upon and th is is especially true in a C O R B A environm ent. T he client
needs a reference to the o b jec t it w ishes to invoke upon and th is is know n as an object reference.

1 0 2

T his O bject R eference is defined in the C O R B A Specification by the O M G as the inform ation
needed to specify an ob jec t w ith in an O R B . T he represen ta tion o f an ob jec t reference handed to a
c lien t is only valid fo r th e lifetim e o f th a t client. [O M G C O R B A 2001]

T his concept o f the o b jec t reference m aintains som e o f th e p rincip les o f C O R B A . I f a service is
m oved to another m achine, or im plem ented in a d ifferen t language, or com pletely re-w ritten in
th e sam e language, th e c lien t does n o t need to know . A ll th a t is required is tha t the c lien t w ould be
g iven the new objec t re ference and it can invoke o n the o b jec t it needs. In such a case w hen the
server details have changed, so long as the ID L rem ains the sam e, there is no need fo r a c lien t to
be recom piled .

9.3 Providing an Object Reference

T he usual w ay to prov ide an objec t reference to a rem ote ob jec t is w hen the server itse lf publishes
its ow n ob jec t reference. H ow ever, a C O R B A object is useless i f no one know s w here it is, and
th erefo re canno t access it [Claesson 2001],

A solution to th is is to store the O b jec t R eference in som e central repository o f O bject R eferences
so th a t w hen a c lien t is looking fo r a particu lar object, i t w ill do a lookup in th is R epository and
g e t th e O R it requires. I t can th en use it to invoke on th e rem ote object.

C O R B A provides various so lu tions fo r each o f the steps ou tlined in th is ob jec t location m odel.
T hese include the C O R B A N am ing Service and the C O R B A T rader Service.

3. Using object reference

FIGURE 9.2: OBJECT LOCATION MODEL

1 0 3

9.4 Interoperable Object References

T here w as how ever, a fundam ental problem w ith O bject R eferences tha t needed to be addressed.
P rio r to th e C O R B A 2.0 specification , any O R B vendor w as allow ed to use proprietary m ethods
fo r d istribu ted com m unication . T h is m et th e crite ria o f th e C O R B A specification bu t it m ean t that
O R B s from d ifferen t vendors w ere unable to com m unicate w ith each other.

To pu t th is righ t, the C O R B A 2.0 specification in troduced the IIO P (In ternet in teroperability)
P ro toco l fo r d istributed C O R B A com m unication and also a standard fo r O bject R eferences called
In teroperab le O b ject R eferences (IO R s)

A n In ternet In ter-O R B Pro toco l (IIO P) defines a transfer syntax and m essage form ats (described
independently as the G eneral In ter-O R B P ro tocol), and defines how to transfer m essages via
T C P /IP connections. T he H O P can be supported native ly o r v ia a half-bridge. [OMG CORBA
2 0 0 1]

T his IO R is a da ta structure in a standard fo rm at contain ing inform ation clients use to establish
connections to servers and info rm ation servers use to iden tify ta rg e t objects. T he m ain elem ents o f
an IO R include.

The P o rt N um ber w h ich is the T C P/IP p o rt num ber th a t a connection w ill be opened on, the
hostnam e or IP address o f th e host on w hich th e ob jec t is im plem ented and the O bject K ey w hich
is opaque to clients w h ich servers use to un iquely identify ob jec ts w ith in th e ir dom ain.

9.5 Proprietary Solutions

P rio r to the C O R B A 2.0 specification , an O R B v en d o r could im plem ent th e ir ow n transport
p ro toco l and o b jec t re ference as ou tlined above. In addition , m any vendors added functionality
w ith in th e O RB fo r ob jec t location outside o f th e C O R B A services.

O ne exam ple o f th is is the P O O P (P la in O ld O rb ix P ro tocol) used by O rb ix from IO N A
T echnologies p rio r to the O rb ix 2 .3 -p roduct version. T his p roprie tary solu tion had to be re-w ritten
w h en a C O R B A com plian t p rotocol becam e availab le w ith the C O R B A 2.0 specification.

T ypically these so lu tions w ere easy to im plem ent b u t w ere flaw ed in tha t they required clients to
have som e know ledge o f th e server location, reg istra tion inform ation o r internal ob ject keys.

9.6 Getting the Object Reference

O nce an o b jec t com es into ex istence (is instan tia ted) it is th en possib le fo r a c lien t w h o has its
o b jec t reference to invoke up o n th is object. A s ou tlined in the ob jec t location m odel above, the
trick w as how to get th is o b jec t reference to the client.

T h e m ost triv ia l so lu tion in th is case w ould be to take th e IO R and copy th is by hand into the
c lien t code [Claesson 2001] b u t th is o f course requires h u m an in tervention and is no t particularly
scalable.

1 0 4

F or exam ple, looking a t the inform ation system o f the U N IC IB L E D ata C entre in Sw itzerland,
w h ere the heart o f th e ir O SIR IS system resides on O S/390 and is m ade up o f som e 37,000
p rogram s th a t could becom e C O R B A ob jects [Clerc 1999], I t is easy to see tha t any tim e these
ob jec t references changed it w ou ld be im possib le to update all th e clients o f theses system s by
hand.

9.7 The CORBA Naming Service

T here is an O M G prov ided C O R B A so lu tion tha t is a lso a w ell-know n A rch itec tu ral Pattern
ca lled T he N am ing Service. [M ow bray, M alveau 1997]

T he C O R B A N am in g Serv ice is one o f the C O R B A S erv ices defined by the O b ject M anagem ent
G roup in the C O R B A S pecification and th a t im plem ents th e N am ing Service ID L (C osN am ing).
(T h is C O R B A S erv ice has a w ell-defined in terface, as w o u ld any C O R B A Server. This interface
is used by clients and servers to store and retrieve ob jec t references from the nam ing service
database.)

m odu le C osN am ing {

struct N am eC om ponen t {
Istring id;
Istring k ind;

};

ty p e d e f sequence<N am eC om ponen t> N am e;

in terface N am ingC on tex t {
void b ind (in N am e n, in O bject o);
O b ject reso lve(in N am e n);

};
};

FIGURE 9.3: CosN aming IDL

A ll th e ID L com ponen ts a re defined w ith the m odule C osN am ing th a t defines a structure
N am eC om ponen t to ho ld nam e com ponents. This N am eC om ponen t structure is m ade up o f a
string defin ing the id and a string defin ing the kind.

E ssen tia lly its function is to p rovide a repository fo r o b jec t references w hereby an object
reference can be m apped to a readable nam e so th a t c lien ts w ish ing to invoke using a particu lar
o b jec t reference can do a lookup o f th is nam e and hence ge t the o b jec t reference they require

T he nam es are o rgan ised h ierarch ically like a file system and th e nam es are hum an-readable. The
N am in g Service concep t is b ased on a te lephone d irectory w here each te lephone n um ber is

1 0 5

m apped to a nam e and address, w ell w ith the N am ing Service each IO R is m apped to a readable
nam e.

T he N am es are stored in a h ierarch ica l fo rm at and bo th ob jec t references and nam ing contexts are
stored. A N am ing C ontex t can contain ob jec t references and is equ ivalen t to a h igh level qualifier
fo r nam es. A n exam ple N am in g H ierarchy m igh t look like

FIGURE 9.4: NAMING STRUCTURE

In the above diagram S erv ices, A ccoun ts, and C ustom er Info rm ation are all nam ing contex ts
w hile C S e r v i c e l O and C U pdate l l are ob jec t references.

9 .7 .1 C h o o s in g a N a m in g S e rv ic e H ie ra rc h y

The N am ing Service is a particu larly usefu l solu tion w hen c lien ts look up objects based on a fixed
and consisten t set o f crite ria o r w hen c lien ts only w an t a sing le ob jec t reference returned as the
lookup properties have static values.

T here a re d ifferen t w ays to struc tu re a nam ing serv ice and these very m uch depend on how the
nam ing serv ice is to be used and the structure o f applications w ith in the enterprise. The
conventions adopted in a large-scale p ro jec t w ill have sign ifican t im pact as to how th e nam ing

106

structu re is defined - i.e. w hether a descrip tive o r com pact h ierarchy is p referred o r how deep or
fla t the N am ing hierarchy need be.

U sin g a descrip tive N am ing-S erv ice H ierarchy resu lts in a user-friend ly m ethod o f find ing object
references. The nam es are w ell defined and easy fo r users to access v ia a G U I fo r exam ple. W ith a
C om pact N am ing Service H ierarchy how ever, th e nam es have very little m eaning to a hum an user
bu t ra ther su it applications tha t have proxies, he lper c lasses o r concentrators do ing the nam ing
lookup.
W e m ay also choose betw een a fla t N am in g S erv ice H ierarchy th a t only allow s fo r th e fla t level
o f N am ing C ontex t and w here ob jects are iden tified by on ly the ir nam e and th e ir id and kind
fie lds are unique. A lternatively there is a D eep N am ing S erv ice H ierarchy w here objects are
iden tified by th e ir positions as w ell as th e ir nam e. Id and k ind fie lds can have the sam e nam es but
w ith in d ifferen t contexts. This is th e m ore com m on form o f N am in g hierarchy.

In a Service-B ased arch itecture how ever, the nam ing service con tex t structure can reflect the
organ isational structure o f the bank. In fact, preferab ly the o rgan isational structure should be
im plem ented as an exp lic it serv ice, bu t th en w e face the problem , th a t resources and processes are
parts o f the o rganisation and n o t beside it. [Koch, Murer J999]

In w ith such a nam ing contex t structure, it is up to the bank to decide on a descrip tive o r com pact
nam ing h ierarchy bu t a deep nam in g h ierarchy w ould be m ore com m on th an a fla t nam ing
hierarchy.

9 .7 .2 E x te n s io n s to th e N a m in g S e rv ic e

T here are various ex tensions to th e C O R B A N am in g Serv ice th a t fu rther enhance its usab ility in
en terp rise solutions. T he first o f these is an ex tension th a t standard ises a num ber o f elem ents in
th e specification. This is know n as the In teroperab le N am ing Service.

T he defin ition o f th is In teroperab le N am ing Service as defined in the C O R B A specification
ou tlines a Serv ice th a t defines one U R L -form at ob jec t reference, corbaloc, th a t can be typed in to a
p rogram to reach defined serv ices a t a rem ote location, includ ing the N am ing Service. A second
U R L fo rm at, corbanam e, ac tually invokes the rem ote N am ing Service u sin g the nam e th a t the
user appends to the U R L , and re trieves th e IO R o f th e nam ed object.

T h is firs t feature includes a standard string rep resen tation o f nam es. This feature uses a "/" as
co n tex t separato r and a as id-kind separator so th a t a nam e m igh t look like
B an k /A ccoun ting .C ustom er/C _U pdate_ l_0 .

T here is also a U R L fo rm at fo r these nam es (bo th w ith IO R and string ified nam es), a standard
configuration o f re tu rn ing a sing le initial nam ing con tex t to all clients v ia a
reso lve_ in tia l_ references() an d v a rious o ther c larifications and enhancem ents to the specification.

A n o th er ex tension to the C O R B A N am in g Service ou tlines th e concep t o f an ob jec t group. A
typ ica l C O R B A N am ing S erv ice en try is strictly one to one w here a nam e can only be bound to a
sing le o b jec t reference and nam es w ith in a nam ing con tex t m u st be unique. The notion o f an
o b jec t g roup extends th is by a llo w in g a one-to-m any re la tionsh ip betw een nam es and object
references: in essence, it allow s m any servan t objects to be reg istered w ith the sam e nam e in the

1 0 7

nam ing service. R esolution o f th e nam e to an o b jec t reference is m edia ted w ith the aid o f location
po lic ies such as round robin and random . [S lam a e t al. 1999]

T here is ano ther concep t know n as a federa ted nam ing h ierarchy . W ith in the C O R B A N am ing
Service, a nam ing con tex t can contain o b jec t references as w ell as o ther nam ing contexts. These
nam ing con tex ts can be rem ote as w ell as local allow ing the federation o f nam ing hierarchies
together.

9 .7 .3 N a m in g S e rv ic e D if f ic u ltie s

The N am in g Service can be a single p o in t o f fa ilu re fo r an en terprise banking system so w e need
to a llocate resources to ensure tha t it is alw ays available. The nex t chap ter w ill ou tlines various
m ethods o f ensuring th is and thu s enab ling con tinuous access to up-to-date o b jec t references for
in terested clients.

A no ther issue tha t m ust be considered w hen using the C O R B A N am ing Service is ensuring tha t it
is k ep t u p to date. [F e lb e r 1998] ou tlines one solution to keeping the inform ation up to date by
do ing an update each tim e a v iew change occurs. H ow ever, even th is solution does no t guarantee
up-to -date inform ation.

E ach en terprise solution w ill have to consider a fram ew ork fo r keep ing the N am ing Service up to
date but typ ica lly som e form o f au tom ated too l o r scrip t that updates the inform ation periodically
as w ell as rem oving ou t o f date references is ideal.

9.8 The CORBA Trader Service

T here is an o th er C O R B A S ervice th a t w orks in a sim ilar w ay to th e C O R B A N am ing Service and
th a t is th e C O R B A T rad ing Service. A gain, th e re is a T rad ing S erv ice ID L defin ition specified in
the C O R B A specification . [M o w b ra y , M a lv e a u 1997] ou tline the T rader Service pattern.

T he concep t beh ind in th e T rad ing S erv ice is m arg inally d ifferen t from th e N am ing Service. The
T rad ing S erv ice stores O b ject R eferences as before, bu t the ob jec t reference is referred to as an
offer and m u st fo llow an o ffer type, w here an o ffer type is a defin ition o f the num ber and type o f
properties o f th e object.

The idea is th a t instead o f re tu rn in g one o b jec t reference as p e r the N am ing Service, a client
lookup w o u ld return a g roup o f o b jec t references categorised into groups o f logically re la ted
o b jec t references in th e m anner th a t a T elephone Y ellow Pages re tu rns groups o f num bers based
on the S erv ice required .

V alues are assigned to th e p roperties w h en th e o b jec t instances are published and the ob jec ts are
re trieved based on queries th a t a re evaluated against pub lished ob jec t properties o f the specified
type

T he T rad ing Service is b e tter su ited th an th e N am ing Service w hen clien ts look up objects based
on a v a ry in g set o f c rite ria o r c lien ts w an t m ultip le ob ject references returned fo r fu rther
exam ination . In th is case the lookup properties can have static or dynam ic values.

1 0 8

As noted in [Slama et al. 1999] the trader's object directory is not structured in any formal way
(as the naming hierarchy is). Rather, the trader service is based on the concept o f a service type
that contains an IDL interface identifier plus some data defining attributes associated with this
type.

