Integrating Legacy M ainframe Systems:

Architectural Issues and Solutions

An Investigation into Architectural issues raised by making the Mainframe a peer in a
distributed network in the Financial Sector.

By

John Butler, B.Sc.

University: ~ Dublin City University
Supervisor: Renaat Verbruggen
School : Computer Applications

A dissertation presented in fulfilment of the requirements for the award of

M.Sc. in Computer Applications, February 2004

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Masters of Science in Computer
Applications is entirely my own work and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged within the text
of my work.

Signed:
(Candidate) ID No.: 99145006

Date: 1st February 2004

Acknowledgements

Firstly, I would like to thank Roisin for all her enthusiasm, support, and invaluable help with the
proofreading.

I would like to give special thanks to my parents and family for their support and constant
encouragement to keep going.

Sincere thanks is due to Renaat for all his advice, council and guidance throughout the research.
I would like to thank my employers ORBISM for facilitating this study in every possible way.

I am also indebted to my colleagues at Credit Suisse Zurich, for their help and knowledge sharing
in all areas of CORBA and large-scale systems.

Last but not least, | would like to thank Colm for his help with the proof reading and being there
to field any research related questions.

Integrating Legacy Mainframe Systems: Architectural Issues and Solutions
John Butler

Abstract

For more than 30 years, mainframe computers have been the backbone of computing systems
throughout the world. Even today it is estimated that some 80% of the worlds' data is held on such
machines. However, new business requirements and pressure from evolving technologies, such as
the Internet is pushing these existing systems to their limits and they are reaching breaking point.
The Banking and Financial Sectors in particular have been relying on mainframes for the longest
time to do their business and as a result it is they that feel these pressures the most.

In recent years there have been various solutions for enabling a re-engineering of these legacy
systems. It quickly became clear that to completely rewrite them was not possible so various
integration strategies emerged.

Out of these new integration strategies, the CORBA standard by the Object Management Group
emerged as the strongest, providing a standards based solution that enabled the mainframe
applications become a peer in a distributed computing environment.

However, the requirements did not stop there. The mainframe systems were reliable, secure,
scalable and fast, so any integration strategy had to ensure that the new distributed systems did not
lose any of these benefits. Various patterns or general solutions to the problem of meeting these
requirements have arisen and this research looks at applying some of these patterns to mainframe
based CORBA applications.

The purpose of this research is to examine some of the issues involved with making mainframe-
based legacy applications inter-operate with newer Object Oriented Technologies.

Table of Contents

DECLARATION.............]
ACKNOWLEDGEMENT S & oot e e e d e e f e e e e e e d e e e et e e e et M
N = S T N A v
TABLE OF CONTENT S & oo e et f e f e e d e d e e et e e et e e e eae e e e s \
TABLE OF FIGURES - - - e e et e e e e e e e e ded e ida e s X1l
1 INTRODUCT L ON - o o i i e et e f e e e e d et e e e e e e e e eeeaaa s 1
11 M ainframes and early Technology SoOlUtioNS . o oo oo e o e c e e e e cccaaeaaa- 1
1.1.1 Using Information Technology t0 CONAUCE BUSINESS...uuuiiuiiriitieiiierirnneniensessnssssssensensensnnsnnennenns 1
1.1.2 The Mainframe as the early platform OfChOICE.........vvien civiiiiiiris s e 1
1.1.3Living with these older applications today...........ceiviuiiiiiiiiiiiniii s s s i 1
1.2 Technology Requirements inthe Banking Sectoro aaaaaananx 2
1.21 The Nature ofthe Banking INA USEIYuiiiiiiiiiiiiiiiiii e 2
1.2.2 Use ofTechnology in theiNAUSIIY.......cuuiieiiiieiiiii e s s e e e s e s s e nennenns 2
1.2.3 Furtherpressuresfrom New TECHNOIOGY....cciiiiiiiis i e neeas e e
13 Problems arisSinNg .- oo e e e e e e e e e e e e e cecacacececacaaacaaaaaaana 3
1.3.1 Why are these older applications aproblem?.........ccviiiiiii e 3
1.3.2 How widespread are these older appPliCationNs?......cvuiveiriiiiiiieiii e raeaens 3
1.3.3 What is alegaCy SYStEM 2. e i i iiieirnie e s eseress e e r s s e e re s e ra e sasansnnrnrensensensnnenen 3
1.3.4 Who understands the application completely?.........c.ccoiiiiiiiiiiii 3
1.3.5 How can the information be retleVed?......cooiiiiiiiin i sas rrrieaaaaae 4
1.3.6 Integrating the Legacy SYySt€MS.......ccccvvvveeeveveiices viier e ” e e e e 4
1.3.7The Real ChallenNge..........oiiiiiiiiiiiiiiii e e 4
14 Solutions tothese problems . .o . oo oo n i oo i e e e e e cecececaceaacaaaaaaaenn 5
1.4.1 Changing the way o fthinking o fLegacy SystemS...........coviiiiiiiiiiiiiii 5
1.4.2 Standards Based SOIULIONS..... e 5
15 Further Difficultiesand their SOlUTIONS -« o o o i i i it e e i d e e e cceccacaaaaann 5
1.5.1 Example Standards Based SOIULIONS.......viiiiiiiiiiiiiii s 5
1.5.2 Problems arising in using these Standards.........ccoiviuiiiiiiiiiiiii 5
1.5.3 Sharing SOIUTIONS....uiiiiiiii i cra s e e 6
1 = 0 6
1.6 Summary of the Issuesand Research AiImso e e e e e e eceeaeaan- 7
1.7 Research M otivation. oo oo o e i e e e e e e caaeccacca e caaeaaaaaaaaaaan 7
1.8 The Restofthe DocCUmMeN T c oo m o i m ot i i e e e e e e e a e e e e e e aeceae e aaaeaaean 7
2 LEGACY APPLICATIONS INTHE FINANCIAL SECTOR ..o 9
2.1 Nature of the BankingBusiness. e e e e e e e ammaaaaaaa 9
22000 S R = Y = 7= 1 0124 9
B0 R €T T = | 0T Y o 4 9
2.2 Architecture of the Mainframe Operating Systemo ie e caaaeaacaann 10
221 ABrie fHIStOTY OfCOMPUENG. . .itiieieeieriernrerrnrer s s srs e e rrsansrarn e s raasensnsenannrenrensensnres 10
2.2.2 Categories O TCOMPULEIS. it a s aaaes 10
2.2.3Early ComMpPatibility ISSU @ S..uuuuiuiiieiiiiieiiieseirensssss s s s s s s s e s s s s snsen s e s e senssassnensensensnns 11