In [M odi 2000] w e see a real-world example o f the CORBA Trader services where an object
installs itself with its name, persistence and filter properties. Interested applications and processes
can find the object using these properties. An application that requires filtering but not persistence
would indicate these requirements to the Trader Service, which will provide the application a list
o f references matching these requirements. The application may then choose one from this list
depending on other properties it requires.

9.9 Bootstrapping

One o f the problems with using the Naming or Trading Services is that they are useful when a
client performs a lookup on a name and retrieves and Object Reference or set o f Object
References. However, there is still the problem o f how a client locates the Locating Service (i.e.
the Naming or Trading Service). This problem is known as bootstrapping.

CORBA provides a well-known solution to this in the specification by ensuring that every ORB
implementation supports the function:

Object resolve initial_references(in string serviceName)

An initial reference to an instance o f the CORBA Naming or Trader Service can be obtained by
calling this resolve initial references with the ObjectID o f the required service

This function works when a client supplies a service name (i.e. NameService or TradingService)
and they receive an object reference for that service.

Another approach to bootstrapping would be to obtain an object reference for the desired service,
in string form. This stringified object reference could either be output by the service itself or
generated by an IOR creation tool. CORBA has standard APIs such as object_to_string() and
string to objectQ to make IORs easy to pass around and convert to a stringified form. Once a
client has obtained this string they could call CORBA::ORB::string to objectQ to create a
reference for the object. [Slama et al. 1999]

9.10 Custom Object Location

A s we have seen, the use o f a CORBA specified object location Service can very much help
making objects and Services available across the enterprise. However, sometimes the architects
o f such a system will prefer to use customised location servers to meet their requirements. These
can include helper servers and/or concentrators

109

Implementing or extending the standard CORBAIDL in a customised manner is an appealing
combination as an enterprise can combine its own object location model that might provide
performance or availability enhancements. Helper server or helper classes can be written to
remove any o f the complexity o f using the Naming or Trader Service away from the developers.

There is a concentrator pattern that outlines a concentrator or funnel server, which is a process
that sits between the clients and servers. The clients connect to the concentrator process. For every
service a client uses, the concentrator must implement that object (from the client's perspective).
In reality it delegates the call to the real implementation o f the service. This can be also used to
avoid connection limits and in load balancing. [Slama et al. 1999]

The customised solutions can then be integrated with the standard solution i f required, for
example a client might still use the Naming Service for bootstrapping but then use the customised
solutions.

A s w e will see later on, the standard Object location models can be single points o f failure, and so
certain customised solutions can be implemented to provide a level o f fault tolerance and Failover
in critical cases.

9.11 Publishing Certain Objects

Once we have an object location model in place we then have to decide which objects we want to
publish and make available using this model. Typically not all CORBA objects will need to be
published and some enterprises will want to publish a smaller number o f entry points instead.

As we have seen in the section on Performance, the world o f mainframe integration often opts for
a Service-based architecture where the Services are large grained objects rather than many fine­
grained objects. In such as scenario there w ill be fewer Services in the system but performing
more work and by their very essence each o f these Services can be published in an object location
Service.

Where finer grained objects are used in large-scale systems, factories or entry points can be
considered as good candidates for publishing. However, when w e only publish a subset o f the
objects available in the system, we then must provide "find" and "lookup" methods for the other
objects, which can lead to complicated systems.

There is a factory pattern that can be useful for dynamically created or dynamically activated
objects. Using a factory is like using a distributed constructor for object creation.

[Slama et al. 1999] outline a factory object pattern is any object that returns a reference to
another object as a result o f a method invocation. In an enterprise system, rather than publishing
references to all the servant objects, the server can publish just a few factory objects, which the
clients use to obtain references to the remaining objects in needs.

110

9 .1 2 L i f e t im e s o f O b je c t s

There are various states in an object's lifetime including creation, activation, deactivation, deletion
and there is even a CORBA Service called the CORBA LifeCycle Service specified to help
manage CORBA objects throughout their lifecycles.

There is an Object Lifecycle Manager Pattern [Levine, GUI, Schm idt 2000] that can be used to
govern the entire lifecycle o f objects, from creating them prior to their first use to ensuring they
are destroyed properly at program termination. In addition, this pattern can be used to replace
static object creation (and destruction) with dynamic object pre-allocation (and de-allocation) that
occurs automatically during application initialisation (and termination)

However, in the CORBA-mainframe integration projects that are based on a Service-Architecture
w e are typically talking about stateless objects (an object/service with no state) that often resides
inside CICS or IMS and thus has a fixed lifetime. [Koch, M urer 1999] These transactions can be
offered as services on an interface.

There are exceptions such as long running CICS transactions or IMS Wait-for-input transactions.
However, in the majority o f cases the lifetime o f the Service is short (i.e. by its very nature its role
to is provide a Service and then end). As a result w e do not need to be overly concerned with the
creation, activation, deactivation and deletion This is especially the case when dealing with TP
Monitors such as CICS or IMS as these are taken care o f for us by the TP monitor

In non-mainframe based CORBA applications there sometimes needs to be decisions made as to
how long the object w ill stay alive for - i.e. until no further clients are connected, or indefinitely
or only while the object. The Evictor Pattern [Henning, Vinoski 1999] can be used in this case to
enable a server to deactivate the objects based on a policy for choosing when to deactivate an
object. The policy can be based on Least-Recently-Used, Least-Frequently-Used, oldest-object
etc. However, this is a very comply area o f CORBA and distributed programming in general and
care should be taken.

9.13 Conclusion

In this section w e have seen some issues that can arise in an organisations enterprise solution. In
other sections w e can see how to provide CORBA Services to the rest o f the enterprise but in this
section the important question is "How do clients get access to these Services ?".

As we have seen there are various OMG Defined CORBAServices that can assist us in this goal
and there are also provisions made for those who require additional features in their system.

An investigation into the concept o f making a Service available meets yet another o f the
requirements o f this research. In this section w e continued the investigation into areas o f critical
importance and possible danger for enterprise integration projects. This topic certainly fits into
that criteria.

In the next section we will investigate another area related to the Availability o f a system and that
is Failover. As noted in the introduction, it is one thing to make Service available but it is an
entirely bigger task to keep those Services available.

111

10 A v a ila b ility (Fa ilove r)

10.1 Introduction

In the previous chapter on Availability w e investigated one o f the aspects o f a CORBA Service's
availability, i.e. how to locate the service. In this section w e will investigate the second concept o f
availability and that is keeping the Service available. This area includes an investigation as to why
we need to keep the systems up, how w e handle the situation when a crash occurs, CORBA
Exception Handling at the application level and Load Balancing as a technique for Availability.

10.2 Mainfram e Availability

Mainframes can achieve 99.99% or 99.999% uptime in enterprise solutions, resulting in anywhere
between 5 and 53 minutes downtime per year [IBM]. These figures are very impressive when
compared with some o f the more modern Operating Systems available today.

A study by [Turner Brill 2001] finds that the best possible reliability for mainframe data centres
is 99.995%, or about 26 minutes o f downtime per year. IBM's new z/OS mainframe systems stand
for zero unplanned downtime which is quite a claim.

IBM's Server Group also claims that the mean time between critical failures (MTBCF) or the
average time between failures that require a reboot (Initial Program Load) for its S/390 mainframe
is 20 to 30 years. If we compare these figures with other decentral platforms such as the PC it is
easy to see what w e are dealing with in terms o f reliable systems.

Mainframes are big, complicated systems that often have clusters o f CPUs, terabytes o f main
memory and many thousands o f users, yet they are still very reliable. It is the case that where
frequent crashes on a PC or other decentral platforms are accepted as part o f the routine hazards
o f computing, a crash o f the mainframe is a massive problem and simply would not be accepted.

In reality, any large banking organisation w ill have dedicated teams ensuring the smooth running
o f the mainframe. In addition, there w ill be redundant hardware, extremely protected operating
systems and stable applications, all o f which provide for highly available systems.

Our problems really begin when w e attempt to introduce the mainframe as a peer in a distributed
CORBA computing environment. Typically distributed systems do not have the same guaranteed
availability and w e are now making host applications available throughout the private company
network and beyond. We must look at various solutions and system services that can be applied to
try to bring the availability o f the enterprise network as a whole to where the mainframe already

[M affeis, Schm idt 1997] define a distributed system as reliable if its behaviour is predictable
despite partial failures, asynchrony, and run-time reconfiguration o f the system.

112

In addition, w e require reliable applications to be highly available. This means that the application
must provide its essential services despite the failure o f computing nodes, software objects and
communication links.

10.3 Failures

There are various types o f failures that can happen in an enterprise system, as by its very nature
there are various types o f technology used. The most common types o f failure include the process
crashing, the processing hanging or being in a deadlocked state, the host system crashing, and a
network partition due to link or route failure.

A s outlined in [Scallan 2000] some o f the more common problems that occur in distributed
systems include:

• Performance bottlenecks
• Network resource limitations
• Network failures
• Race Conditions (not properly synchronised modules)
• Deadlocks (the synchronisation protocol between modules prevents each from completing its

task
• Design errors in control flow
• Timeout Failures

Other types o f failures that are more difficult to deal with are failures when a process performs
incorrect actions or persistent storage faults.

We will see that with all these failures, some are easier to handle than others are. However, with a
combination o f fault tolerance, load balancing and exception handling we expect to have the
enterprise architecture in such a stable fashion that any or all o f these failures would not affect the
continued availability o f the system as a whole.

10.4 Exception Handling

10.4.1 In troduction to E rro r Handling.

Put simply, Error Handling is the technique applied by programmers to ensure that their
applications cover all eventualities. That is they should perform the tasks they have been
implemented to perform but they should also be ready for the unexpected.

In fact, not only should they be ready for the unexpected, but also they should have built in
frameworks so that they can act decisively to inform all parties involved o f the problem and
maybe do something to fix it depending on the circumstances.

113

10.4.2 Early Error Handling

The concept o f error handling has been around since the earliest days o f computing. With the
early mainframe applications it became clear to the developers that they needed to account for the
cases when everything did not go according to plan.

The idea was that any errors detected at run time would be relayed by the originator o f the
message to a recipient. This recipient would also know how to handle the error.

O f course, the ideal scenario is that all errors should be caught at compile time before the
application is even run but reality dictates otherwise.

In these earlier languages an error was dealt with by returning a special value or a flag and the
recipient could look at this value or flag and work out that something was wrong.

One o f the problems with this approach was that often developers would not check every method
they called to see i f something was not amiss and those that did ended up with massive,
unreadable code. The discrepancy between applications in terms o f error handling techniques was
something that needed to be dealt with.

10.4.3 Dealing w ith Exceptions

The concept o f Exceptions was the solution to the problem in that they helped clean up error
handling code. The idea was that at the point where the error occurred, the problem would send to
a higher authority where someone qualified to make a decision on what to do would take over.

This approach removed the scenarios where at the point o f failure the application was not in a
position to make a decision on what to do, so it would simply pass the problem on to someone
who would know.

So now, instead o f checking for a particular error and dealing with it at multiple places in an
application, the exception handler will always deal with every exception occurring in the code.
There was no longer a requirement to do a check after every method call since the exception will
guarantee that someone catches it.

The code now becomes more maintainable as you can now separate it so that it describes what
you want to do distinctly from the code that is executed when things to wrong. Reading, writing,
and debugging code becomes much clearer with exceptions as opposed to the traditional error
handling techniques.

10.4.4 D istributed Exception H andling

Catching Errors is important in any application but it becomes even more so in distributed
systems where there may be several different tiers. I f something goes wrong in the back end o f a
system, it is important that the user or the client receives a suitable message letting them know
that things did not go exactly as they planned it.

114

Take any banking transaction for example. If a user is paying a bill online and the system crashes
before the user's details can be written to the database, a message must be sent to the user letting
them know that their bill payment was not successful. It should also inform this user that if they
want to pay it they must go through the procedure again.

In general, remote method calls are much more complex to transmit than local method calls so
there are more possibilities for error. This makes it even more important to track these errors,
inform the relevant parties, and then decide what should be done in the case o f such a failure.

10.4.5 C O R BA Exception Handling

The CORBA Fault Tolerance specification defines a standard set o f system exceptions. The
exceptions are typically raised by the ORB when something major goes wrong with the basic
client-server communication. Typically the error occurs during the transmission o f remote
operation calls. As outlined above, the error must be immediately reported to a client or a server.

CORBA applications used in critical scenarios must be robust. But, with a heterogeneous
environment, the use and reuse o f commercial off-the-shelf, third party and legacy software
modules, and their complex interactions will all be likely to trigger exceptions. [Pan 2000]

Thus, the graceful handling o f expected and unexpected exceptions is critical for the robustness o f
CORBA-based systems.

The most common types o f system exception range from communication failures due to network
problems, to looking for an object that doesn't exist, or looking in the wrong place for an object,
or failures due to problems marshalling operation parameters

There is another type o f exception known as a user exception. These exceptions are specific to
applications and allow an application to define a set o f exceptions or errors that may occur in that
application and that need to be caught and dealt with accordingly.

10.4.6 C O R B A User Exceptions

The OMG defined CORBA specification allows for a raise clause to be defined as part o f an IDL
operation and this can then return a more detailed error message to the caller depending on what
exactly happened. Typically the application will not raise a system exception itself but should be
designed so that it can handle both types o f exception.

A CORBA client must handle system exceptions raised anywhere on the server side and returned
via the ORB, either during a remote invocation or through calls to the ORB. Such a system
exception might be raised if the ORB encounters problems with the network

115

Example o f Exception Handling

//OMG CORBA IDL

interface Employee {

exception Reject {

string Reason;

};

boolean IncreaseSalary(in string limployeeld, in float nevvSalary) raises (Reject);

FIGURE 10.1 : ADD IN G EX CEPTIO N S TO IDL

In the IDL above we have an interface defining an Employee. There is one operation called
IncreaseSalary and it takes in the Employees ID and the amount o f their newSalary. If for some
reason the Employee is not valid or is not due a raise we
can return this information with the User Exception "Reject" that can be thrown is something is
not correct.

10.5 Fault Tolerance

10.5.1 Introduction

To make sure that a system is "fault tolerant" the design o f that system should integrate several
levels including the hardware, the software and the administration.

There are also different levels o f fault-tolerant service. The first o f these is Recoverability and
ensures that components in the system can be re-started after failure and returned to their previous
state. Some clients may need to be delayed during this restart.

A second level o f fault-tolerance is providing continuous availability where the system remains
fully available during component failure. This means the system must have redundant
components. Any clients w ill be moved from faulty components to the live ones or use multicast
requests to multiple servers.