2.3 Mainframe TecChNOolOgY c o c oo c o e o e e e e e e ce e e ecccacccaaccaaacaaaaana- 1

2.3.1 MaiNTramE OVEIVIEW iuuiiuiiniiiiiiiarets et s e e s s s ea s e s sa s e s e s ea s an s e b s ensaens 11
2.3. 2 FrOM MV S0 OS/390. . cuuieuiietieeuieeueeet e eea e e e e aet e e ea e e ea e e ean e eean s e een e ean e een e een e eaneern e eeneaenn 11
B2 G T |V ST {0 Yo [U o 12
2.3.4 TP F (Transaction Processing Facility) and VMcoiiiiiiiiiiiiiriene s s e snnsanenns 13
ARSI (o] = To (SN o] a1 (o 1= r= 1 i o) o PP 13
P B I 1 = 0 [T= W o3 170 o F- PN 14
2.3.7 Limitations andBenefits 0 fthe Mainframe ArChiteCIUre..........cueeeiiiveeeeiirieeeiitieeeectree e e sreee e 14
2.4 FirstBanking ApplicationsS. o ..o oo oo e e e e e e e e ececacecaceaaacaaaaaaan- 15
2.4.1 What WaS available ... s 15
2.4.2 Applications performing BUSINESS OPEIatiONS.....uuuiveievireireirsiererrerenrenrns sorrnsenssssnsrrenrenrnrnnes 15
2.4.3 Essentials 0faBuSiNeSsS APPICATIONS. .. .uuuiiuirieieieriieren s eirenrsrsarnren srenrrnsensensrarnrenrenren sonenen 15
2.4.4 Composition o faBusiness APPCALION......iciiiiiiis irees s e e 16
2.5 New Customer Demands and Pressures on the Systemso aaaaaaax 16
2.5.1 Early Technology REQUINEMENTS......civuiiiiiiiiiiiiiii i 16
2.5.2 Changing BUsSINESS REQUINEIM ENTS.vuirieirietseniereasessssensesessasssrsssnsensrnssnssasnsrsenrenssnenrennenns 16
2.5.3 EVOIVING TECHNOIOIES. .. iivuiiiiiiiiiiiiiic i e 17
2.5.4 NEW O PP OMUNIIES. 1. suveeeesirreeesssrersssseessssssesssssessssssssssssssesssssssssssssssssssssessssssssssssssesssssensssns /7
2.6 Challenges forthe FUTUNe - - oo o oo oo i o e e o e e e ececececacacacaaacan 18
2.7 O oY 43 IV =3 1 1 o T 18
APPROACHES TO INTEGRATING LEGACY SYSTEMS .. i i ae e aa s 20
3.1 0 o g o X T o3 o 1)2 20
3.2 Replacingthe entirebanking SyStem. .« oo oo io oo e e e e e e eccceacceaaaaaan- 20
3.3 Approaches to lhtegratingthe Legacy Systems o .o oo i i i e e cecacaaan- 21
3.3.1 LVl O fINtrUSIVE MO SS . cuuiuiiuiiai ittt r e e e s r e e e s e s e b s e e s e s e b s e s e s abnaes 21
3.3.2 Reusability andRODUSINESS.uuiriiieieieni e e s e s e s s s r e s e s e sen s enernrens 22
G0 IR I @0 ¢ 1 o /1 /PP 23
3.4 T - o I 23
0 R N 22 4 0 N = o) (o Y oo) 3PN 23
IR 3 UL o o It g V=Y =10 g U] =8 (o Y 2N o] o] o = Vo o 1R PPN
3.5 Screen Scraping (Presentation Layer htegration) 24
TN A VA o 7= LR TSI Tox (<Y o TR o =Y o 1 T PP 24
3.5.2 Advantages and DiSadVantages.cuiivuiiriiiiiiiiiiis s e 24
3.6 Functional Level lhtegration. oo e e e e e cccacceaaaaaan 24
3.7 Using CORBA for Functional Level htegration. i eaaae.aan 25
I R 1@ 2327\ 1aTe ISTox (Y=] o =1 o] o T AP 25
3.7.2 CORBA Adapter TECHNOIOQY .. . iuiuiiiiiiiiiiiiriiriar s s s s e s s s s s e s e s ennrnsens 25
373 FUIINTEOIAtION ..ttt e 26
B.7.4 WHY CORBA ..eiiiiitttie e sttt e e s ettt e e sttt te s s b besessabeesssabbesesabbessesabassssbbessssbbessssabbaessabbessesabbesssanrnneas 26
B.7.5 USINQG J2EE CONMNECTOIS. 1 uttitiiuieiiessstsinsesesensssensenseseasrasss e e rsssssssssessensenssnsnsensensenrsnssnnes 27
3.8 Datalevel lhtegration. i e e e e e ca e e cacccacacaaaaaaa- 28
R 70 |V N PP UPTP 28
3.9 L o o I = e Y 28
INSIDE CORB A L o i e e e f e e et e et e e et e e e e 30
4.1 Historyof Distributed transactional Computing ... o-. oo oo e ceeacaaan- 30
4.1.1 Centralised versus de-CentraliSed..........occeviuiiiiiiiiiiiir i 30
A AU = g o IS o g =Y (= @ 1= o £ T 30
4.1.3 The Client/SErver MOiiuiiiiiiii i e 31

4.1.4 3-tier COMPULING .c.ccetn cernr vrreereeeeeeeeeseirrreee e s s s e ssrreeeeeees e ———— Vo 32

4.1.5 Difficulties With 3-ti€ T COMPULING euieirireienieerreies s s e s rasrarnrenrerrarsnsrarnrrnrenren 32
4.1.6 Remote ProCedUre C all.. ... s e e 32
4.1.7 Object Oriented N-tiEr COMPULING.....uirieierirres crrrrrsrerrererrrarrarrererrrsrrsararrearrars srensenes Mm..33
Rl (o = (1= A2 L= o 11) o Y o TR TN 33
4.1.9 Different ConNECHVIY MOAEIS........iveiiiiiiiiiiieer e s s e s s s e s e s e snnenns 34
4.1.10 Component APPlICAtIONS........ciiiiiiiiiiiii [FUT Jerrererrnr 34
4.1.11 Improvements iN DeSIgN...cvcevevirnieiennes vervvnrrnrnnnens covenee e eeae e 35
4.1.12 General benefits andproblems with N -tier COMpPULING...........cviiiiiiiiiii 35
4.2 htroduction to CORBA L L. e e e e e e e ac e e e e aaaaaaaan 36
4.2.1 Difficulties ofDistributed ObjeCt Programming......ccocviieiiiieiiiiinies s e e rsensansnnens 36
Y g = LA = o @ = T 36
4.2.3 The Object Management ArchiteCture (OMA). . i e iiiie e r e s e ennens 37
4.2.4 The Nature OfCORBA ODJECTS......iiiiiiiiiiiiiii e 37
4.2.5 The Structure 0ofa CORBA APPICAtION.......cciiiiiiiiiiiiii 38
4.2.6 The Structure ofaDynamic CORBA Application............... N NL38
4.2.7 DYNAMIC SEIVET PrOGIAMMINGtvtteitrrteiittreteitretesasereessssesesssreesssreeesssssresasseesssssesessssseessnsee soses
4.2.8 Interoperability DEIWEEN O R B S....iiiiiriiiiieriiiarar s s s e s s s s r e s e s rnennenarnrens 38
4.2.9 TNE CORBA SIVIC S 1t uiuuitiiuiiititiiniiss s s r et ea s s s s e r e s s e rarrens 39
4.2.10 The CORBA Fa Cilti@ S.uuuiuuiiiiiiiiiiiiiiii i is s s s a s e s e e e s e e b s e aeas 39
4.3 Looking inside CORBA . . e e e e e e eee e aceeaeaaaas 39
G 00 N 1 T 2 =] T 39
| |V = ¥ 0 o 71 1 41
4.4.3 Finding CORBA Objects......cccoceveiiiieiinninnennns PP 41
O T R 1 g TN V= T Y T ST 4 o = PP 42
v 5T =Y o) (o] 1 = = W T |10 T 42
4.4.5 ORB Interoperability.........cooiuiiiiiiiiiii 43
4.4 Service-Based ArchiteCtUre - o oo i oo e e e e e e e e deccaceaa e e aaaa e 43
4.5 O oY s U= Ko 1 4 44
o I I G 45
51 W hat are Patterns ..o oo e i e e e i e e d e e e e e e d e d e e e a e 45
52 HOW DOES A PATTERN COME TOBE - - - . oo i i e e e e e a e e aaaaa s 46
5.3 DesignPatterns e e e e e e e e ccacccecccea e aaaaaaaan 48
54 W hatarentDesignPatterns. e e e e e ccecccaceaaaaans 49
55 Architectural Patterns . oo ..o i i e e e e e e e acaacacaac e e aaaaa e 50
56 Categoriesof Architectural Patterns e oo e e e e e e e e acaaeaann 51
5.6.1 From MU tO STIUCTUIEiuiiiiiiiiiiii s e s e s s i r e ea e 51
5.6.2 DistriDULE A SYStEIMS.uuiiiuniiiiiiiiii i e 52
5.6.3 INTEraCHIVE SYStEIMIS. ittt i iiiiiiiiiiiaies sree arrarens sernsensenssnsnnennes sressesses serssnrersnrenes enne senenres 52
SN SR AN o F=T o 7= L)V £S) (= 1 PP 52
5.7 Inplementing Architectural Patternso e e e e e eeeceaaeaaa- 52
5.8 Qualitiesof Patterns . oo oo e it e it e e e e e d e c e am e ccac e aaaaaaaaan — 53
5.9 Conclusionand furtherdevelOpments oo oo oo oo n oo o e e e e ececececacaaaens 54
CORBA PERFORMANCE ISSUES . .t et et et e e e e e e e e e 56
6.1 troduction o oo L e e e e e e e e e e e e 56
6.1.1 Performance ofDistributed SYStEMS......oiiuiiiiiiiiiiiiii 56
6.1.2 Other Performance ProbIEmS.ouu i e 57
6.1.3 Designing ID L for performance,,,..é,.a............. Sl VoL o iVo» 4 » N, 58

vl

6.2 General Solutions tothe CORBA Performance Problems 58

6.3 M inimisethenumber of remote OperationS - oo o oo oo oo e e cccccc e e e aaeaaan- 59
6.4 Optimisingthe typeofdatasentor retuUrned .- ..o oo cececeaeceaacaaaaann 60
6.4.1 Orders OfMAagNIIUAE........ciiuiiiiiiiiiiii s e 60
6.5 Optimisingthe amount ofdatasentor retuUrnNed c . ceccee e ecacaaeacaaaannx 61
6.6 Additional CORBA Patterns . oo oo e e e e e e e e d e e e e e e e ceaeamamaaaaaenn 63
6.7 O o 4 IV =31 1 o 65
SECURITY ISSUES - . L e et e e e e e e e e e et e e e e et 66
7.1 Mainframe SecUr ity - o oo oo oo e e e e e e e e e cacccacccacccacecaaaaaaaaan 66
7.1.1 RACF (Resource Access CONTOIFA CIlILY) .uuiuuieiieiieniiieiiiiniisens e eren s s s e e rsnn e s ensens 67
% 2 = Y AN @3 o =TT o (o [1= =T o1 T TR P 67
7.1.3 Mainframe Security in a Client/Server MOEl........ccviiiiiiiiiic e e 68
1.2 Banking Security Requirements e 69
7.3 Threats toBanking SecuUrity c oo oo it i i e e e ccecccacccaaaaaana- 70
731 INtEIMNAINEIWOIK SE CUNEY 11itivtuiiiirtii s ettt s e s s e e e e e s e e s s e e s s e e b s e es s araens areeesnanes 70
7.3.2 Intermnet and EXtran@t SECUILY......iiuuiiiiiiiiiii i 70
R I BT o U 1Y I T (== X £ PP 71
7.3.3.1 Dellberate SECUNLY ThIEaTS...uuuiuiieiiiriiiiiieserirse s s s s s s s s sraera s s e rensansnnenaenns 71
PSR NoToxlo [T o r= IS o1 U111 0 VA o1 1= X £ 72
74 Required Security Services . ..o it et e e e e et e e e 2
7A4.1 SeCUlity SEIVICES..cicvviiiiiiiiiiieiveaeen, 72
A A N o o1,/ 1 aTe BT =T oa U 1 A= Y/ o P 73
7.4.3 Addressing different SyStemM AN aS......iiuiiiiiiiiiiiii i 73
7.5 Firewall TEChN O O QY c v cco i e o e e e e e e e e e e e ececccecccacacaaaaann 74
AN R NV Y Y=Y XU 1 Y TP 75
AT = Yo < 1 = N
TG (0 D1 q VT = Y V= £ PP 76
7.6 De—-Militarised ZoNe S c o v v c oo e e e e d e e e e aae e aceaaaaae e aaaa e 7
7.7 PublicKey hfrastructure oo e e e e e e e e e cccacccacceaaaaaan 79
771 SECUIE SOCKEES LAY B uuuiuuiiiiiiiiiietisie st et s e s s retees et s et s s et e e s e s et e s s e s et e saeta e et asneannns 79
A QS 0L B O =T 1 1T oT= X (=T 81
R R O =Y 1 (1ToT= L (S AN U 4 T Y 1 Y/ 82
A A O X1 1= e S T 82
A A3 (G 1 o Y o= X 17 1S 83
7.8 htegratingwithother SecurityModels oo n e i e e e e cecaaaaann &4
7.8.1 CORBA SECUINY SBIVIC O . tuitisiiuieuieisistarnsesessasssssaesereasasrrrsres e rrasaasrarnrenrenrnnres srensensensnns 84
7.9 Sample ArchiteCtUres - o oo oo i o e i e e e e e e e cceacceacceaacaaaaaaann 86
% 1O B T-Y oYUYol Y+ - o = ol = 87
7.1 L o o I = e Y 87
SCALAB I LI T Lo e e e e e e e e e e e e e e aaa e 89
8.1 o o Yo KU o e o 89
8.2 M UBEIthreading e - oo oo oo e oo e o e e e e e e e e e e cecccacccecccaaccaaacaaaaann 90
8.2.1 Concepts behind Multithreading.........ccee.. s srrrrrrr s erans 90
8.2.2 MU PIO CESSING ttuttiaenseuiereaens arasrnretrrreassserarnreares faesssneessenssseasnsensensenssnrensensenssnsnnenrensen 90
8.2.3 Multithreaded [aNQUAGES.vuiieiiiiiiiee s e s s s s s s e s s e s e s e s e sensenensennenns 90
8.2.4 Difference between threads andpProCESSES.......c.uuviiiiiiiiiiiiiiiii 90
8.2.5 ChoosINg threads O PrOCESSES. ... iuuuiiiuiiiiiiiiiiis s st rrrrasraas frrrrs e e 91
8.2.6 Choosing Multithreading or Single Threading......covevieiiiiiiiri e e 91

A"}

10

8.2 7 Usingthreads . - e eea e 92

8.2.8 Dangers ofMultithreadingo oo oo oo e e 92
8.2.9Managing ThreadS . « e e e e e e e e e et et et e e e eeeaeaaaaaaaaaaaaaaaaaeeaaeenn 93
8.2.10 Structured Locking Techniques .- - - o - o oo e ei e 93
8.2.11 Threading PoliCies . - o oo 94
S B0 1 I [1) 94
8.2.13 CORBA Alternatives to Multithreading..o oo oo oo e e eaaa 94
8.3 ConnectionManagement oo oo oo e e e e e e e e e eccacceaccaaaeaaaaaan 95
8.3.1 Establishing Connections - - . - . o oo e iea e 95
8.3.2 RECONNECTION . - - oo e et e e 96
8.3.3 11OP CoNNeCtion FEatUIES . < o v e e e e et e e e e e e e ieeeececececeeeneenn 96
8.3.4 Callbacks . - - oo e e e e e e e e e aaaaaaaaa 96
8.3.5 DireCt HHOP CONNECHION . - . - e e e e e e e e e et et et e eeeeeaaaaaaaaaaaaaaaaaaaaannnn 96
8.3.6 CORBA DaemoON - - .o o o e e e e e e e e 97
8.3.7 Closing COoNNECtiON . . - - o o oo i e e e e e o et e e e e eee e e 97
8.3.8 Connection Limits. ... oo i i i i 97
8.3.9 Connection Patterns. o . ..o e e e e e e aeaaaaaa 97
8.3.9.1 Client DiSCONNECTS . - - oot e i e 98
8.3.9.2 CONCeNIIalOr - & o o oo e e e e e ek e e e 98
8.3.9.3 Server DiSCONNECTS . - - - o o i e e e oo e e e e ee e eaaa e 98
8.3.9.4 Other 1diomS . - - o oo ot e 99
8.4 SessionManagement oo .o oo e e e e e e e e meemeaeaaa—aaaa 99
R 1T o 99
8.4.2 Session Management ISSUeS - - - oo oo oo oo e e e ee e iieaaa 99
843 Availability. - . oo oo e eeeeeeeeeeeaeaeaaaaaa.n 99
S 1=] - € o 100
8.4.5 Service ArChiteCtUre . o o oo e e 100
8.4.5.1 Concurrent ClientS. - e e eee e e 100
8.4.5.2 Number 0 fReQUESTS - - - - - L o e e e e imaaaan 100
8.5 [Oe Y e I R 1 Y 2 101
AVAILABILITY (LOCATING CORBA SERVICES) - - oo a i i ie e e 102
9.1 INtroduction . oo i e e e e e e e accecacaccceaccacecaaacaaaaaaan 102
9.2 Locatinga ServiCe . o oo oo e e e e e e e e e e e e e m e e e e meemeaaaaaaaaaa 102
9.3 Providingan Object Referenceo oo i e e e e e e e e emeccmcceaaeaaan 103
9.4 Ihteroperable Object References .o oo oo e i oo e o e e e e e e e cceccacaaaaaan 104
9.5 Proprietary Solutions . .o oo oo i e e e e e e e e e e e e e e maeaaa—aaa 104
9.6 Gettingthe Object Reference . . oo oo i i e e e e e e e e ee e eeemeeeaaann 104
9.7 the CORBA Naming Service. ..o oo i i e e e e e e e e e cececacccaaaaaan- 106
9.7.1 Choosing a Naming Service Hierarchyo i i i iicccccaaeann 106
9.7.2 Extensions to the Naming Service.o oo 107
9.7.3 Naming Service DifficUlties. .« .« o v it i e e e it eeeeeaeeeaeaaaan 108
9.8 THECORBA TRADER SERVICE. . . oo i i e e e e e e ccaaeacacaaaaaaann 108
9.9 BoOtStrappPinNg oo oo oo e o e e e e e e e e e e e e e e e e meeaaaaaaaa 109
9.10 CustomObject 10CatioN o o o o oo e e e e e e e e ececcceccceacceaaeaaan- 109
9.11 PublishingCertainObjJectsS . o oo o i i oo e i e e e e e e e e ccecccacccaaaeana- 110
9.12 Lifetimes 0F ObJeCES e o o v ot i i e o h e o e e e e e e e e e e e e e 111
9.13 (O oY s ol ITT =31 1« X 11|