Performance considerations also need to be looked at. Throughput and response times can be
affected by a fault and w e need to decide if the system can degrade during a fault or do our
performance goals always need to be met.

116

10.5.2 Realising the failure

In a CORBA system the first sign that something has gone wrong w ill be when an exception is
raised. When a system exception is returned w e realise that something has gone wrong with the
system. If a user exception is returned w e can be sure that a user is at fault.

In the case o f a system exception, when the remote call fails this means that a process, a host or a
network failure has occurred resulting in the TCP read or write failing. We can easily determine
which o f these has occurred by testing if it is possible to contact the remote host or the remote
server and if the host responds to IP ping calls.

When the failure is completely hardware related however, it can be more difficult for the system
exception to return useful information. HOP failure detection that raises such a system exception
is based on TCP connections but when a host crashes or a network partition occurs, TCP cannot
distinguish between them and thus it can be difficult to ascertain what went wrong.

In the case o f a hanging server we can use timeout mechanisms supplied by various ORB
implementations that w ill result in a client only trying a given number o f times before giving up.
However, these timeouts have to be carefully used so that a slow system is not confused with a
"hung" system.

When a process crashes, the TCP connection will be closed. However in the case o f a host crash
or network failure these connections are not closed. Remaining processes will realise that the
connection is closed, either when they next attempt to make use o f this connection, or i f they have
enabled TCP keepalive.

In reality, detecting closure may not be useful i f the clients do not have direct connections to the
servers in the case o f firewalls or concentrators. Also, clients or servers may have a connection
management policy where idle connections are closed to conserve resources and reopened when
they are needed. Finally, w e must also realise that this method will not easily distinguish between
host crashes and network failures.

The OMG issued a RFP in 1998 and produced in 2000 the FT CORBA specification. FT CORBA
provides a set o f IDL interfaces to an infrastructure that allows the management o f replicated,
fault-tolerant CORBA objects. | M archetti, Virgillito, M ecella, Baldoni 2001]

The Fault Tolerant CORBA specification adds fault tolerance features to standard CORBA with
minimal modification to existing ORBs.

The specification does have limitations and leaves several issues for the vendors to solve. One o f
the major limitations lies on the server side interoperability. A ll ORBs within a Fault Tolerance
Domain must be from the same vendor. [Korhonen 2001]

10.5.3 Recoverable Servers

This approach to fault tolerance involves the server recovering immediately after a crash or reboot
and returning to a consistent state without losing the results o f requests that were processed before
the crash. To do this the server needs to maintain a persistent log o f the state o f all objects.

117

This persistent state must change as quickly as possible after an update occurs so that there is little
chance o f a lost update due to a crash. Typically such approaches will involve the use o f a marker
to indicate a complete update has been stored, so that if the server crashes while updating the logs,
any incomplete updates can be ignored on restart.

The use o f a recoverable server means that the system can handle a server process crash without
much impact to the system as a whole. After a crash occurs, the server should be able to rebuild
its state from its logs. Different Fault-Tolerant approaches dictate when this should be done. Some
mandate that server builds its state immediately after restart whilst other mandate that this would
be done on demand. The latter approach will reduce the delay that clients might experience while
awaiting the server restart.

We are assuming that after re-start that all the applications important state information has been
successfully recovered and that any information that was lost is re-creatable.

CORBA clients can often transparently re-launch a server that has crashed between client
requests. However, i f the crash occurred while a server was processing a client request, an
exception will certainly be passed back.

F IG U R E 10.2: K e e p in g St a t e f o r R e c o v e r a b l e Se r v e r s

10.5.4 Server M onitors

Another method o f detecting possible problems with servers is to have a special dedicated
standalone server that monitors all the other servers in the system and restarts them in the case o f
failure.

It can detect shutdown by connecting to any o f these servers and noticing when a TCP connection
closure occurs.

118

A Server Monitor must be able to also correct deadlocks perhaps by associating a timeout with
each invocation. If the request times out and w e are sure that it its not just a slow system, the
server monitor can kill and restart the hung server.

F IG U R E 10.3: Se r v e r M o n it o r

10.5.5 R eplicating Objects

Both o f the solutions outlined so far will provide a suitable Failover mechanism in the
case o f a process or server crash. However neither w ill adequately deal with the scenario o f the
host crashing or network failures. To adequately deal with these scenarios, the only real solution
is to have multiple copies o f the same service running on physically separate hosts. In the case o f
failure, clients must then be able to switch to a working replica or else multicast requests to all
members o f the group and take the first response.

[M archetti, M ecella, Baldoni 2000] define a distributed application as being fault tolerant if it
can be properly executed despite the occurrence o f faults. Fault-tolerance can be obtained by
software redundancy in that a service can survive a fault if its provided by a set o f sever replicas

[M archetti, Virgillito, M ecella, Baldoni 2001] outline how fault-Tolerance and high availability
can be obtained by software redundancy. A service can survive a fault i f it is provided by a set o f
server replicas hosted by distinct servers. If some replicas fail, the others can continue to offer the
service. At this end, servers can be replicated according to one o f the following replication
techniques: Active replication or Passive Replication.

Replicating these services is quite a trivial task when the service is stateless. However it is an
entirely different matter when stateful services are being used.

Implementing this solution involves the client being made aware o f a failure by means o f a system
exception. In the case o f a host or network failure, this usually involves receiving a
COMM FAILURE system exception on the remote invocation. The client will then switch to

119

another member o f the replicated server group, which implies that the client needs to know about
the group members.

The client can have details o f the group members either via a lookup service or by just switching
to another group member it knows about (a cached instance for example).

The concept o f distributing group information among clients can make group updates quite
difficult and very inefficient but the concept o f a lookup service adds a single point o f failure to
the system

In this system requests are delivered to just one object but i f we are dealing with stateful objects
then update requests must be propagated to the group.

10.5.5.1 Primary-Secondary Replication

There is a special type o f replication known as Primary-Secondary Replication whereby client
requests w ill be sent to a primary server. This primary w ill update the secondary and then i f the
primary fails, the secondary is in a perfect condition to take over as the primary and a new
secondary w ill be started up once this has been completed.

The major benefit o f this approach is with the consistency o f updates as only the primary is able
to make updates there is less chance o f difficulties arising. Once again however, a reliable
network connection between the primary and secondary is essential and once again we will not be
able to distinguish between a host failure and a network failure and such a network partition can
create confusion as to who is the primary.

10.5.5.2 Stateful Objects

As mentioned in the previous section, replicating objects is a straightforward way o f providing a
Failover mechanism when the objects in question are stateless. However, once w e introduce
objects with state into the equation, things become significantly more difficult.

W e now require some way o f keeping all the server side objects in synchronisation with each
other so that they all have access to the same state information. One way o f doing this would be to
provide a shared database. This w ill simplify the consistency o f the data but adds a reliability
concern as the database is now a single point o f failure.

The alternative would be not to use a shared database but to have a scenario where the replicas
update each other. This would involve the use o f a shared lock service or a transaction mechanism
to make sure the updates are consistent. Again, such a transaction or lock service needs to be
reliable.

Any new replicated object joining the other objects in the group will need to acquire the current
state. This can be retrieved either from the database or from the other replicas. In addition, the
clients o f these objects will need to be notified that there are new objects in the group
(alternatively they can stay hidden until they are discovered).

120

For this scenario to work we need to assume a reliable network between replicas as they cannot
stay consistent if separated by a network partition or if separated from the shared database.

10.5.6 M ulticast

Multicast is a system where clients will not just make a request on one object but rather each
request will be directed to all members o f the group. The client will then use the first response it
receives and ignore the others. If the client requests are reliably delivered, then there is no need
for state sharing between the objects as they w ill be kept in lock step by receiving the same client
requests. For this approach to work effectively, a guaranteed delivery multicast protocol should be
used.

10.5.7 Fault Tolerance Patterns

There are some well-known patterns occurring in the design o f high availability systems defined
by [Coplien et al. 1996].

[Minimise Human Intervention]: Machines don't make mistakes, people do.

fPeople know bestl: Human authority is required to sense the importance o f external faults and the
actions needed to repair them. System administrators should be able to override automated
controls

rRidinu Over Transients!: Check the condition really exists before reacting to detected conditions.
(Situation might resolve itself)

iSICO First and A lw avsl: The System Integrity Control Program (SICO) is the core component
that provides diagnostics and operational control o f the system. Trust this component to control
the actions o f the other system components as well as the initialisation process and normal
application functionality

Further general patterns for use in fault Tolerant CORBA systems are defined in [Natarajan et
al. 2000]

The Leader/Follower pattern provides an efficient concurrency model where multiple threads take
turns sharing a set o f event sources in order to detect, demultiplex, dispatch, and process service
requests that occur on these event sources. This Architectural pattern helps avoid missed polls in
the fault detector.

This Active Object design pattern decouples method execution from method invocation to
enhance concurrency and to simplify synchronised access to an object that resides in its own
thread. This avoids excessive overhead o f recovery.

There are a group o f optimisation patterns that reduce excessive overhead o f service lookup.
These are Optimise for the common case. Eliminate gratuitous waste and Store extra information
which optimise by storing information and eliminating gratuitous waste.

121

The Strategy design pattern factors out similarities among algorithmic alternatives and explicitly
associates the name o f a strategy with its algorithm and state. Using this pattern helps with the
problem o f tight coupling o f data structures.

Abstract Factory is another design pattern used in CORBA Fault Tolerance and provides a single
access point that integrates all strategies used to configure the FT-CORBA middleware.

The Component Configurator design pattern employs explicit dynamic linking mechanisms to
obtain, install, and/or remove the run-time address bindings o f custom Strategy and Abstract
Factory objects into the service and installation-time and/or run-time. This overcomes the inability
for dynamic configuration.

The Chain o f Responsibility Pattern decouples the sender o f a request from its receiver, in
conjunction with The Perfect Hashing pattern to perform optimal name lookups. The Chain o f
Responsibility pattern links the receiving objects and passes the request along the chain until an
object handles the request.

Initial efforts to enhance CORBA with fault tolerance have taken an integration approach, with
the reliability mechanisms incorporated into the ORB itself. With the advent o f Object Services in
the CORBA standard, other research efforts have taken a service approach, with the provision o f a
reliable object group service as part o f the Object Services. [Narasimhan et al. 1997]

A combination o f these approaches results in the Interception approach that involves capturing the
system calls o f the objects hosted by the ORB. The intercepted calls, which were originally
directed by the ORB to TCP/IP, are now mapped onto a reliable ordered multicast group
communication system. The advantages o f this approach are that neither the ORB nor the objects
need ever be aware o f being "intercepted" and, thus the fault tolerance is not visible to the
application objects.

Finally, the internal structure o f the ROB requires no modification since the mechanisms that
provide reliability are external to the ORB.

CORBA did not provide tools for enhancing the reliability o f distributed systems. This had two
consequences. Many CORBA systems added replication logic to standard ORBs to cope with
object failures and site crashes. Examples o f such projects include:

• Eternal [M oser et al. 1999]
• OGS [Felber 1998] and [F e lb ere ta l. 1996]
• DOORS [Chung et al. 1998]
• Isis and Orbix {from IONA Technologies\
• Electra [Landis M affeis 1997]
• AquA [Cukier et al. 1998]
• IRL [M archetti, M ecella, V irgillito, Baldoni 2000]

122

1 0 .6 L o a d B a la n c in g

10.6.1 W hat is Load Balancing

The concept o f load balancing involves dividing the workload o f a banking system across the
network so that bottlenecks are avoided as much as possible and throughput is increased. If w e
successfully distribute the processing and communications activity throughout the system we can
be relatively sure that no one process or machine w ill reach over capacity and bring the entire
system to blockage point.

A load balancing solution can be used to improve a systems performance as well as its availability
and can be used in a fault tolerant approach. The most common load balancing solution is
something we have just looked at - i.e. Replication.

In a CORBA System, a load balancing policy w ill typically involve having multiple copies o f the
same service throughout the network so that client requests can be distributed among these
services.

123

10.6.2 Requirements o f a Load Balancing P o licy

In this context w e are considering a load balancing policy for its performance improvements to
the system. However in an enterprise application, a load balancing policy w ill also have additional
requirements such as improved scalability, improved reliability, and increased availability.

The load balancing policy is deployed to share or equalise the workload among the available
resources in order to optimise performance. There are several popular policies as defined by
[Hoon et al. 2001]

A Selection policy selects a task for transferring. This policy is relatively simple as it selects the
task based on First Come First Serve basis.

A Location policy selects a location for transferring the selected task. Basically, this policy will
need to rely on the information policy for collecting certain information (e.g. load level) from
different locations. Usually, this policy w ill attempt to choose the location with the least load level
or below certain threshold. However, random location policy that was mentioned earlier does not
need collection o f any information.

An Inform ation policy determines the level o f information needed for task selection or location
selection. It decides on when to collect the information and what information to be collected. It
also decides whether to collect information from all locations or just part o f them, to distribute the
information at different locations or to centralise them etc.

The requirements in terms o f performance are simply that the load should be divided across the
system in a predictable and reliable way that w ill guarantee the same availability o f the CORBA
services that an older mainframe application would provide.

124

[Othman et al. 2001] define key requirements that CORBA load balancing services should be
designed to address:

• Support an object-oriented load balancing model
• Client application transparency
• Server application transparency
• Dynamic client operation request patterns
• Maximise scalability and equalise dynamic load distribution
• Increase system dependability
• Support administrative tasks
• Minimal overhead
• Support application-defined load metrics and balancing policies.

10.6.3 Benefits o f Load Balancing

Typically a load balancing policy will be implemented for services that have a reasonable amount
o f clients where there is no obvious pattern to the number o f concurrent requests.

In such cases, with increasing numbers o f users, early adoption o f a load balancing policy will
mean that continuing increases in user numbers w ill not affect the overall performance o f the
service.

10.6.4 Dangers o f im plem enting a load balancing po licy

Load Balancing can be a tricky addition to a bank's infrastructure. There are occasions when a
particular policy w ill not provide the performance improvements required and can even reduce the
scalability o f the system.

One example o f load-balancing failing is where there are a significantly larger number o f clients
than services. Another case is if certain methods take a long time to complete, then distributing
the services across the network might not be beneficial. This is less likely in a mainframe
environment where many legacy applications will have been implemented as CICS or IMS
transactions and by their very nature will be short running.

10.6.5 Real W orld Uses

To implement a load balancing solution, techniques such as replication and caching are used and
we w ill see exactly how these are used in the following sections.