AVATLLABILITY (FAILLOVER) i i i i i e e e e e e e e e et e e e e eeaaaa s 112

1

12

10.1 oI o Yo U o e o 112
10.2 Mainframe Availabilityo oo oot e i e c e e ccacaaeacacaacaacaaaaaann 112
10 G N - W I U == 113
104 ExceptionHandlingo oo e e e e e e e e ecccaceaa e aacaaaaan 113
10.4.1 Introduction toError Handling. - - - - o oo oo i i i e e e e e e e e e e e e aaaaaa 113
10.4.2Early Error Handling - - oo oo oo oo e e aaaaaaa 114
10.4.3 Dealing with EXCeptions . - - oo oo oot e i i ieeeaaaaaan 114
10.4.4 Distributed Exception Handling . .« « v v v e i i i e e e e e e eeeaaaaaaaaaaaann 114
10.4.5 CORBA Exception Handling . - . oo oo oo e e e e e 115
10.4.6 CORBA USer EXCEPLIONS - - - oo e e e e e e e e eeeeecececacaeaaaaaaaaaaaaaaaaaannn 115
105 Fault ToOleranCe oo oo e e e i e e d e e e e caaeccaceacacaacacaaeaaaaaaaaeann 116
10,5, 1 INtroduUCtion . - o o oo e 116
10.5.2 Realising thefailure . . . o oo et e ettt eeeeeeaaaaaaaae mmaaaaann 117
10.5.3 Recoverable Servers . . .o e e 117
10.5.4 Server Monitors___ «@jgaBaasBagas, . aib>.— o o« e i e e e e e 118
10.5.5 Replicating Objects . - - - - o oo e ieeea e 119
10.5.5.1 Primary-Secondary Replication.o oo 120
10.5.5.2 Stateful O b JeCtS . e e e e e e e e e e e e e ee e e e eeeeeeaaaaaaaaaaaaaaaaaaaaaaa.ann 120
10,5, 6 MUIICASE . - o e 121
10.5.7 Fault Tolerance Patterns. oo e e e et e e e e et et et e e e eaeaeaeaeaaaaaaaaaenannn 121
10.6 LoadBalancing .- .o oo oo e e e e e e e e e e ecc e eccaeccccccacceaaaaaann 123
10.6.1 Whatis Load BalanCing . « .« oo v e o it e e e eeeeceeeeaeaeaaaaaaaannn 123
10.6.2 Requirements ofa LoadBalancingPolicyo o oo oo
10.6.3 Benefits ofLoad BalanCing... o« e v e v ev oo e i i eeeeeeeaeaaannnn ,
10.6.4 Dangers o fimplementing a load balancingpolicyo oo i 125
10.6.5 Real World USes. - oo e 125
10.6.6 Load Balancing Algorithms and Policies. - - - ... oo oo- 126
10.6.7 Implementing Load Balancing using the CORBA Naming Service . .« c v oo cc ccccccanann 127
10.6.8 Network Based Load Balancing - - - - - oo o .. it a i 127
10.6.9 Operating System Load Balancing - - - - - o oo o .o 128
10.6.10 Software approaches to implementing a Load BalancingS o lu tion 128
10 TR Oe ¥ o o ¥ =31 Y o 128
IMPLEMENTATION AND RECOMMENDATIONS ..o i e e e eeeeaea 130
11.1 Inplementation htroduction. oo oo e e e ceeeceeaceaaaaaaaas 130
11.2 CreditSuisseM ainframe Architecture oot e e e e e e e eaaann 130
11.3 Choosinga suitable Integration Architecture. oo eaecaccaaaaann- 131
11.4 BuildingAn Architecture based on M anaged Evolution._..... 133
11.4.1 Services-modules instead 0fCOMPONENtS . .« - oo oo oo e c e o et eeeeeeaaannnn 133
11.4.2 Bottom-up approachfor the existingsystem.. oo . co o coaiaaaas o 134
115 Performance CONCeIrNS « o c o oo e o e i e e e d e e cc e e ccaaeacaaaaaaaaaaaaaanan 136
11.6 Security ConsiderationsS. .o oo e oo e e e e e cecacececacacacacaaaaaaanan 139
11.7 Scalability ..o oo e e e e e e e e e e e e ececccecacaeacaaac e aaaaaaaaan 142
11.8 Availability. .. oo i i e e e e e e e e e ceaecacececccecacaaacaaaaaaan 143
TS T o N e R 2 144
11.10 Other Idiomsand Useful SOTULIONS - o oo i o d i e e e i e e e caaeacaceaaaaaann 146
1.1 Credit Suisse CORBA hfrastructure . ..o oo e n e e d e e e e e c e aeceaeeaaan 147
11.12 L0 o o o U E= e o 148
L O I U G 149

121 THEFUTURE OF MAINFRAMES -« .« o e e e e e e e m e eeaeem s 149

12.2 The Futureof Legacy Applications. ... oo oo oo i e i e ccecccaccaaaaann 9
123 The FutureofDistributed Computing - - oo oo oot i e ot i e e e e ececccaaaaaaann 150
13 CONCLUSION AND FURTHER W O R K ittt sttt snesta e 151
131 General Work FOr the FUBUFN e - o o oo e oo e i e e d i e e e caaeccaccacaaaaeaaaaanan 151
13.2 SpecificResearch possibilities. - . ..o oo i i e e e i e e e e cccmcacaaaeaaa- 152
APPENDIX A: WEB RESOUR CES ..ottt sttt st e b be e b s ba et e beebe e bebe e st enbeeneanean 153
BIBLTO G R A P H Y ittt ettt b ke sttt 1e a4 e s bt e 8t e st e 4 he e b4 e et e oAt e R b e ke ek e e e e nh e b e e s ke b e e At e st e st e e sb et e s heab b e et e aneaneas 154

&

Table of Figures

FIGURE 2.1:A typical early ArchiteCctUre . o oo i o e o e e e e e e e cc e e cccmcccacccaaeaa- 12
FIGURE 2.2:Early M ultipleVirtual Storage - - o oo oo oo o oo e e e e e e e eceeacaeacaaacas 13
FIGURE 4.1: The CentralisedM odel of cOmMpPUEtING -« - o - o o oo i e o i e e e e ecmcccaaacaaan- 30
FIGURE 4.2: A TIMELINE FORDISTRIBUTED TRANSACTIONAL COMPUTING . - - o oo oo oo oo i i e o 30
FIGURE4 . 3:THE 2-TIERMODEL - - & L i i e f e e e et e e e e i e e e e 3

FIGURE 44: The 3-tierorn-tiermode | - .. i@ et e e e e e e e e e e e e e eaeam - 32
FIGURE 4.5: BROWSER BASED CLIENT/SERVER . .« - . i e i e e e i e eed e aeaea - 34
FIGURE 4.6 Component M odel - .. oo e e e e e e e e e e e acecececacacacaaacaaanaa 35
FIGURE 6.1: hterfaces Definewhat a CORBA Servicewill provide. 58
FIGURE 7.1: The Private Company NetwWorK - oo oo m oo e e e i e e e e ecmecccccaaaaaan 66
FIGURE 7.2 :ResourceAccessControl Facility o oo ee e cecccaaaaaan- 67
FIGURE 7.3: RACF SECURITY ADMINISTRATION - - o o i f i e ff e f e e e et d e e ded e eca s 68
FIGURE 7.4: BANKING SYSTEMS REQUIREMENT S -« - L oot i f i h e e e e a e e aeaaaaaa 69
FIGURE 7.5: hternal Network Security Requirements i ae e e e 70
FIGURE 7.6: hternetand Extranet Security Requirements. i eeaceaacaaan- 71
FIGURE 7.7: PROTECTING THE BANKS RESOURCES - - - - . o i e i i ced e eaaaaaas 73
FIGURE 7. 8- Different SecUrity Areas « o oo oo e coe oo e e e e e e e e e ccacccacccaaacaaaaanan 74
FIGURE 7.9: FIREWALL TECHNOLOGY - - - o o oo i i e i f e e e e e e et e e e e e eee e e e - 75
FIGURE 7.10: CORBA PROXY SERVER. - - i oot e i i e e e e e e e e e e e e e e e s 77
FIGURE 7.1z De-Militarised Zon e o o oo oo i oo o o e e f o e e e e e e e e e e e e e e e e e e 78
FIGURE 7.12: MULTIPLE PROXY SERVERS . -« - . i e e et e e eaaaa e aaaa s 79
FIGURE 7.13: SSL PROTOCOL LAYERED BETWEENHOP AND TCP/IP oo 80
FIGURE 7.14: PUBLICK ey CRYPTOGRAPHY/ASYMMETRICKey CRYPTOGRAPHY _ _.... 81
FIGURE 8.1: M aking CORBA Legacy Applications SCALE.o a . 89
FIGURE 9.1: OBJECT REFERENCE - - . - - L i i i et e e e e e e eee e aea e 102
FIGURE 9.2: ObjectLocationMode l - oo e e e e e e e mcccacccaccaaaaaan- 103
FIGURE 9.3: COSNAMENG B DL - o o o e f e e e e e e e e e e ed e eda e s 105
FIGURE 9.4: NAMING STRUCTURE - - _ L oo i i f e i f e f e e e e e e et e e ee e e e e et 106
FIGURE 10.1 :Adding Exceptions to IDLo i e e e e ecceeceaaaans 116
FIGURE 10.2: Keeping State for Recoverable Serverso oo ccacaaaaan cana- 118

FIGURE 10.3: Server M onitor e o v e e oo e i e e e e e e e e e ccceccccceaccc e aaaeaean- 119
FIGURE 10.4: Beforea Load Balancing Solution. ittt a e e aaaaan 123
FIGURE 10.5: Simple Load Balancing Solution oo oo e e e e e e e e e ecmcacaaaens 124
FIGURE 11.1 Credit Suisse Technology Details.o e e e e eceeeceaaeaaa- 130
FIGURE 11.2 SERVICE-MODULES - © . _ - i i e f e f e e e e e e e eee e e 133
FIGURE 11.3 Service ArchitectUre oo oo it o e f e et e e e e e e e e eemam e eameeam s 134
FIGURE 11.4Credit Suisse Service Architecture Overviewo ocoaoaaaaaans 135
FIGURE 11.5: Use Sequences insteadof Network Calls oo oaaacaaaanx 137
FIGURE 11.6Use Structures insteadofmany attributes oo a e oo e aaaaaaaan- 138
FIGURE 11.7: INITIALBUSINESS REQUIREMENT S - - o - oo oo it i h e i it d i e cei e eca e s 139
FIGURE 11.8: SECURE THE PERIMETER - - -« o o i i i i e e e e e e e e ee e e e eeaaae s 140
FIGURE 11.9: Adding A D M Z | L e e et e e e e e e et 141
FIGURE 11.10: FINALCORBA SECURITY INFRASTRUCTURE - - - oL oo i i i i i e i e e 142
FIGURE 11.11 CORBA Naming ServicCe . o oo oo oo i i e e e e e e e e e ecececacacacaaaaanan 144
FIGURE 11.12ReplicatedNaming Service - - o oo oo e o i e e e e e e e e ccecccacccaaaaaa- 145

FIGURE 11.13Load Balanced Entries. oo e i i e e e e cccacccaacaaaaaan 146

1 Introduction

The integration of mainframe legacy applications and their architectures is the central focus of
this dissertation. This chapter will provide a general overview of the topics investigated. Firstly
there is an examination of mainframe systems and the Banking Sector with a focus on how the
requirements of this sector are rapidly changing. There are various solutions available in the
marketplace to help meet these requirements but even these solutions can cause further
difficulties. A new way ofthinking and sharing of experiences can help overcome these problems.
Throughout the dissertation, examples of "real world" architectures and their integration strategies
will be provided.

1.1 Mainframes and early Technology Solutions

1.1.1 Using Information Technology to conduct Business

At the start of the 21st century, all of the world's large companies have an Information
Technology department and there are few that conduct business without technology. However,
quite a number of industries, especially in Banking Sector have particularly old applications that
they still use and rely on [Jordan 1996], This sector of industry was among the first to make use
of computers as part of their business model and as the first real use was over 30 years ago, some
of these corporations still rely on code that is as old as this for mission critical tasks.

1.1.2 The Mainframe as the early platform of choice

Typically these early applications were implemented on the mainframe platform and most
probably in a language such as COBOL or PL/I. These computers could reliably, and securely
provide a central server that many terminals could run applications from. During those early days,
the mainframe was comfortably able to meet the demands of the Banking Sector, in that it could
provide the various applications needed to conduct the core business of the institution and could
do so safely and reliably.

1.1.3 Living with these older applications today

Many Banking institutions that used the mainframe and its applications in these early days of
information technology must now face up to the requirements of today's business, which has
changed completely since these pioneering days. Such institutions have to decide what to do with
the "legacy applications" and how they can reinvent or reengineer them to provide what today's
customers now expect from a software solution.

1.2 Technology Requirements in the Banking Sector

1.2.1 The Nature of the Banking Industry

The role of a Bank in today's global economy is changing frequently. Traditionally, a Bank
safeguarded money and valuables, provided loans, credit and payment services such as checking
accounts, money orders, and cashier’s checks [Horswill 2000], As the banking industry is slowly
deregulated, banks are also offering more investments and insurance products that they were once
prohibited from selling.

1.2.2 Use of Technology in the industry

For quite some time now, the Banking Sector has relied quite heavily on Information Technology
to conduct its business. Many routine banking services that once required a teller, such as making
a withdrawal or deposit, are now available through Automated Teller Machines (ATM) that allow
people to access their accounts 24-hours a day. Direct deposit facilities allow companies and
governments to electronically transfer payments into various accounts. Debit cards and “smart
cards” instantaneously deduct money from an account when a card is swiped across a machine at
a store’s cash register. Finally, electronic banking by phone and increasingly via the Internet
allows bills to be paid and money transferred from one account to another.

1.2.3 Further pressures from new Technology

In today's ever demanding global environment, systems are required that are more accessible,
have greater functionality and provide all of the services detailed above with increased
performance and better security than before. In addition, Graphical User Interfaces (GUIs) are a
must for any new application, and these require more computing power [Froidevaux et al. 1999].