In any CORBA system there are Services that can be load balanced and there are CORBA
Services such as a Naming Service that can be load-balanced. The idea being that the number o f
concurrent client requests on a particular service can be kept to a certain minimum by distributing
these requests among several instances o f this service.

125

One important detail to note is that any load balancing is hidden from the client. As far as they are
concerned they are accessing a particular service and need not be concerned with details such as
which instance o f that service they are accessing.

There is no single way to implement a load balancing policy. CORBA Services can use network
based load balancing at the network layer and the transport layer. This layer use the IP address or
the hostname and port to determine where to forward packets.

M odem banking systems may have requirements to support many clients accessing from
anywhere in the world. There can be no limit on the number o f client requests, nor when the peaks
o f client interest w ill occur. The resources o f the hardware implementing these services needs
protection and can be costly and the purchasing o f extra hardware or server cycles is not always
cost effective.

Rather, a load balancing solution can result in hardware and software mechanisms determining
which server will execute each client request. Such a load balancing solution w ill distribute any
incoming client requests over all the back-end servers so that the system response time as a whole
w ill be favourable.

The BaBar Experiment outlined in [Becla, G aponenko 2001] collected around 20 TB o f data
during its first 6 months o f running. After 18 months, the data size exceeds 30 TB. Even this is
expected to be only a fraction o f the size o f data coming in the future.

In order to keep up with the data, significant effort was put into tuning the database systems. It led
to great performance improvements, as w ell as to inevitable system expansion - 450 simultaneous
processing nodes alone used for data reconstruction. It is believed that further growth beyond 600
nodes will happen soon.

In such an environment, many complex operations are executed simultaneously on hundreds o f
machines, putting a huge load on data servers and increasing network traffic. Introducing two
CORBA servers halved start-up time, and dramatically offloaded database servers: data servers as
well as lock servers.

10.6.6 Load Balancing A lgorithm s and Policies

Some o f the most common policies for load balancing include

• Random
• Round Robin
• Host Response Time
• Availability o f Hosts

Any load balancing policy should be considered at design phase. When deciding on such a policy,
other scalability issues should be taken into account. For example, a load balancing policy can be
used to overcome resource limits, and limit failure damage as part o f a fault tolerance policy.

An enterprise application might consider load balancing as a solution i f there are workload
variations on the system. If the timing and frequency o f requests differs and the type o f requests

126

incoming to a system are subject to variations, it is a good idea to get a feel for the access patterns
o f the system. Another consideration is if the client request variations are time dependent or are
there peaks and periods o f inactivity on the system.

If certain parts o f the system get more client requests that others, i.e. access to different functional
areas has variations, a partitioning o f the application logic could yield some immediate
performance results. This partitioning could be based on the usage patterns o f the system. For
example, query requests could be partitioned from read/write requests, which in turn could be
partitioned from transactional requests.

The granularity o f the components in a system must be also considered when implementing a
policy. For example, i f the system contains mostly fine-grained components that are well
encapsulated, the amount o f interaction they have with each other must be taken into
consideration. If there is a lot o f communication between the components themselves, the
performance benefits could become minimal and there may even be a negative performance
benefit.

Even with today's high-speed networks, the runtime topology i.e. the geographical concentration
o f accesses must be looked at carefully. I f network speed and network reliability and even
bandwidth are not considered, again there may be a net loss. The topology o f the deployed
application itself must be also looked at.

10.6.7 Im plem enting Load Balancing using the C O R B A Nam ing Service

A CORBA Naming Service can be used to implement Load Balancing. The OMG defined
CORBA N aming Service specification describes a model where a name maps to a user defined
object. A Naming Service can be extended so that a name can instead map to a group o f objects.
When a client selects an object from the Naming Service, the Naming Service w ill select an object
from a group o f objects to resolve that request.

10.6.8 N e tw ork Based Load Balancing

I.P. routers and domain name servers (DN S) can be used to provide a load balancing policy that
supply a pool o f host machines. The DNS can decide which IP address to use when a client
resolves a hostname depending on the resources available to the system. This can be based on the
current load on the systems resources or the response time from the various servers. This load
balancing is completely transparent to the client and it may be the case that each time a client
resolves a host name, it is a different server that is returned with the DNS resolution. Routers can
be used, depending on the load on the system at a particular moment in time to bind a TCP flow to
any o f the servers available. It can then use that binding for the duration o f the flow.

Load balancing at the lower layers such as the network layer or the transport layer is not always
optimal depending on the actual volume o f client requests. Load balancing at higher layers can
base their policy on the content o f the requests, for example the pathname information contained
in a URL. Such a policy can be used to determine which Web server should receive a particular
client request for a certain URL. Using this technique, the most popular URLs can already have
extra resources waiting for them.

127

10.6.9 Operating System Load Balancing

The techniques o f clustering, load sharing and process migration can be used by distributed
operating systems to provide a load balancing solution. Clustering can result in high availability
and high performance but at a lower cost. It combines different machines to improve the power o f
the system and processing power as a whole. It can distribute processes across the system, again
transparently to the processes themselves. Clusters use techniques such as load sharing and
process migration.

Process migration is a technique used to balance the load across processors or network nodes. The
state o f the process is transferred between nodes, but this requires quite a lot o f platform
infrastructure support to handle the differences between nodes. Programming languages based on
Virtual Machines such as Java are going to have limited applicability when using this approach.

10.6.10 Software approaches to im plem enting a Load Balancing Solution

The Partitioning Pattern and Replication Pattern are two solutions commonly used in today
enterprise solutions as load balancing techniques. We have seen how replication works but
partitioning is a technique that comes in two flavours - Horizontal and Vertical.

Horizontal partitioning is a technique whereby objects are assigned to a particular partition in a
system. Using this technique, each service a system provides w ill only exist on a particular
partition and it is the combination o f these objects on their different partitions working a whole
that provide the functionality o f the system as a whole. This technique is also known as “interface
partitioning” and it essentially a way o f distributing the load o f a particular system across the
system.

Vertical Partitioning works like Horizontal Partitioning but, in this case, the partitioning o f the
system is based on the data it holds. Every server provides the services exported by the system
and the particular group o f objects w ill exist on each server. In N-tier CORBA systems there will
be N event channels representing the service. This technique is easily applied to data centric
applications.

10.7 Conclusion

The purpose o f this section is to highlight the various approaches that can be used in an enterprise
solution to keep the legacy systems that are now CORBA Services available to users o f the
system. As was mentioned, these legacy systems were traditionally highly available in their own
environment but when we reengineer them to be peers in the distributed computing environment
w e run the risk o f this availability being compromised due to the fault-prone world o f network
computing.

[Froidevaux et al. 1999] found that full integration o f CORBA with their legacy systems allowed
Credit Suisse to implement CORBA applications with the same availability as traditional IMS-

128

TP-based which is typically > 99% in the Credit Suisse's data centre operation. Thus the full
integration approach provides a CORBA platform for mission-critical applications.

We have seen possible solutions to handling faults in the system. These include a Fault Tolerance
solution, a Load Balancing solution and a comprehensive Exception Handling solution. The
combination o f these features added to the enterprise can make for availability figures that we
would expect from mainframe based applications.

This section completes this phase o f the research. W e have now investigated in some detail, all o f
the key areas o f concern in an enterprise integration project.

A s per the objectives set out at the beginning o f the research, our next task is to propose an
approach to solving these problems. This is achieved by applying various approaches discovered
in the last few sections to an "actual" enterprise integration project.

This next section outlines our approach to enterprise integration that forms the key to this
research.

129

1 1 I m p l e m e n t a t i o n a n d R e c o m m e n d a t i o n s

11.1 Implementation Introduction

For the implementation o f this thesis I w ill detail how real-world mainframe based, legacy
applications were integrated within the Credit Suisse CORBA Project o f whom I was a team
member. In this project we applied many o f the concepts, patterns and techniques outlined in
previous chapters. Only those that provided real business value to the bank were considered and
those affecting performance and security were given the highest priorities. This chapter will detail
which o f the patterns and techniques were chosen and how the implementation proceeded.

This chapter combines a case-study on how a major bank (Credit Suisse) chose CORBA as their
integration solution, and an implementation o f the additional the problems and issues that were
discussed throughout this thesis. [Froidevaux et al. 1999] and [M urer, Koch 1999] outline the
reasons for the choices Credit Suisse made in each case. The application o f patterns and solutions
in the areas o f Scalability, Performance, Failover and Security by this author, complete the
implementation o f this thesis.

11.2 Credit Suisse Mainfram e Architecture

Like most major banks, Credit Suisse has relied heavily on technology for some twenty years to
streamline its operations as well as to compete with the rest o f the market to match the business
and technical requirements o f modem banking.

Some figures for Credit Suisse's Technology Departments [Hagen 2000] include:

• 40 million lines o f code in the central system
• More than 100 Credit Suisse productive self-made applications
• More than 100 simultaneous projects
• Up to 1 million payments per day
• 25000 work stations networked
• 1000 Servers
• 400 Million Pages o f output on paper per year
• 16 Million IMS Transactions per year
• 50000 Databases, 30 TeraByte Disk
• Typically over 99% availability
• Several different electronic banking channels (internet, phone, ATM etc)
• Approximately 1500 employees in the Information Technology Sector.

FIGURE 11.1 C r e d it Su is s e T e c h n o l o g y D e t a il s

However, in the last decade, the architecture o f Credit Suisse's Information Technology has
changed. Like many Financial Institutions, they have moved away from the traditional centralised
mainframe solution and moved towards client/server and n-tier solutions. Credit Suisse has felt
the same pressure for change that all o f its competitors in the industry have. These include

130

pressure for new technologies such as ATMs, 24-hour banking, Online banking, Phone Banking
etc.

However, Credit Suisse are not alone in the industry in recognising the mainframe as a key part o f
their Information Technology Architecture. This platform has served them w ell over the last
decades, being powerful, secure, reliable and very fast. Naturally, there are questions being asked
o f these new technologies so that none o f these benefits will be lost with any change.

Not only was it apparent that the benefits o f the mainframe could not be lost, it also became
quickly clear that even i f a new technology or operating system was available that could guarantee
the benefits, it would be quite a difficult task technically and financially to move.

Looking at the old applications in IMS and CICS, it was quickly realised that these would have to
be re-written from scratch, as not all the original documentation was available. In addition a look
at the costs o f such a move indicated that it would cost some 900 million Euro over 5 to 7 years to
implement a new system in the Credit Suisse environment. [Koch M urer 1999]

11.3 Choosing a suitable Integration Architecture.

It was decided at an architectural level that the Managed Evolution Pattern outlined previously
would be most appropriate in the case o f Credit Suisse. This leads to a good balance between risk
and opportunity. Credit Suisse could decide on a target architecture and work towards it in small
steps.

One o f the requirements o f using Managed Evolution is that the system be partitioned into
manageable components or layers separated by clear interfaces. Because the Credit Suisse
Information Systems, as a whole, w ill live longer than any o f its technologies, there should be an
interface technology that bridges technology and space. This model results in a Service-Based
Architecture

I found this to be a clever decision from the technology side. It meant there was no "all-in-one"
approach and we could move towards the target architecture in steps. Furthermore, as there were
advances in the COREA implementations by IONA Technologies, these could be included in the
next Architectural Release.

The next decision that was made was to use the Standards-Based Solution pattern. This pattern
involves using a technology solution that is independent o f vendor implementation but adheres to
industry standards. Examples o f this solution include the EJB Specification from Sun
Microsystems, the .NET Specification from Microsoft, or the CORBA Specification from the
OMG. Other non Standards-Based Solutions such as Screen-Scraping were not accepted due to
lack o f a well-defined interface between Services.

I found that using such a Standards-Based Solution made defining the Architecture o f our
mainframe systems quite easier. W e avoided possible pitfalls that could have arisen in trying to
define a suitable cross-platform interoperability solution that our predecessors in proprietary
solutions had failed in. These pitfalls were discussed in [Chapters 1] and [Chapter 2] and detail
how quickly such proprietary solutions become Legacy solutions in themselves.

131

Another requirement o f any solution was that it have a mapping for integration o f legacy
programming languages such as COBOL and PL/I which are key in Credit Suisse. The full list o f
requirements for Credit Suisse include:

• Interface definitions must be independent o f the programming language and platform.
• A standards based solution allows easy integration o f third party products
• Meta-data such as interface definitions should be available within the system
• The service architecture must be available on all relevant platforms
• Interface definitions must be extendable to allow a managed evolution
• Support for several programming languages is required
• Systems management capabilities are important.
• A Naming Service is needed to ensure location transparency

In the end only the CORBA specification from the OMG adhered to the Managed Evolution and
Standards-Based Solution patterns and could work with a mainframe integration project. .NET
and EJB restricted the architecture to an operating system or programming language and did not
provide support for COBOL or PL/1.

The full list o f reasons for choosing CORBA were:

• The standards based solution (HOP in particular) give Credit Suisse the freedom to combine
several different middleware products in the same system. Credit Suisse combines Promia's
SmalltalkBroker with IONA's Orbix. Other major companies provided full integration
products that were not standards based. This would tie Credit Suisse into a specific vendor
whereas choosing CORBA meant that Orbix could be changed for another CORBA
implementation with relative ease.

• Credit Suisse wanted a technology from the market. Previous experience showed that in-
house development o f complex middleware is too expensive. It was also important to get a
reasonably mature technology. Various Java based mainframe integration solutions were
starting to appear on the market but as yet had not been proved in mission-critical situations.

• The strong focus on interface definitions (IDL) in CORBA is an ideal match for the service
architecture, where interfaces are the contracts between service users and providers.
Techniques such as screen scraping and other non-invasive techniques would not allow this.

• CORBA is an excellent technology integrator: IDL interfaces can be mapped into such
diverse technologies as IMS transactions written in PL/1, Java Applets, or Visual Basic.

• Useful additional middleware services like security, naming, trading and transactions are part
o f the CORBA architecture. Again these are standards based and so do not tie Credit Suisse
into a specific implementation.

• There are a number o f different CORBA implementations spanning all relevant platforms
(programming languages and systems) within Credit Suisse.

• Many CORBA products are now mature enough to be used in an enterprise environment.
Necessary features like integration into a systems management framework or logging
facilities for accounting and security can be integrated with reasonable effort.

During different phases o f the project w e considered other non-CORBA solutions to test whether
our original goals were still being met. There had been various Web-Services integration solutions
available on the marketplace during this time and these would have also allowed a Managed
Evolution approach. Such products were also Standards Based. However, I recommended that we
did not pursue these further as they did have the maturity o f the CORBA industry

132

implementations. This conclusion was arrived at by an examination o f the Security and Failover
possibilities (or lack thereof) coming with these solutions.