These increased demands, and the current high pace of process reengineering is stretching
existing systems to their limits. There are also extra pressures to move away from older
technologies coming with the arrival of Internet, Electronic-Commerce, Online Banking, Wireless
Application Protocol (WAP), GUIs, and Object Oriented Analysis and Design (OOAD).
Additionally, corporate mergers and company take-overs also often require the joining of the
Information Technology (IT) systems. All of these combined are putting older systems in a
position where they are simply not able to adapt and move forward with the changes required.
[Chen et al. 2000] outline some of the risks to business of increased advances in the technology
sector. These include

* Due to rapid changes in markets, information must be continuously updated. This adds an
extra cost of market intelligence.

» There is an increased market risk in the selling of new technology products that may not be
successful.

» Information Technology investment is a large fixed cost. Additionally, security, performance,
interoperability, and equipment depreciation add to this cost. Finally, the capital base required
for enterprise IT solutions can be massive.

» There is a human constraint introduced as technology interacts with the human user.

1.3 Problems arising
1.3.1 Why are these older applications a problem?

Just as it is difficult for us today to anticipate all the demands that competitive business pressures
will place on an organisation 30 years from now, it was impossible for developers thirty years ago
to imagine where technology would be today. Indeed [Lauder, Kent 2000] warn of such a lack of
domain expertise. As will be seen, these architectures do not suit the development of new
applications as all aspects of computing, development and computer architectures have changed
considerably.

1.3.2 How widespread are these older applications?

To answer this question it is useful to look at some figures regarding the use of COBOL over the
last few decades.

From the late 1960’s through the 1980’s, 75% of all business applications were written in
COBOL [Kolodziej 1987]. Organisations spent half of their MIS budgets to produce
approximately five billion lines of COBOL code. [Parikh, Girish 1987] Towards the end of the
1990's it was estimated that there were more than 30 billion lines of COBOL code in operation.
[Lawrence 1996]

Coupled with the pressure for change, and given the widespread reliance on COBOL and older
applications, maintaining these applications and providing continued access to their data is among
the number one concerns for modem banking corporations. Such institutions are constantly
seeking way to modernise their systems.

1.3.3 What is a Legacy System?

When considering this question and the modernisation currently being attempted by large many of
the world's largest companies, it is useful to read one definition of Legacy Systems

A legacy system is one that significantly resists modification and evolution to meet new and
constantly changing business requirements [Brodie Stonebraker 1995]

1.3.4 Who understands the application completely?

It is clear as to why these legacy systems pose a problem in today's environment. Typically, many
such systems have been maintained over time by a series of software developers. Each of these
developers may not have completely understood the entire system or program. It is next to

impossible to properly rewrite systems that have been built over 2 or 3 decades without
considerable expense. One of the difficulties faced throughout the software industry is that often
people don't know exactly how the entire systems work. [Morris, Isaksson 2002] detail the
different levels of intrusiveness with different integration strategies and each of these will be
looked at in turn in later sections.

In addition, if a re-write was to take place of such an application today, it is likely that a
considerable amount of the original programming team have long since left the organisation.
Likewise, it is conceivable that all of the original documentation is not still available, and in fact,
it is the case that many of these applications are largely undocumented. Over the years, many
localised fixes are likely to have been applied to these systems (again as is in the nature of
application development) to make a feature work to meet an immediate deadline or requirement.
All of these factors have made the application "brittle” and requiring additional maintenance.
Likewise, it has made any uniform upgrade of the architecture of the entire system, highly costly,
and quite unlikely. [Jiang 1998] investigates the costs and benefits between Legacy extension and
Legacy Integration.

1.3.5 How can the information be retrieved?

In essence, organisations are looking at how to best get at the knowledge and information already
existing in legacy applications. Quite often, these organisations have millions of Euro invested in
systems that were built in-house and although many were replaced at Year 2000 (Y2K) by
packaged Customer Relationship Management (CRM) and Enterprise Resource Planning (ERP)
systems, there are still enough legacy applications untouched to make it a highly discussed issue.
The big challenge intoday's IT industry is to integrate these legacy systems with today's web and
Internet based technologies.

1.3.6 Integrating the Legacy Systems

Since the arrival of some modem operating systems and programming languages, there have been
methodologies and approaches available to make these newer paradigms work together with their
older predecessors. These approaches have varied from completely re-writing the legacy
applications to work with the newer platforms, to less intrusive approaches such as ,,wrapping*
the legacy application or simply getting access to the data the legacy applications represented.
[Reddy 2002] outlines a "Screen-Scraping™ approach which is among the least intrusive
approaches of integration while [Froidevaux et al. 1999] outline a full-integration approach.

Each of these approaches has been tried and tested and certainly all have worked with differing
degrees of success depending on the application involved.

1.3.7 The Real Challenge

One of the greatest challenges with regard to legacy systems is to understand them completely.
Second to this comes the challenge of integrating them with the new paradigm. Many
organisations see the key requirements as being how to leverage what is currently there without
having to go inside and document it by hand. Even still, almost all answers as to how to utilise
these legacy systems are likely to require significant engineering expertise and monies. Even then

there is no guarantee of successful renovation and integration. However it what is widely agreed
is that there is significantly less risk in revamping these systems than in re-writing them from
scratch.

1.4 Solutions to these problems

1.4.1 Changing the way of thinking of Legacy Systems

The role of the mainframe is changing with the dawn ofthe new century. Companies have already
spent a considerable amount readying their mainframe systems for the year 2000. This plus other
investments are forcing companies to once again view mainframe technology as a core resource in
their IT infrastructure.

1.4.2 Standards Based Solutions

Many Banking Institutions have opted for the “wrapping” approach as the method of choice to
bring their legacy applications into synchronisation with the rest of their computing environment.
Early attempts at this integration strategy used solutions proprietary to the organisation. This very
quickly leads to further legacy applications.

At the start ofthe 1990’s, the concept of standards based solutions started to appear on the market.
These solutions involved using standards for inter-platform and inter-operating language
communication and immediately it became clear that they could be used in this way to access the
legacy systems from new technologies such as the Internet and Java. [Murer 1999] outlines the
use of a standards-based solution in the Credit Suisse legacy integration project.

15 Further Difficulties and their Solutions

1.5.1 Example Standards Based Solutions

One of the most popular solutions available in the industry today is the Common Object Request
Broker Architecture (CORBA) by the Object Management Group (OMG). Another is the Java 2
Enterprise Edition (J2EE) by Sun Microsystems (in particular the Connector Architecture
specification). A third popular standard in the middleware industry is the DTP (Distributed
Transaction Processing) specification by the X/Open Group.

1.5.2 Problems arising in using these Standards

Early pioneer projects that used CORBA or J2EE Connectors as their chosen Architecture
solution for integrating their legacy applications soon ran into problems. The specifications
needed market implementations and these implementations deviated from the specification from
time to time. On other occasions the specification itselfwas simply not precise enough.

In addition, the implementations sometimes only provided the base architecture for integrating
legacy systems and the difficult parts of object location, thread management, transaction support
and security were left up to the individual organisations to implement themselves. [Koch Murer
1999] outline such problems seen in Credit Suisse.

1.5.3 Sharing Solutions

It quickly became apparent that throughout the banking sector the same problems were arising. It
also became apparent that once an organisation or project came up with a solution for the problem
that this solution could be useful to others trying to accomplish the same goals.

1.5.4 Patterns

One of the most useful additions to software development in recent times has been the concept of
a pattern. A pattern is a solution to a well-known problem that can be applied in different
instances to overcome this problem. One of the most influential books of the last 10 years has
been “Design Patterns —Elements of Reusable Object Oriented Software” by Gamma, Helm,
Johnson and Vlissides [Gamma 1995], This book provides many patterns or well-known
solutions to various problems encountered with software development using object-oriented
principles. These patterns do not claim to have all of the answers or a complete solution, but the
use of the principles inside can make the overall development process less error prone.

The concept of patterns in computing came from the field of Architecture and specifically
[Alexander 1977] and [Alexander 1979] which were revolutionary in that field and, in turn,
changed the way people though about problems in world of computing too.