11.4 Building An Architecture based on Managed Evolution

The Managed evolution pattern allows continuous adaptation o f the IT system. To ensure that
these changes lead to a long-term improvement o f the system, each step should be directed
towards target architecture. In addition, design o f new software modules and wrapping o f existing
transactions should follow a coherent style to ensure a smooth operation.

11.4.1 Services-modules instead o f components

It became clear that the existing applications in Credit Suisse do not fit into the conventional
definition o f components. It was decided that the name Service-Module was more appropriate
than component.

[Koch M urer 19991 explain this naming decision:

The deficiencies of existing applications with respect to the component definition vary in a
wide range. Many o f the existing applications are not accessed at their interfaces only, they
can not be independently delivered and deployed, and they are tightly integrated with their
environment. While we expect new applications to improve the situation significantly with
regard to clearly defined interfaces and data en-capsulation, the integration into the Credit
Suisse mainframe system will still be very tight.

Service-Modules are encapsulated and accessed at interfaces only. Each interface offers one or
more operations (services)

133

Credit Suisse Service-Modules:

• Contain data and appropriate functionality to manipulate this data. This is achieved by
providing w ell a well-defined interface, and the Service-Module can only be accessed via this
interface.

• Are stateless entities, in that they do not maintain a session state, but they can operate on
persistent data entities.

• A llow inheritance to be provided only between interfaces.

As part o f the implementation o f this project we had to map the concept o f a Service-Module to a
real-world CORBA implementation. This turned out to be particularly easy as Interface Definition
Language (IDL) is the key to CORBA communication and our Service-Modules could be easily
defined in this way.

11.4.2 B ottom -up approach for the ex isting system

All o f the initial CORBA applications in Credit Suisse were those that were being re-engineered
and therefore were designed with a bottom-up approach.

134

The design process was started with an investigation o f the existing system. The applications were
grouped into several domains. Each domain is further refined into service groups such as "account
services" and "customer information services" which are service groups within the "Core Banking
Domain". Each service group contains one or more Service modules.

For each service an interface definition must be produced based on the features o f the current
implementation.

Due to limited resources and dependencies between modules as w ell as maintenance overhead and
other problems, a decision must be made as to which part o f the systems should be re-engineered
and which existing program modules can be used without major changes. Using the Managed
Evolution Pattern this can be achieved in small steps so that eventually all core services are re­
engineered.

F IG U R E 11.4 C r e d it S u is s e Se r v ic e A r c h it e c t u r e O v e r v ie w

As the system relies on IMS for almost 90% o f its applications, the integration o f existing IMS
transactions provides another motivation for a Service-Based Architecture. Transactions can be
offered as services on an interface. Transactions are in most cases stateless services, dealing with
objects that "live" in the IMS system. Since the implementation behind an interface is o f no
interest to a client, w e can hide the fact that COBOL (or PL/1) are not Object Oriented languages.

135

1 1 .5 P e r f o r m a n c e C o n c e r n s

Given that Credit Suisse decided upon on CORBA and distributed computing to integrate their
legacy systems, there was always going to be an immediate performance impact due to network
latency. A s we have seen distributed systems differ fundamentally from monolithic systems:

We have seen in a previously how using a Service-based Architecture leads to having fewer
coarse grained objects and having fine-grained objects residing within large grained Service-
Modules. This approach leads to a system where more information (i.e. a complete customer) is
passed with each request, reducing the amount o f network overhead.

CORBA's address space model is different from that o f most programming languages in that there
are no pointers, associations, and relationships between objects are very different. Remote
CORBA calls in general show latencies roughly a factor o f 1000 higher than local method calls.
CORBA itself does not prevent simultaneous access to shared resources so this needs to be
implemented by the project. Serialising over a network is much more costly than on a local
machine.

However as w e have seen there are various patterns and solutions to help reduce these network
based overheads. The first o f these is to minimise the number o f remote operations. A call across
the network w ill always be substantially slower than a local call. With current operating systems
even inter process calls on the same physical machine are much slower than calls that execute in
the same process. CORBA provides a very convenient sequence abstraction that makes it easy to
pass sequences o f similar items to method invocations.

In the research on performance enhancement methods, w e saw the following techniques:

1. U se sequences whenever several calls to the same operation may occur
2. Communicate structures that contain all/several attributes o f an object, instead o f asking for
each attribute with a separate remote invocation.

In the Credit Suisse Project, I implemented both o f these techniques. Looking at the example
below, Every time an IDL Operation was defined, rather than simply pass in and out a structure
containing Customer_Details, a sequence o f structures was used. This meant that as this operation
was typically called many times from the same client, only one network call was required. Typical
IDL design would return an entire customer object for each request resulting in at least n+1
remote invocations for n customers.

136

FIGURE 11.5: USE SEQUENCES INSTEAD OF NETWORK CALLS

Implementation o f the second technique is easy to see. Instead o f having operations such as

String getCustomerName();
Float getCustomerSalary();
String getPhoneNumber();

We can fill up a structure called CustomerInfo{...} and simply have one operation

Customerlnfo getCustomerlnfo ();

This results in just one network call instead o f the previous situation where there were many
network calls. O f course, it does result in possibly more information than is required being passed
back from the operation but unless this extra information was a massive amount o f data, there will
still be performance gains.

137

F IG U R E 11.6 U s e St r u c t u r e s in s t e a d o f m a n y a t t r ib u t e s

Both o f the approaches outlined here would not be obvious choices for "pure" IDL as the interface
definition does not detail exactly what the operation is trying to achieve. However in recent times,
designing IDL with performance in mind has become an acceptable option and many enterprise
applications seen in various banks today will have such solutions incorporated early on.

Some o f the other patterns and solutions that were outlined previously were also considered for
use in the Credit Suisse CORBA-Mainframe integration. One well-known solution is to optimise
the type o f data passed, as some types are more complex to marshal than others are. However, as
the projects that were interested in CORBA used a bottom-up design approach, there is less o f an
opportunity to dictate which datatype should be used as it is required to use a datatype that could
contain the legacy data.

As a result, Credit Suisse typically did not enforce the IDL datatypes used by each project this but
produced its own IDL design guidelines. These guidelines outlined the different marshalling costs
so that those projects concerned with the performance impact o f CORBA could make their own
decisions.

Optimising the amount o f data passed is another way o f minimising performance overhead.
However, there is a trade-off here because on one hand we would want to pass as much
information in each request as possible so this pattern was somewhat ignored.

Many o f the other patterns designed to optimise CORBA performance do not apply in the case o f
legacy systems on the mainframe. Using a Service-based architecture will result in some industry
wide patterns becoming redundant (examples include Fine Grained Framework and Flyweight)
that show solutions for having many fine-grained objects.

138

Because IMS/CICS Transactions are typically short running, other industry patterns such as
Distributed Call-back are also not required in this architecture. There are certain exceptions to this
rule such as conversational IMS Transactions and long-running CICS Transactions but these were
not considered in this project.

Others such as the Replication Pattern can improve performance but are more suited to a
discussion on the Scalability o f the system.

One o f my roles within the Credit Suisse CORBA project was to continuously test and adapt
performance enhancement techniques. This involved applying patterns such as those above as
well as industry-wide idioms and technology updates. The more successful o f these included

• Modifying Stack and Heap size usage by Language Environment on OS/390
• Finding faster images in the system to run the CORBA Infrastructure under
• Applying different Multithreading policies to discover the most appropriate
• Test new Java Runtime Environments for possible performance enhancements
• Testing the different Java and PLI types to discover difference in marhsalling costs
• Fine tuning the IMS (M essage Processing Regions) MPR and CICS Regions with techniques

such as Pre-loading o f Transactions, Language Environment Tuning and MVS priorities.
• Testing new versions o f IONA Technologies' CORBA implementation software to discover

advances in marshalling techniques and lower CPU usage.

11.6 Security Considerations

Credit Suisse, like any major bank included maintaining the security o f its data as among the top
priorities when considering CORBA as an option for integrating its legacy applications.

The bank required clients (both internal and external clients) to have access to information (for
example customer account details) that resided on the mainframe in the private company network.
In this first architecture there is no security provided so this had to be built up.

139

CORBA supports the use o f SSL (Secure Sockets Layer) and so each CORBA request was
required to use SSL on top o f CORBA HOP. A Credit Suisse Public Key Infrastructure was
created resulting in the bank having its own Certificate Authority (CA). This meant that each user
o f the system would receive their own certificate and that every request entering the CORBA
Infrastructure was encrypted and secure and could also be verified and logged.

Secondly, a RACF/ACF2 lookup takes place for every user trying to access an IMS/CICS
transaction via the CORBA Adapters to ensure that the user have the correct permissions to
complete this task.

Both o f these security measures ensured that users inside the private company network could be
verified and meet the requirements o f a security service. However, provisions also had to be made
for users outside the private company network. The approach taken by the team in Credit Suisse
was to add a security system in steps as per the Managed Evolution approach.

The very first step was to secure the perimeter o f the private company network.

Adding a Firewall Proxy Server ensures that all requests entering the private network must pass
through this proxy server. A s outlined in the research on CORBA Security, using a Firewall Proxy
Server ensures that each and every request entering the private company network is monitored
and logged, drastically reducing the chances o f security holes in the perimeter.

The next phase was to enhance the security o f the private company network by adding a
demilitarised zone plus an additional firewall.

140

DMZ Webserver Private Company
Network

Client /
Internet Proxy

Server

Client

Proxy
Server

i/

Mainframe

CORBA
Service

DB2

FIGURE 11.9: A d d in g A DMZ

With the addition o f a (DMZ) demilitarised zone and an additional Firewall Proxy Server, the
internals o f the private company network cannot be accessed directly from external clients. There
is now a buffer zone between the outside world and the private network.

Among other things, this helps ensure that outside attackers trying to create a denial o f service can
be thwarted as they will only reach the proxy server and not the CORBA Infrastructure or other
servers running inside the private company network.

Adding a CORBA Security Service can be achieved by having a Master Security Server plus
adding a Security Runtime to each Application Server.

This Security infrastructure with the Credit Suisse PKI also added to the system provides
sufficient security to ensure the integrity o f the critical data the bank contains in its private
database. There is no possibility o f a direct access from outside the private company network.
With CORBA Security and 1IOP/SSL in place, the requests are also secure. Finally with the PKI
in place the rest o f the requirements o f a security model can be met.

141

Client

\
Internet

DMZ

Proxy
Server

Client

Webserver

/
«► Proxy

Server

/
MSS

Private Company
Network

Mainframe

CORBA
Service

CORBASec
Runtime

DB2

F IG U R E 11.10: FINAL C O R B A SECURITY INFRASTRUCTURE

One o f the problems I found with the approach outlined above is that it added a considerable
performance overhead to round-trip-times. This was particularly increased, as logging o f all
requests was required at each stage o f the client to server communication. As part o f my
performance as described in the previous section, I proposed various solutions that reduced a lot
o f this additional overhead. These included:

• Optimising the CORBASec Runtime code for efficiency.
• Rather than clients accessing the CORBA Services, w e introduced EJB applications servers

that acted as the CORBA clients. As these were continuously connected to the CORBA
Services, there was a reduction in Connection Management costs.

11.7 Scalability

Scalability was another area o f concern for Credit Suisse. All o f the areas for improving CORBA
scalability outlined in this research were considered.

Multithreading was possible on the client side when using C++ and Java and also with the Orbix
IMS Adapter on the mainframe. It was not possible for the PL/I and COBOL developers to use
multithreading in their code but IMS and CICS are highly scalable transaction monitors so this
was less o f a concern.

142

In terms o f connection management, the Orbix CORBA implementation that was used has built-in
possibilities to use the client disconnects and the server disconnects patterns. Essentially this
means that a client will disconnect when finished communicating with the IMS/CICS Adapters
and the Orbix Adapters will close connections to the clients when they are finished. IMS and
CICS Transactions are typically short running and do not keep connections open so this was not a
problem in this case.

An in-house implementation o f the concentrator pattern was developed and ensured that the
number o f simultaneous connections to the Naming Service does not exceed the limits.

Credit Suisse performed some scalability tests where there was one CORBA IMS/CICS Adapter
scaling up to 1500 concurrent clients. There could be 6500 clients distributed over 10 Adapters.
One Unix System Services image on OS/390 could run 20 adapters so it could handle 20000
concurrent clients. This amount o f concurrent clients was deemed sufficient to provide for the
users o f the bank applications and so the required scalability was reached.
Credit Suisse also did scalability tests outlining the number o f requests per second that can be
processed. These tests used a sample application on one IMS-TM system with 10 Message
Processing Regions in IMS. This processed 70 CORBA requests per second.

This could be scaled to the limits o f IMS meaning several hundred requests per second or several
thousands in a larger IMS installation or with newer, more powerful hardware in the future.

Again, these figures underlined the continued scalability o f Credit Suisse's legacy systems when
made peers in a CORBA based distributed network. One o f my roles in this phase o f the project
was to determine the optimum usage o f IONA IMS and CICS Adapters for maximum scalability.
The following techniques were used.

• Testing Adapter connection management capabilities to determine after how many concurrent
client requests per adapter did scalability and performance degrade

• Determining the ideal number o f threads per Adapter for optimum scalability and
performance.

By the end o f the implementation o f this phase o f the project, w e found that the results outlined
above most accurately reflected the ideal scalability capability o f the CORBA Infrastructure.

11.8 Availability

A s per the discussion on Availability, the major question posed to Credit Suisse was "how could
client reach a service". Also, as proposed in this research, probably the easiest way is to use the
Naming Service Pattern.

1 4 3

3 . U s in g o b je c t r e fe r e n c e

FIGURE 11.11 CORBA N a m i n g S e r v i c e

Credit Suisse used the CORBA Orbix Naming Service that maps readable names to the IOR for
each Service. For example, a client could bind to the Naming Service and ask for
Services. Customer.Customer 1 0 and would be returned the IOR for this Service.

In addition, Naming helper-classes were provided by our team, for developers to simplify even
further the process o f locating the object required. These Helper classes were provided for all
programming languages applicable (Java, C++, PL/I, COBOL, Smalltalk) and just provided the
bindO and resoIveO functions that come with the Naming Service API. This took all the
complexity away from client side object location.

A s per the last section on scalability, I performed some tests on the CORBA Naming Service to
see how many concurrent clients could be accepted before performance and scalability
degradation were seen. In this case, w e saw no major problems right up to the TCP/IP limit o f
1024 simultaneous clients. After this point, no more connections could be opened an exceptions
were thrown back to the client. However, because client interaction with the Naming Service is
short-lived, this limit was never actually reached in practice.