A form of pattern that has started to become popular in recent times is the “Architectural Pattern”.
This type of pattern can be used in high-level architectures and Legacy integration projects to
ensure that any solution will work at the enterprise level as is mandated in the requirements of any
large scale project by today's Banking Sector.

In turn, people such as [Mowbray, Malveau 1997] researched and produced patterns for specific
areas and solutions so that a project choosing one integration strategy could benefit from the
experience of others that had been in the same situation previously.

1.6 Summary of the Issues and Research Aims

The following list comprises the research aims described in this document:

* Define the requirement of modem banking systems
* Investigate the approaches available for integration of the legacy systems
» Consider the critical problem areas and investigate solutions and patterns.

1.7 Research Motivation

Most of the large organisations within the Banking Sector have realised that today there is a
problem with their Legacy Systems. This problem is simply that they cant live with them because
of new technology and customer requirements, but they cant live without them for business
reasons. Those who have decided not to replace these systems are going for various integration
strategies to enable integration with newer technologies including the Internet and Java.

Among those who have already begun this process, there is a realisation that the task at hand is
not trivial. It is clear that to get to where they need to be on budget and on time they are wise to
use standards based approaches. To also look at “patterns” and solutions suggested by other
projects attempting the same task would further help this process.

The main aim of this research is to find out the possible blockages to a smooth integration of
legacy and object-oriented technologies. A second, more important aim is to find possible
solutions to these problems and offer advanced and industry recognised solutions to further
potential problems.

Throughout the research each of these goals and objectives will be re-examined to ensure that the
real-world problems of legacy integration projects are addressed and to evaluate the approaches
proposed in this context.

At the end of the research, it should be possible to compare any approaches recommended in

terms of is benefits to the Banking Sector. Any new overheads or difficulties should also be
reviewed, so that extra research could offer further solutions.

1.8 The Rest ofthe Document

The following topics will be considered moving through this thesis:

Section 2 looks into the requirements of information technology in the Banking Sector and the
legacy systems that are already there. Section 3 considers the various approaches to integrating
these systems.

Section 4 investigates one of the approaches (CORBA). Section 5 looks at the concept of Patterns
and details the concept of architectural patterns in this context.

Sections 6,7,8 9 and 10 looks at some of the most difficult areas for integrating legacy systems.
These areas are Performance, Security, Scalability and Availability. Section 11 details a real
world implementation of such a legacy integration problem.

In the Conclusion there is a look at an overview of what has been investigated and other
considerations for the future.

2 Legacy Applications in the Financial Sector

2.1 N ature of the Banking Business

2.1.1 Early Banking

Today’s banking industry is a cornerstone of countries' economy. It is interesting to learn
however, that the concept of a hank pre-dates even the use of coinage in society. It is believed that
banking first originated in Ancient Mesopotamia where the royal palaces and temples provided a
secure safekeeping place for grain and other commodities. [Glynn 1996]

This early form of banking included the use of receipts for transfers to both the original depositors
as well as to third parties. With the success of this banking, private houses also became involved
in similar banking operations and laws regulating these banking practices were included in the
code of Hammurabi, which was the rule of law in Mesopotamia.

The history of money and coinage goes back to very early times with increases in population
groups and the use of barter as means of exchange. Money as an accepted form of payment began
with the first finding of precious metals and eventually “token™ money was accepted instead of a
metal of equivalent value to the product being bought.

Today, money serves various purposes. Among its concrete functions, it should be an acceptable
medium of exchange in trades for goods and services. It should be a standard of value for a good
or service, and should be a store of value so that it can be saved and used in the future [Glynn
1996]

2.1.2 General Functions

The primary function of a modem bank is to safeguard money and valuables. Other functions
include the providing of loans, credit and payment services, such as checking accounts, money
orders, and cashier's checks. Modem banks also offer insurance and investment products.

As [Jordan 1996] indicates, the functions of modem retail banks include

» Conducting exchange: clearing and settling claims

* Funding large-scale enterprises: resource pooling

» Transferring purchasing power across time and distance

» Providing risk management: hedging, diversification, and insurance

* Monitoring performance of borrowers: mitigating adverse incentives
» Providing information about the relative supply and demand for credit

Several types of banks exist in this marketplace that differ in the number of services they provide
and the clientele they serve. Commercial banks that dominate the industry typically offer a full
range of services for individuals, businesses, and governments. These banks come in a wide range
of sizes from large "money centre” banks to regional and community banks. Such banks tend to

get their primary revenue from the interest on loans to private or commercial parties. Of course,
they can use the money deposited in savings accounts to fund these loans and will give a lower
rate of interest on this money than the interest they charge on the loans, ensuring profitability.

Money centre banks are often located in major financial centres and are usually involved in
international lending and foreign currency, in addition to the more typical banking services.
Regional banks are usually concentrated in a geographical area and their numerous branches and
Automated Teller Machine (ATM) locations appeal to individuals. Community banks are based
locally and offer more personal attention that small businesses prefer.

There are also Savings banks catering to the saving and lending needs of individuals, Credit
Unions with members often from the same organisation or company, Federal Reserve Banks
which are Government agencies performing various financial services on behalf of the
Government.

2.2 Architecture ofthe Mainframe Operating System

2.2.1 A BriefHistory of Computing

The mainframe operating system was among the first commercially available operating systems to
be used in the banking industry. The modem computer followed on from Charles Babbages' first
experiments with numerical machines. Some 70 years later, the first electronic computers were
created.

In some banks, use was made of electromechanical relays that served as on and off switches. It
could handle 23 decimal places and four arithmetic operations. It could also run special programs
to handle logarithms and trigonometric functions. These new machines could complete tasks that
would take a man six months in one day.

An example of such technology was the Mark | project from Harvard University in 1941. The
Mark 1 machine was soon replaced by the EN1AC (Electronic Numerical Integrator and
Computer). For full details on this technology see [Weik 1961]

The widespread use of computer in banks started in earnest with the era of the big or “super”
computers that began in the early 1960’s. There were three general categories of computers:

2.2.2 Categories of Computers

The Scientific computers were a family of computers that were primarily designed to perform
calculations with large numbers. Floating point arithmetic is the term for large number processing
and allows large or small numbers to be represented and manipulated. This type of machine was
popular with universities and large companies.

Decimal Computers were primarily designed to perform calculations with currencies. Decimal
arithmetic is the term for this type of processing and businesses wanting to process financial data
were the big customers.

Character Computers were character oriented and were more general purpose. Character oriented
computers were designed to address character strings such as names and addresses.

2.2.3 Early Compatibility Issues

All of these families of computers could perform decimal, number and character manipulation.
The architecture, however, was aimed at one type or the other and if an organisation wanted to
move more towards a different family, their application programs would require large changes.

Each family used different instructions to perform the same functions. The instructions were
different and conversion from one software system to another was traumatic for designers and
developers alike. Every application had to be completely rewritten from scratch to use another
hardware. [Johnson 1989]

The actual programming of such machines was also not a trivial task. This can be seen from a
programmer of such systems

“Atfirst, programmers were given an IBM memory chart on which were printed 200 rows and 10
columns. The theory was that as you wrote your code, you wouldplace your instructions and data
in an optimal location and then mark that memory location offon the chart. This sounded great
until you actually started modifying a large program that nearlyfilled the drum. You soon took
whatyou could get” [Kugel 2001]

2.3 Mainframe Technology

2.3.1 Mainframe Overview

With mainframe software architectures all intelligence is within the central host computer. Users
interact with the host through a terminal that captures keystrokes and sends that information to the
host.

MVS (Multiple Virtual Storage) is the operating system from IBM that is installed on most of the
mainframes and large server computers in the world. MVS is a generic name for specific products
that includes MVS/SP (MVS/System Product), MVS/XA (MVS/Extended Architecture), and
MVS/ESA (MVS/Enterprise Systems Architecture).