11.9 Failover

Partial failure can be a problem in that a CORBA call can fail with a status that does not allow
you to determine what really happened (for example when a client sees the
COMPLETION MAYBE exception status). Partial failure requires you to take provisions in your
system design, or to provide very sophisticated recovery mechanisms. In some cases even manual
operator intervention may be required.

1 4 4

Credit Suisse used the following design principles:

• Make update operations in servers repeatable so that an update can be repeated as often as
needed without comprising data integrity

• Given the current mechanisms, use distributed transactions only within a tightly coupled
environment with reliable connections between the resource managers. This results in a
minimum chance o f message loss, and controlled scope o f possible repair

• Build application control loops wherever data integrity is crucial to the business

Credit Suisse also made use o f the Replication pattern to ensure that the Naming Service was not
a single point o f failure. Having a replicated Naming Service helped ensure that clients could
always get the Object References o f the Services they required.

In reality there was a Master/Slave solution where the Main (Master) Naming Service had a
backup called the Slave who would become available only when the Master went down or became
unavailable. If the Slave also went down there would be no Naming Service so the System
Administrators would have to work on getting the Master up again as soon as possible.

The Load-Balancing pattern also ensured both enhanced performance and reliability for the
CORBA infrastructure. Each Service was load balanced over three o f four CORBA Adapters in a
round robin manner so that in the event o f an increased load, no one adapter could become
overloaded.

145

In this example, each entry in the Naming Service actually has two different IORs that point to
different CORBA IMS/CICS Adapters. Each client request asking for this Service will get an
alternate IOR so that the load for the Customer Service is spread evenly between both adapters. In
reality this can be extended over many adapters i f the load increases.

11.10 Other Idioms and Useful Solutions

There were various other solutions used by Credit Suisse that are not patterns in the correct sense
but rather idioms and rules o f thumb that made the CORBA-Mainframe Integration easier to
maintain.

• Do not change an interface in production. The IDL interface is the contract between client and
server and if this changes on either side there can be serious consequences.

• Introduce a versioning convention for IDL interfaces. There should be a major version
number and a minor version number. If an operation or attribute is changed or deleted a new
major version must be created. If the interface is extended a new minor version can be
created.

• At any time up to three versions o f an IDL interface must be supported. It can be quite a task
for each client to upgrade if a Service is changed so there must be an overlap to allow this to
happen over time.

• An IDL must never contain parameters than refer to the location o f an object or service. This
should always be kept transparent.

• Several conventions about the names o f interfaces, modules, operations and types ensure a
standardised look and feel and help to avoid misinterpretation.

146

11.11 Credit Suisse CO RBA Infrastructure

The following diagram shows the sequence o f events for each CORBA Client request to a
CORBA Service implemented on the mainframe (where the Service is implemented using PL/1 in
IMS)

A distributed client issues a request to the IMS Adapter. The IMS adapter is implemented using
DSI as a dynamic server that reads the interface information at start-up from the interface
repository. The request is assigned to the DSI object implementing the requested operation. The
mapping o f Message Processing Programs (MPPs) to interfaces and operations is provided in a
mapping file. This mapping file belongs to the Orbix IMS/CICS Adapter.

Inside IMS, the operation gets a free LU6.2 (APPC) session from the session pool and sends the
request to the Control Region. The Control Region receives the request, stores it in a request input
queue from which it is read by an MPR (M essage Processing Region). The Object Adapter, which
is the entry point o f the MPP (Message Processing Program), reads and demarshals the GIOP
request and builds up a PL/I-compliant data structure which reflects the input parameters o f the
operation.

At this point, the application routine is called, which processes the request. The application
routine reads and writes to the data structures by calling functions from the Orbix POD Library.

147

After the application program has terminated, the output parameters are marshalled and returned
as GIOP response to the CR and to the Orbix IMS Adapter which translates the response to an
IIOP response and returns it to the client

11.12 Conclusion

Credit Suisse faced many o f the challenges that are faced by every company using older
technology in the financial industry. However, they were a little more radical than others in their
choice o f integration strategies were. Rather than opting for a quick fix solution, they chose a path
that is at first more difficult but which is expected to pay o ff in the longer term.

Choosing CORBA resulted in having a standards-based solution in place that can outlive one
vendors' product set. In addition, there are many industry wide patterns and solutions that Credit
Suisse could learn from other companies in the same situation and apply them in this ease.

This section outlined an approach to integrating an existing legacy system using CORBA and a
Service-Based Architecture. In addition, it tackled those topics outlined earlier in the research as
being possible areas o f trouble in an enterprise situation.

In the original aims and objectives o f this research, finding and overcoming possible problems
with integration projects involving mainframe based legacy systems and their modem Object
Oriented counterparts was outlined as the number one objective. The last few sections located
these problem areas and this section outlines an approach to overcome these problems.

Some Advantages o f using this approach include

• The Standards Based solution results in industry-wide consensus on how best to perform
certain roles.

• A Managed Evolution allows a migration in smaller easier steps
• Using A Service Architecture results in a component-based Architecture so that individual

Services can migrate to newer technologies at their own pace
• Various performance patterns ensure less degradation o f mainframe application performance

when it becomes a peer in a distributed network.
• The various layers in the Security Model allow the mainframe to be opened up to the wider

world with less risk o f attack or compromise o f its data
• The use o f various CORBAServices help overcome Availability and Failover issues
• Making full use o f Object Oriented Technologies results in better code, enhanced scalability,

and helps ensure that a similar integration headache does not arise in 10 years time.

Essentially, we have realised the objectives and aims outlined at the beginning o f the research in
that the approach outlined above allows mainframe applications to gradually move towards newer
technologies whilst avoiding certain pitfalls and dangers.

Any further problems encountered by using the approaches outlined in this section will be looked
at in the section on further research possibilities.

148

1 2 F u t u r e

12.1 The Future o f Mainframes

Predictions over the last ten years and certainly before the turn o f the millennium indicated that
mainframes were finished as operating systems. People were o f the opinion that this was a
technology that was too old and too difficult to use and maintain to have any real future.
However, while these predictions are still with us, large enterprises and especially the financial
sector are still buying mainframes. And today this operating system seems more important to the
financial sector than ever before.

As we saw from the first sections o f this research, e-business is placing new demands on a banks
IT infrastructure, in terms o f demanding highly scalable, centralised solutions. The strange thing
in many peoples eyes is that the S/390 platform and the newer z/Architecture are attracting
renewed attention from IT managers who are looking for a technology that is both proven and
built on the latest technology.

The next phase o f mainframe computing comes with the z/OS platform and the z/Series
processors. This is essentially the next release o f the OS/390 mainframe except it now has 64-bit
addressing support and advanced workload management. These systems have the ability to host
thousands o f Linux images under VM and for many larger companies this is a platform they want
to be tied into over the next decade.

From a purely technical perspective the z/Architecture brings lots o f new functionality and new
potential and lots o f independent software vendors are trying to bring their technology to mission
critical applications on the host. Any CORBA or J2EE conference these days w ill have at least
some mainframe integration theme and with the advent o f the very newest technologies such as
Web Services, SOAP, UDDI and WSDL; there is already talk o f how w e integrate the mainframe
with this technology.

From an e-commerce perspective, it seems likely that the massive demands o f such network
centric applications will place increasing demands on the enterprise-servers o f tomorrow. It seems
that the mainframe and especially the new z/architecture are particularly well placed to meet these
requirements.

12.2 The Future o f Legacy Applications

Many o f the enterprises that use CORBA to re-engineer or rewrite their legacy systems have now
made these available to the rest o f their distributed computing environment. However, the core
functionality behind these applications has not changed, and whether in this form or written in
another programming language on another system, w ill not change in the foreseeable future.

For sure there will be additional requirements by banks over the next decade and there will be
applications built to meet these requirements. This time however, there will be one eye looking
into the future to ensure that today's applications in as far as is possible don’t become obsolete,

149

12.3 The Future o f Distributed Computing

For almost 10 years, CORBA has been the standard o f choice for large organisations wishing to
integrate heterogeneous applications on distributed systems using different programming
languages. For many, CORBA was a little over-complicated and CORBA-based systems almost
always ran over budget and into more complications that they envisaged. The alternatives in
today's market include J2EE, MQSeries, and Microsoft's .NET

J2EE (Java 2 Enterprise Edition) is the very latest in Java technology and includes in its
specification such components as Enterprise Java Beans and J2EE Connectors. Both o f these
approaches have a distributed computing element to them and the J2EE Connectors specification
is looking at integrating legacy applications in COBOL and PL/I with Java Application Servers
and Java Clients. The Connector technology is not mature yet and Java as a mainframe language
is only now gaining respectability.

MQ Series is IBM's solution for asynchronous messaging on the host. MQSeries can easily be
integrated with CICS and IMS and also with Java Clients. It has a guaranteed one-time delivery o f
each message and is probably the most popular solution o f asynchronous messaging. It is not
really a competitor o f CORBA as it fills a different market space.

.NET is Microsoft's end-to-end product offering. However, as yet there is no mainframe presence
for this product suite.

One o f the problems with standards based solutions is that if one o f the major players takes it over
and puts its own thumbprint on the standard - the other players in the market will look at
alternative solutions and the original standard starts looking more like a proprietary solution.

The future o f distributed computing looks like there w ill be an offering from the major players in
this market including IBM, Sun and Microsoft for the foreseeable future. The new WebServices
technology looks like a way o f integrating this Websphere, SunOne and .NET technologies.

However, for mainframe integration solutions it seems that the only offerings that will be viable
in the future will be IBM's various integration strategies and CORBA mainframe implementations
such as the ASP OS/390 product suite from IONA Technologies.

150

1 3 C o n c l u s i o n a n d F u r t h e r W o r k

13.1 General W ork for the future

In the last section w e considered the future o f mainframes, their legacy applications, and the
distributed systems o f which they can now be peers. We must now look at further work and
research that could be continued in this area.

The most obvious way to approach this is to look at the areas where the solution we outlined in
this research did not meet the requirements or was lacking in some respects

• Some think that CORBA application programming and design is too difficult. This can be
especially true for PL/I and COBOL programmers who need to quickly get and understanding
o f Object Oriented concepts

• The success o f the CORBA Standard is dependent upon industry implementations. On the
mainframe platform, only IONA Technologies have both PL/I and COBOL implementations.
Having just one company providing this implementation takes away somewhat from the
concept o f a Standards Based solution.

• Having many extra layers to ensure Security and Failover is o f the highest degree in an
enterprise solution can effect performance adversely

• Having a solution such as CORBA in place with IDL definitions for a Service does by no
means guarantee that the Service will be well written and without bugs. This age-old problem
is something that continues to exist.

• Other problems are still occurring on a daily basis for which no patterns have yet been
implemented as a solution.

Despite the problems that can still exist using a CORBA based Service Architecture for enterprise
integration projects, it is still a preferred solution to re-writing all mainframe applications from
scratch. It is certainly less risky and less expensive.

Some o f the areas in which further research could enhance even further the approach outlined in
this thesis include

• Developing new patterns and general solutions to well known industry problems
• Enabling CORBA solutions to easily communicate with EJB, MQ Series or .NET solutions

(as the new Web-Services w ill eventually allow).
• A s newer technology and business requirements appear, these should be incorporated into

existing standards in a uniform and timely manner.
• The advent o f CORBAFacilities specialising in the Financial Sector could result in more off-

the-shelf components and Services that could be added to an enterprise integration solution
without much overhead

Even though CORBA is now considered one o f the more mature distributed computing
approaches in the market, there is further work that cart be done to ensure that the Financial
Institutions using CORBA today to integrate their legacy systems do not need themselves to be
integrated in 10 years time.

151

1 3 .2 S p e c i f ic R e s e a r c h P o s s ib i l i t ie s

The previous section details the "general" problems that exist in the Financial Industry during the
migration o f legacy applications. However, there have also arisen some more specific research
possibilities. These have come about as a result o f the implementation's w e did in Credit Suisse
and include:

• Refine and investigate clearer and more applicable methods o f applying Object-Oriented
standards such as the CORBA specification to non-Object Oriented languages such as PL/I
and COBOL. We found many problems applying such concepts in this project.

• Define further standards-based CORBA Services to avoid the reliance on in house tools for
Systems Management.

• Look at other solutions in the industry that would be more lightweight and less complex for
those simpler Services in the bank.

• Even after applying the various performance enhancement techniques, we still found that
using CORBA can add an overhead not present other solutions. Further investigations in this
area are required.

• Despite using a standards-based solution, there are still many difficulties in getting ORB
implementations from different vendors to interoperate. Some further work investigating
ORB Interoperability could alleviate this problem.

• The area in which our team experienced most o f its troubles during this project was on the
Fault-Tolerance side. Actually having a real-world solution that implements actual
Master/Slave concepts without problems was something that eluded us for quite some time.
Some further investigations into this area would provide real benefit to the project outlined
here and other similar projects.

It is the opinion o f this author that CORBA is still the best solution on the marketplace for those
enterprise Financial Institutions wishing to integrate their mainframe systems. However, any such
project will still have a high cost both in money and time terms. On the plus side, those
Institutions that go down this route will be better placed for future integration solutions and
technologies that w ill come as they are more likely to be able to integrate with today's modem
technologies.

152

A p p e n d i x A : W e b R e s o u r c e s

Computer Associates ACF2 http ://www3. ca.com/Solutions/Product. asp?ID= 147

IBM Linux http://www-l.ibm.com/servers/eserver/zseries/os/linux/

IBM MQSeries Product Suite http://www-3. ibm. com/software/ts/mqseries/

IBM M VS http://www-l.ibm.com/servers/s390/os390/

IBM Resource A ccess Control Facility http://www-1. ibm.com/servers/eserver/zseries/zos/raciy racfhp.html

IBM Transaction Processing Facility http://www-4.ibm.com/soitware/ts/tpf/index.html

IBM U nix System Services http ://www-1. ibm. com/serv ers/eserver/zseries/zos/unix/

IONA Technologies Products http://www.iona.com
J2EE Connector Architecture http://java.sun.com/j2ee/connector/

Java Remote Method Invocation http://java.sun.com/products/jdk/rmi/

Microsoft DCOM http://www.microsoft.com/coiii/tech/DCOM.asp

OMG CORBA Specifications http://www.omg.org/technology/documents/spec catalog.htm

SSL v3.0 Specification http://wp.netscape.com/eng/ssl3/

W3C XM L Specification http ://www. w3 .org/XML/
Xtradyne Domain Boundary Controller http://www.xtradyne.de/products/boundary.htm

153

http://www-l.ibm.com/servers/eserver/zseries/os/linux/
http://www-3
http://www-l.ibm.com/servers/s390/os390/
http://www-1
http://www-4.ibm.com/soitware/ts/tpf/index.html
http://www.iona.com
http://java.sun.com/j2ee/connector/
http://java.sun.com/products/jdk/rmi/
http://www.microsoft.com/coiii/tech/DCOM.asp
http://www.omg.org/technology/documents/spec
http://wp.netscape.com/eng/ssl3/
http://www.xtradyne.de/products/boundary.htm

B i b l i o g r a p h y

[Alexander 1977]
Christopher Alexander. A Pattern Language. Oxford University Press, 1977.

[Alexander 1979]
Christopher Alexander. The Timeless Way o f Building. Oxford University Press, 1979

[Alireza, et al. 2000]
A. Alireza, U. Lang, M. Padelis, R. Schreiner, M. Schumacher. The Challenges of CORBA
Security. Proceedings o f the Workshop Sicherheit in Mediendaten. Gesellschaft fur Informatik
(G l) 2001.

[Ballintijn, et al. 2000]
G. Ballintijn, M. van Steen, A.S. Tanenbaum. Scalable Naming in Global Middleware.
Proceeding o f the 13th Int'l Conf. on Parallel and Distributed Computing Systems (PDCS-2000),
Las Vegas, August 8-10, 2000, ICSA 2000.

[Beck Cunningham 1987]
Kent Beck, Ward Cunningham. Using Pattern Languages for Object-Oriented Programs.
OOPSLA-87 workshop on the Specification and Design for Object-Oriented Programming. ACM
Press 1987.

[Becla, G aponenko 2001]
J. Becla, I. Gaponenko. Optimising Parallel Access to the BaBar Database System Using CORBA
Servers. CHEP’01 (Computing in High Energy and Nuclear Physics), Beijing, China, 2001.
CHEP 2001.

[Bennett 1995]
K.H.Bennett. Legacy Systems: Coping With Success. IEEE Software, January 1995, Vol. 12,No.l.

[Bennett, K annenberg 1996]
Cedric Bennett and Margo Kannenberg. Student Transactions via the Web.
Presented at the 1996 CAUSE annual conference "Broadening Our Horizons : Information,
Services, Technology". CAUSE 1996.

[Beznosov, Deng, B lakely 1999]
Konstantin Beznosov, Yi Deng, Bob Blakely. A Resource Access Decision Service for CORBA-
based Distributed Systems. 15th Annual Computer Security Applications Conference December
1999, Phoenix, Arizona, IEEE CS 1999.

[Brodie Stonebraker 1995]
Michael L.Brodie, Michael Stonebraker. Migrating Legacy Systems: Gateways, Interfaces and the
Incremental Approach. Morgan Kaufmann Series in Data Management Systems, 1995.

154

[Carzaniga et al. 1999]
Antonio Carzaniga, David S. Rosenbiura, Alexander L.Wolf. Challenges for Distributed Event
Services : Scalability vs. Expressiveness. From the Proceedings o f the ICSE '99 Workshop on
Engineering Distributed Objects (EDO '99), Los Angeles, CA, May 17-18, 1999, IEEE CS 1999.

[Chan 1998]
Charles Quoc Cuong Chan. Tolerating Latency in Software Distributed Shared Memory Systems
through non-binding prefetching. Thesis, Degree o f Master o f Science, Graduate Department of
Computer Science, University o f Toronto 1998.

[Chang 2000]
Chi-Chao Chang. Safe and Efficient Cluster communication in Java using explicit memory
management. Degree o f Doctor o f Philosophy Thesis, Graduate School, Cornell University
January 2000.

[Chen et al. 2000]
Li Chen, Rossi G. Marinina. Banking Merger 2000. Masters Thesis, Industrial and Financial
Economics, Gothenburg University 2000.

[Chung et al. 1998]
P. Chung, Y Huang, S. Yaknik, D. Liang and J. Shih. DOORS : Providing fault tolerance to
CORBA objects. Poster session at IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware '98) The Lake District, England, Springer 1998.

[Claesson 2001]
Per Claesson. Integrating CORBA functionality within an existing COM architecture.
Master thesis in Computing Science, Chalmers Tekniska Hogskola, Gothenburg 2001.

[Clerc 1999]
Vincent Clerc. UNICIBLE Presentation, IONA World Conference 1999. Available from
http://www.iona.com.

[Coplien et al 1996]
James Coplien, Michael Adams, Robert Gamoke, Robert Gammer, Fred Keeve, Keith
Nicodemus. Fault-Tolerant Telecommunications System Patterns. In Vlissides, J.M., J.O.
Coplien, and N.L. Kerth. (eds.) Pattern Languages of Program Design 2. Addison-Wesley,
Reading, Mass. 1996.

[Coyle 2000]
Frank P. Coyle. Legacy Integration - Changing Perspectives. IEEE Software Magazine
March/April 2000.

[Cukier et al. 1998]
M. Cukier, J. Ren, C. Sabnis et al. AquA : An Adaptive Architecture that Provides, Dependable
Distributed Objects. Proceedings o f the 17th Symposium on Reliable Distributed Systems
(SRDS-17) West Lafayette, IN 1998, IEEE CS 1998.

155

http://www.iona.com

[Curtis 1997]
David Curtis. Java, RMI and CORBA. A white paper prepared by David Curtis, Director o f
Platform Technology Object Management Group.
Available from http://www.omg.org/library/wpjava.html.

[Davis G am ble 2001]
L.Davis and R.Gamble. Conflict Patterns : Towards Identifying Suitable Middleware, lnt'l
Conference on Information Reuse and Integration, Las Vegas, NV, 2001. IEEE CS Publishing
2001.

[DSRG 1999]
Distributed Systems Research Group, Charles University, Prague
CORBA Comparison Project. Technical Report, 1999.
Available from http://nenya.ms.mff.cuni.cz/projects/corbac/Report_0899.pdf

[Erlikh, Goldbaum 2001]
Len Erlikh and Lisa Goldbaum. EAI's Missing Link: Legacy Integration. EAI Journal, April 2001.

[Ezhilchelvan et al. 2001]
Paul Ezhilchelvan, Mohammad-Reza R.Khayyambashi, Doug Palmer, Graham Morgan.
Measuring the Cost of Scalability and Reliability for Internet-based, server-centred applications.
Sixth 35 International Workshop on Object-oriented Real-time Dependable Systems
(WORDSOl), Rome, Jan. 2001, IEEE CS Publishing 2001.

[Falkner 2000]
Katrina Elizabeth Falkner. The provision o f relocation transparency through a formalised
naming system in a distributed mobile object system. Doctor o f Philosophy Thesis, Department o f
Computer Science, University o f Adelaide. 2000.

[Felber 1998]
P. Felber. The CORBA Object Group Service : A Service Approach to Object Groups in CORBA.
Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 1998.

[Felber et al. 1996]
P. Felber, B. Garbinato, R. Guerraoui. The Design of a CORBA Group Communication Service.
Proceedings o f the 15th Symposium on Reliable Distributed Systems, Canada 1996, IEEE
Publishing 1996.

[Ferguson 2002]
Roger W. Ferguson JR.
Speech to the Federal Reserve Board by Vice Chairman Roger W. Ferguson JR
March 2002. Available from http://www.federalreserve.gov/boarddocs/speeches/2002/default.htm

[Foote Y oder 1997]
Brian Foote and Joseph Yoder. Big Sail of Mud.
Fourth Conference on Patterns Languages o f Programs (PLoP '97/EuroPLoP '97)
Monticello, Illinois, September 1997, Addison-W esley 1997.

156

http://www.omg.org/library/wpjava.html
http://nenya.ms.mff.cuni.cz/projects/corbac/Report_0899.pdf
http://www.federalreserve.gov/boarddocs/speeches/2002/default.htm

[Froidevaux et al. 1999]
Werner Froidevaux, Stephan Murer, Martin Prater. The Mainframe as a High-Available, Highly
Scalable CORBA Platform. Published at the International Workshop on Reliable Middleware
Systems, October 19, 1999 In Conjunction with the 18th IEEE International Symposium on
Reliable Distributed Systems, IEEE CS Publishing 1999.

[Frölich, Gal, Franz 2002]
Fröhlich, Gal, Franz. On Reconciling Objects, Components, and Efficiency in Programming
Languages. Technical Report No. 02-12 Department o f Information and Computer Science
University o f California, Irvine, USA March 2002.

[Gamma 1995]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns : Elements of
Reusable Object Oriented Software. Addison-W esley 1995.

[Glynn 1996]
Davies Glynn. A history o f money from ancient times to the present day. University o f Wales
Press 1996.

[Gokhale, Schm idt 1998]
Aniruddha S. Gokhale and Douglas C. Schmidt. Measuring and Optimising CORBA Latency and
Scalability Over High-speed Networks. Appeared in a special issue o f IEE Transaction on
Computers, Vol. 47, N o 4. April 1998.

[Gokhale, Schm idt 1997]
Aniruddha S. Gokhale and Douglas C.Schmidt. Evaluating CORBA Latency and Scalability Over
High-Speed ATM Networks. Appeared in the Proceedings o f ICDCS'97 (May 97 Baltimore
Maryland), IEEE CS Publishing 1997.

[Goldberg, Robson 1989]
Goldberg and Robson. Smalltalk-80 : The Language and its Implementation. Addison-Wesley,
Reading, MA, USA.

[Grahn, H olgersson 2002]
Hakan Grahn and Marcus Holgersson. An approach for performance measurements in distributed
CORBA applications. 20th IASTED International Conference on Applied Informatics, symposium
on Parallel and Distributed Computing and Networks, pages 326-337, Innsbruck, Austria, ACTA
Press 2002.

[Gueheneuc Juissen 2001]
Yann-Gael Gueheneuc and Narendra Juissen. Using explanations for design patterns
identification. IJCAI 2001 Workshop on Modelling and Solving problems with constraints,
Morgan-Kaufmann 2001.

[Hagen 2000]
Claus Hagen. Credit Suisse IT Architecture. Presentation at ETH Ziirich
Available a t : http://www.inf.ethz.ch/personal/iks/Other/PDDBS/pdf/Hagen-PDDBS.pdf

157

http://www.inf.ethz.ch/personal/iks/Other/PDDBS/pdf/Hagen-PDDBS.pdf

[Harding 2001]
Elizabeth U. Harding. Programmer Shortage Threatens Mainframe Future. Software Magazine
April 2001.

[Henning 1999]
Michi Henning. Binding, Migration, and Scalability in CORBA.
Communications o f the ACM Journal, volume 41, number 10, Oct 1998.

[Henning, V inoski 1999]
Michi Henning, Steve Vinoski. Advanced CORBA Programming with C++. Addison W esley,
February 1999.

[Hermansson, Akerlund 1997]
Therese Hermansson, Malin Akerlund. EJB - A Deployment Evaluation. Masters Thesis,
University o f Umea, Sweden, 1997.

[Hoon et al. 2001]
Gan Keng Hoon, Chan Huah Yong and Fazilah Haron. Load Balancing for Web-based Grid
Application. Asia Pacific Advanced Network Consortium (APAN) Meeting 2001, Asia-Pacific
Advanced Network 2001.

[Horswill 2000]
John Horswill and the member o f the CICS Development Team at IBM Hursley. Designing and
Programming CICS Applications. O'Reilly 2000.

[Jacobsen et al. 1997]
E. Jacobsen, B Kristensen, P Nowack. Patterns in the Analysis, Design and Implementations of
Frameworks. In Proceedings o f the Twenty-First Annual International Computer Software and
Application Conference, (COMPSAC’97), Washington D.C., USA, 1997, IEEE CS Publishing
1997.

[Jiang 1998]
Qingli Jiangb. Integration o f Real-time Object-Oriented Database and Real-time CORBA into
Legacy Software. Thesis, Degree o f Master o f Science, Computer Science, University o f Rhode
Island. 1998.

[Johnson 1989]
Robert H. Johnson MVS Concepts and Facilities
Intertext Publications/McGraw-Hill Book Company 1989,

[Jordan 1996]
Jerry L. Jordan. The Functions and Future of Retail Banking.
Economic Commentary by Jerry L. Jordan, President and Chief Executive Officer, Federal
Reserve Bank Cleveland, 1996. Available from http://www.clev.ftb.org/ccca/jjl00196.htm.

[Juric et al. 1999]
Matjaz B Juric, Ivan Rozman, Marjan Hericko, Tomaz Domajnko. Integrating Legacy Systems in
Distributed Object Architecture. Proceedings o f International Conference on Enterprise
Information Systems, March 1999 Portugal, Kluwer Academic Publishers, 1999.

158

http://www.clev.ftb.org/ccca/jjl00196.htm

[Kahkipuro 1999]
Pekka Kahkipuro. Performance Modelling Framework for CORBA Based Distributed Systems.
From Proceeding o f UML 1999, Berlin, 1999, Springer-Verlag 1999.

[Keshav, Gamble 1998]
Keshave, Gamble. Towards a Taxonomy of Architecture Integration Strategies.
3rd International Software Architecture Workshop, November 1998, ACM 1998.

[Khandker et al. 1995]
A.M. Khandker, P. Honeymam, and T.J. Teorey. Performance of DCE RPC. 2nd International
Workshop on Services in Distributed and Networked Environments June 05 - 08, 1995 Whistler,
British Columbia, IEEE CS Publishing 1995.

[Kim Biem an 2000]
Hyeon Soo Kim, James M. Bieman. Migrating Legacy Software Systems to CORBA based
Distributed Environments through an Automatic Wrapper Generation Technique. Proc. Joint
meeting o f the 4th World Multiconference on Systemics, Cybernetics and Informatics (SCI'2000)
and the 6th International Conference on Information Systems Analysis and Synthesis
(ISAS'2000), fflS 2000.

[Koch, M urer 1999]
Thomas Koch, Stephan Murer. Service Architecture Integrates Mainframes in a CORBA
Environment. Published at the third IEEE conf. On "Enterprised Distributed Object Computing"
Sep. 27-30, 1999, IEEE CS Publishing 1999.

[Kolodziej 1987]
J.Kolodziej. COBOL Shapes Up. Computerworld Magazine, V ol 21, (Jan 7, 1987), p. 13-14.

[Korhonen 2001]
Jouni Korhonen. Fault Tolerant CORBA. Research Seminar on Real Time and High Availability
University o f Helsinki, Department o f Computer Science November 2001
Available from httpV/www.cs.helsinki.fi/u/kraatika/Courses/semO 1 a/korhonen.pdf

[Kudrass et al. 1996]
Thomas Kudrass, Marco Lehmbach, Alejandro Buchmann. Tool-Based Re-Engineering of a
Legacy MIS: An Experience Report. Proceedings o f the 8th Intl. Conference, CAiSE '96,
Heraklion, Crete (Greece), May 1996, Springer-Verlag LNCS 1080 1996.

[Kugel 2001]
Herb Kugel. History of Computing: The IBM 650.
Dr. Dobb's Computer Magazine Available at http://www.ddj.com/.

[LaLiberte B ravennan 1999]
Daniel LaLiberte, Alan Braverman.
A Protocol for scalable group and public annotations. Proceedings o f the 3rd International
WWW conference Volume 27, Number 6, ACM Press 1999.

[Landis M affeis 1997]
S. Landis, S. Maffeis. Building Reliable Distributed Systems with CORBA. Theory and Practice o f
Object Systems Journal Vol. 3, no 1. 1997.

159

http://www.cs.helsinki.fi/u/kraatika/Courses/semO
http://www.ddj.com/

[Lang 1997]
Ulrich Lang. CORBA Security : Security Aspects o f the Common Object Request Broker
Architecture. MSc in Information Security, Royal Holloway, University o f London. 1996/1997.

[Lauder, K ent 2000]
Anthony Lauder and Stuart Kent. Legacy Systems Anti-Patterns and a Pattern-Oriented
Migration Response. In: Henderson P, Systems Engineering for Business Process Change,
Springer Verlag, 2000.

[Lawrence 1996]
Andrew Lawrence. IBM System User International Survey. Computer Business Review, p. 1-4.
March 1996.

[Lea 1993]
Doug Lea Christopher Alexander: An Introduction for Object-Oriented Designers
An article available from http://gee.cs.oswego.edu/dl/ca/ca/ca.html.

[Levine, Gill, Schm idt 2000]
David L.Levine, Christopher D. Gill, and Douglas C. Schmidt. A Complementary Pattern for
Controlling Object Creation and Destruction. C++ Report, SIGS, Vol. 12, No. 1, January, 2000.

[Levine Schm idt 2000]
Dr. David Levine, Douglas C. Schmidt.
Introduction to Patterns and Frameworks. Tutorial from the Department o f Computer Science,
Washington University, St. Louis Available from
http://www.cs.wustl.edu/~schmidt/PDF/patteras-intro4.pdf.

[Little 1999]
M.C.Little, S.K. Shrivastava
Implementing high availability CORBA applications with Java.
Appeared in the proceedings o f the 1999 IEEE Workshop on Internet Applications, July 26 - 27,
1999. San Jose, California, IEEE CS Publishing 1999.

[Luomala 2000]
V ea Luomala. CORBA Based Object Transaction Monitors. Thesis, Master o f Science in
Engineering, Department o f Information Technology, Helsinki University o f Technology 2000.

[M affeis, Schm idt 1997]
Silvano Maffeis, Douglas C. Schmidt. Constructing Reliable Distributed Communication Systems
with CORBA. Appeared in the feature topic issue on Distributed Object Computing in the IEEE
Communications Magazine, Vol. 14, No.2, February 1997.

[M archetti, M ecella, Baldoni 2000]
Carlo Marchetti, Massimo M ecella, Roberto Baldoni. Architectural Issues on Fault Tolerant
CORBA Proceedings o f the SSGRR 2000 Computer & Business Conference, L'Aquila, Italy,
2000, Scuola Superiore 2000.

160

http://gee.cs.oswego.edu/dl/ca/ca/ca.html
http://www.cs.wustl.edu/~schmidt/PDF/patteras-intro4.pdf

[M archetti, M ecella, V irgillito, Baldoni 2000]
C. Marchetti, M. Mecella, A. Virgillito, R. Baldoni. An Interoperable Replication Logic for
CORBA Systems. Proceeding o f the 2nd International Symposium on Distributed Objects and
Applications (DOA 2000) Antwerp, Belgium 2000, Springer-Verlag 2000.

[M archetti, Virgillito, M ecella, Baldoni 2001]
Carlo Marchetti, Antonio Virgillito, Massimo Mecella, Roberto Baldoni. Integrating Autonomous
Enterprise Systems through Dependable CORBA Objects. Published at the Proceedings o f the 5th
International Symposium on Autonomous Decentralised Systems (ISADS 2001), Richardson,
Texas 2001, IEEE CS Publishing 2001.

[M cCauley 1999]
Chris McCauley. Under the covers and ILM, A CORBA System in Action. A presentation by Chris
McCauley, Senior Architect, Irish Life Investment Managers, IONA World Europe Conference
1999. Available from http://www.iona.com/.

[M cDonough 1999]
Mr William J. M e Donough. Changing nature o f banking, risk and capital regulation.
29th Annual Banking Symposium, Bank and Financial Analysts Association N ew York City
1999, Federal Reserve System 1999.

[M odi 2000]
Tarak Modi. Using Space-Based Programming for Loosely Coupled Distributed Systems. Java
Developer's Journal, October 2000.

[M orris, Isaksson 2002]
Rob Morris and Pete Isaksson. Legacy within the Enterprise: Imagine the Possibilities.
EAI Journal, March 2002.

[M oser et al. 1999]
L.E. Moser, P.M. Melliar-Smith, P. Narasimhna, L.A. Tewksbury, V.Kalogeraki. The Eternal
System : An Architecture for Enterprise Applications. Proceedings o f the 3rd International
Enterprise Distributed Object Computing Conference 1999, Mannheim Germany, IEEE CS
Publishing 1999.

[M owbray, M alveau 1997]
Mowbray, Malveau. CORBA Design Patterns. Wiley& Sons 1997.

[M uhgee, Surendran, Schm idt 1999]
Sumedh Mungee, Nagarajan Surendran, Douglas C. Schmidt. The Design and Performance of a
CORBA Audio/Video Streaming Service. Appeared in the HICSS-32 International Conference on
System Sciences, minitrack on Multimedia DBMS and the WWW, Hawaii, January 1999, IEEE
CS 1999.

[M urer 1999]
Stefan Murer. Why Does Credit Suisse invest in Orbix on MVS. It)N A Wdrld Europe Conference
1999 Presentation. Available from http://www.iona.com/.

161

http://www.iona.com/
http://www.iona.com/

[Narasimhan et al. 1997]
P. Narasimhan, L.E. Moser, P.M. Melliar-Smith. The Interception Approach to Reliable
Distributed CORBA Objects. Published at the Proceedings o f the Third USENIX Conference on
Object-Oriented Technologies and Systems Portland, Oregon, June 1997, USENIX Association
1997.

[Natarajan et al. 2000]
Balachandran Natarajan, Aniruddha Gokhale, Shalini Yajnik, Douglas C.Schmidt. Applying
Patterns to Improve the Performance of Fault Tolerant CORBA. Submitted to the 7th
International Conference on High Performance Computing, Bangalore India, Dec 2000,
ACM/IEEE 2000.

[O'Ryan et al. 1999]
Carlos O'Ryan, David L.Levine, Douglas C.Schmidt, J. Russell Noseworthy. Applying a Scalable
CORBA Events Service to Large-scale Distributed Interactive Simulations. Proc. IEEE 5th
Workshop on Object-Oriented Real-Time Dependable Systems, Los Alamitos, Calif., Nov. 1999,
IEEE CS Press 1999.

[ORBOS 1998]
Proposal to the ORBOS Platform Task Force for Benchmarking CORBA Scalability.
Available from http://www.omg.org/docs/bench/98-10-01.doc.

[Othman et al. 2001]
Ossama Othman, Carlos O'Ryan, Douglas C.Schmidt. The Design of an Adaptive CORBA Load
Balancing Service. IEEE Distributed Systems Online 2(4): (2001)

[Pan 2000]
Jiantao Pan. Robustness Testing and Hardening of CORBA ORB Implementations.
MS Thesis, Electrical and Computer Engineering Department, Carnegie Mellon University
Pittsburgh, Pennsylvania, USA, 2000.

[Parikh, Girish 1987]
Parikh, Girish. Making the Immortal Language Work. Business Software Review, V ol 6, Iss 4,
(April 1987), p. 33-36.

[Pyarali et al. 2000]
Ifan Pyarali, Carlos O'Ryan, Douglas C. Schmidt. Patterns for Efficient, Predictable, Scalable,
and Flexible Dispatching Components. 7th Pattern Languages o f Programs Conference (PLoP
'00) in Allerton Park, Illinois, August 2000. Addison-W esley 2000.

[Q uinot et al. 2001]
Thomas Quinot, Fabrice Kordon, Laurent Pautet. Architecture for a reusable object-oriented
polymorphic middleware. In Proceedings o f PDPTA'2001, Las Vegas, Nevada, Etats-Unis, June
2001, CSREA Press 2001.

[Rackl 2000]
Gunther Rackl. Monitoring and Managing Heterogeneous Middleware. PhD Thesis, Technical
University Munich 2000.

162

http://www.omg.org/docs/bench/98-10-01.doc

[Reddy 2002]
Ram Reddy. The Future of Enterprise Applications, Pieces o f a whole. Intelligent Enterprise
Magazine (March 2002).

[Sang et al. 1999]
Janche Sang, Chan Kim, Isaac Lopez. Developing CORBA-Based Distributed Scientific
Applications from Legacy Fortran Programs. Information and Software Technology, Vol. 44,
Issue 3, 175-184 , 2002.

[Scallan 2000]
Todd Scallan. Monitoring and Diagnostics o f CORBA Systems : Demystifying the CORBA
communication bus to enable 'distributed debugging' Java Developers Journal June 2000.

[Schmidt 1999]
Doug Schmidt. Strategised Locking, Thread-safe Interface, and Scoped Locking : Patterns and
Idioms for Simplifying Multithreaded C ++ Components. C++ Report, Volume 11, September
1999.

[Schmidt Stephenson 1995]
Douglas C. Schmidt, Paul Stephenson. Experience Using Design Patterns to Evolve
Communication Software Across Diverse OS Platforms ECOOP '95 conference, August 1995,
Springer-Verlag 1995.

[Schmidt et al. 1997]
Douglas C.Schmidt, Aniruddha Gokhale, Timothy H. Harrison, and Guru Parulkar. A High-
performance Endsystem Architecture for Real-time CORBA. Appeared in the feature topic issue
on Distributed Object Computing in the IEEE Communications Magazine, Vol. 14., N o 2,
February 1997.

[Schultz 2001]
Andreas Schultz. Multi threading in a CORBA ORB. Diplomarberit, "Otto-von-Giiricke"
University, Magdeburg 2001.

[Shen et al. 2000]
E-Kai Shen, Shikharesh Majumdar, Istabrak Abdul-Fatah. High Performance Adaptive
Middleware for CORBA-Based Systems. Nineteenth Annual ACM SIGACT-SIGOPS Symposium
on Principles o f Distributed Computing (PODC 2000), Portland, Oregon, 16-19 July 2000,
Springer-Verlag 2000.

[Silva et al. 2000]
Roberto Silva Filho, Jacques Wainer, Edmundo R.M. Madeira. CORBA Based Architectures for
Large Scale Workflow. Masters thesis Institute o f Computing - UNICAMP - State University o f
Campinas, Brazil, 2000.

[Slama et al. 1999]
Slama, Garbis, Russell. Enterprise CORBA, Prentice-Hall 1999.

[Smith, W illiam s 1998]
Connie U . Smith, Lloyd G. Williams. Performance Engineering Models o f CORBA-based
Distributed-Object Systems. Int. CMG Conference 1998, Computer Measurement Group 1998.

163

[Stroulia et al. 2000]
E. Stroulia, M.El-Ramly. P.Iglinski, P. Sorenson. User Interface Reverse Engineering in support
of Migration to the Web. Automated Software Engineering 10(3): 271-301; Jul 2003.

[Stroustrup 1991]
B. Stroustrup and M. Ellis. The Annotated C++ Reference Manual. Addison-Wesley 1991.

[Stroustrup 1992]
B. Stroustrup. The C ++ Programming Language. Addison-W esley 1992.

[Summers 2000]
Bruce J. Summers. Remarks o f Bruce J.Summers : Director Federal Reserve Information
Technology, Bank o f Japan. Conference on the Development o f Information Technology and
Central Banking, Tokyo Japan, October 2000.

[Szym aszek et al. 1998]
Jakub Szymasek, Andrzej Uszok, Krzysztof Zielinksi. Building a Scalable and Efficient
Component Oriented System using CORBA - Active Badge System Case Study. Distributed
Systems Engineering Journal 5(4): 203-213 (1998)

[TN3270 2001]
Internet Engineering Task Force : Telnet TN3270 Enhancements Special Working Group
Available from http://www.ietf.org/html.charters/tn3270e-charter.html

[Turner Brill 2001]
W. Pitt Turner and Kenneth G. Brill. Industry Standard Tier Classifications Define Site
Infrastructure Performance. Uptime Institute. 2001. Available from http://www.uptime.com

[Vinoski 1998]
Steve Vinoski. New Features for CORBA 3.0. Communications o f the ACM Vol. 41, No. 10
October 1998.

[Vinoski 2000]
Steve Vinoski. Scalability issues in CORBA-Based Systems. Tutorial presented at 7th
International Workshop on Interactive Distributed Multimedia Systems and Telecommunication
Services. October 17-20,2000 Enschede, The Netherlands, Springer Verlag 2000.

[Volter 2000]
Markus Volter. Server-Side Components - A Pattern Language. EuroPLoP 2000 Conference
(Fifth European Conference on Pattern Languages o f Programs), 5 - 9 July 2000, Irsee, Germany,
Addison-W esley 2000.

[W ang, Schm idt, Levine 2000]
Nanbor Wang, Douglas C. Schmidt, David Levine. Optimising the CORBA Component Model for
High-Performance and Real-time Applications. In 'Work-in-Progress' session at the Middleware
2000 Conference, ACM April 2000.

164

http://www.ietf.org/html.charters/tn3270e-charter.html
http://www.uptime.com

[W eik 1961]
Martin H. Weik. The ENIAC Story. The Journal o f the American Ordnance Association (Jan/Feb
1961).

[W olff, Schm id, V61ter 2001]
Eberhard W olff, Alexander Schmid, Markus Vôlter. Building EJB Applications - A Collection of
Patterns. Presented at the PloP 2001 Conference (8th Conference on Pattern Languages o f
Programs), September 11-15, 2001, Allerton Park, M onlicello, Illinois, USA, Addison-W esley
2001.

[Yoder, Baraclow 1997]
Joesph Yoder, Jeffrey Baraclow. Architectural Patterns for Enabling Application Security.
Presented at the PloP Workshop (Pattern Languages o f Programs) 1997. September 3-5, 1997,
Allerton Park, Monticello, Illinois, USA, Addison-W esley 1997.

165