2.3.2 From MVS to OS/390

Historically, MVS evolved from OS/360, the operating system for the System/360, which was
released in 1964. It later became the OS/370 and the System/370. OS/370 evolved into the
OS/VS, OS/IMFT, OS/IMVT, OS/MVS, MVS/SP, MVS/XA, MVS/ESA, and finally OS/390 and
the newer Z/OS available in the last few years.

Throughout this evolution, application programs written for any operating system of this type
have always been able to run in any of the later operating systems due to IBM’s guarantee of
forward compatibility between operating systems.

2.3.3 MVS Products

An MVS system is a set of basic products and a set of optional products. This allows a customer
to choose the set of functions they need and exclude the rest. The main user interface in MVS
systems is TSO (Time-Sharing Option).

The Interactive System Productivity Facility is a set of menus for compiling and managing
programs and for configuring the system. This product also provides for versioning, auditing,
promoting code and configuration management to track all application components.

The main work management system is either Job Entry Subsystem 2 or 3 (JES2 or JES3). Storage

Direct Access Storage Device (DASD) management is performed by DFSMS (Distributed File
Storage Management Subsystem).

Cards Processor

_ CPU
Magnetic Tape Reel

Floppy Diskette T

DASD

Software Hardware

FIGURE 2.1:A typical early Architecture

The Virtual Storage in MVS refers to the use of virtual memory in the operating system. Virtual
storage or memory allows a program to have access to the maximum amount of memory in a
system even though this memory is actually being shared among more than one application
program. The operating system translates the program's virtual address into the real physical
memory address where the data is actually located. The Multiple in MVS indicates that a separate
virtual memory is maintained for each of multiple task partitions.

12

Address Space 4
Address Space 3
Address Space 2

Address Space 1
16 MB

OS/MVS
Data Areas
Common (Shared)
1MB
Private
OS/MVS 370 Programs
OMb System (Shared)

FIGURE 2.2: EARLY MULTIPLE VIRTUAL STORAGE

The MVS operating system is considerably more complex and requires much more education and
experience to operate than smaller server and personal computer operating systems.

2.3.4 TPF (Transaction Processing Facility) and VM

Other IBM operating systems for their larger computers include or have included: the Transaction
Processing Facility (TPF), used in some major airline reservation systems, and VM, an operating
system designed to serve many interactive users at the same time.

The TPF platform is especially useful for business-critical systems. Airline reservation systems as
well as many systems for railroads, hotels, government as well as financial institutions rely and
trust this operating system.

2.3.5 Storage considerations

Back in these early days, central storage upon which the central processor processed operations
was a costly and scarce resource. System/360 system control software was characterised by
techniques for managing central storage:

PCP dedicated it to one application

MFT split it into several fixed pieces or partitions
MVT varied the number and size of these pieces, calling them “regions”

13

With the advent of virtual storage, systems were freed from the constraints of Central Storage by
supplementing them with less expensive, though slower, external software devices in a manner
transparent to most software by employing Direct Address Translation (DAT) hardware. This
allowed the migration of existing Central Storage operating systems into a virtual storage
environment. [Johnson 1989]

2.3.6 Transactions

The main purpose of most mainframe systems is the provision of different services to a multitude
of concurrent users. In a common scenario several thousand users interact concurrently with the
same mainframe system.

Computer memory is relatively cheap today, however twenty years ago, providing an individual
process for each user was not an option. To manage this large number of processes and store the
status information for each in memory would have been too expensive so the solution to this
problem involved each user sending requests for execution of a function. [Koch, Murer 1999]

This solution to the problem is what is known as a transaction. A transaction request contains all
required information in a set of parameters. The function itself is a stateless programming entity
(at least from the users point of view) and may be removed from memory as soon as the execution
is finished.

Many banking applications were built as transactions under popular mainframe transaction
monitors such as CICS and IMS for the very reasons outlined above. It is these applications that
will be considered when investigating possible integration strategies with modem technologies.

2.3.7 Limitations and Benefits of the Mainframe Architecture

These early mainframe software architectures were popular for the following reasons.

» They were reliable.

» They were secure.

They scaled well.

They met the early business requirements of the banks.

As technology advanced however, certain limitations appeared.

» They did not easily support graphical user interfaces(GUI) or access to multiple databases
* Produces substantial network traffic

» Requires a complex operating System

» Expensive to maintain

14

2.4 First Banking Applications

2.4.1 What was available?

Older systems running these applications were typically first developed in COBOL. Other
programming languages available included PL/1 and FORTRAN and Assembler. These
applications used the Virtual Storage Access Method access method for file management and
Virtual Telecommunications Access Method for telecommunication with users. IBM's primary
relational database management system RDBMS is DB2. Typical applications that were required
included payroll, accounts receivable, transaction processing, database management, and other
programs.

In the past, the banks' applications were almost exclusively realised as large program blocks
executed on the host computer. Almost all applications were developed in-house, apart from
elementary services such as databases and transaction monitors

2.4.2 Applications performing Business operations

Business operations applications perform the business transactions on behalf of the bank. These
applications are crucial to companies. Typically these applications would include any or all of the
following [Horswill 2000]

Cash for goods transactions

Any buyer/supplier transactions than can be translated into digital format
Internal business processes dealing with company resources

Credit Card Transactions

Cash Transactions from a banks ATM or cash dispensers

Stock market transactions for a stock exchange or brokerage
Information Transactions for collecting, collating and distributing news.
Payroll Transactions

Logistics transactions (scheduling of vehicles)

Voice application transactions

Sales transaction

2.4.3 Essentials of a Business Applications

These Business Applications typically had the same features as each other. For example, in early
business applications, there was a computer at the centre with people being the focus of the
application.

The application's purpose was to keep accurate, up-to-date, secure operational business
information and deliver rapidly to end-users. It needed to be fast, accurate, secure and auditable
and information must be up to date and available to multiple users across a company, its suppliers,
customers and business partners

The Responsibilities of application should be divided and there should be support for the various
lifecycle requirements including Design, Development, Test and Update. There were certain
technical requirements that had to met including Accessibility, Availability, Communication,
Manageability, Prioritised use of hardware, Rapid Response, Reliability, Recoverability,
Scalability and Security

2.4.4 Composition ofa Business Application

A typical business application had code separated into components that managed the complex IT
system. There were different responsibilities within the overall application. [Horswill 2000]

These responsibilities have traditionally been broken into two types of components. (Business
Logic and Presentation Logic Components)

Business Logic Components typically had functions such as validating Input Data, searching the
database, Cross-validating input data and database data, updating data (including additions and
deletions) and log activities. These were all done according to the business rules.

Presentation Logic Components had as their responsibility, the presentation of data to the end user
and the receiving data from the end user. They invoked general-purpose presentation management
code controlling layout of data on screen or output device. They validated input, handled
interactions in correct sequence, confirmed completeness and invoked business logic as needed

2.5 New Customer Demands and Pressures on the Systems

2.5.1 Early Technology Requirements

The first pressures for banking Technology to change came with the advent of Automatic Telling
Machines (ATM) and Smart Cards that could be used to electronically pay for goods.

Routine bank services that once required a teller are now available through these ATM that allow
people to access their accounts 24 hours a day.

Since the start of recent technology advances, the Internet and e-business have arrived and gone
past being just buzzwords in the industry. They are now real requirements. There are pressures for
change of existing banking applications coming from two major directions.

2.5.2 Changing Business Requirements

The fast pace of business process reengineering coupled with banking and corporate restructuring
and mergers has stretched the flexibility of existing system to their limits. [Froidevaux et al.
1999]

In addition, requirements for new Services and Real Time availability have left this older
technology creaking under the pressure.

2.5.3 Evolving Technologies

With the old 3270 "Green Screens” being replaced with Graphical User Interfaces came a
requirement for more computing power. In addition the very nature of programming has changed
with the arrival of Object Oriented Analysis and Design and the necessity to have an e-presence
have also added to the pressures for change.

Specialisation and automation in banking have lead to dozens of special purpose systems (ATM,
phone banking, trading systems, etc.) with hundreds of specialised interfaces among each other.

The software required today is being developed based on logical components and managers are
placing emphasis on producing code that is transportable across the layers of n-tier architecture
and that is reusable among business applications. Application software development, which is
based on the business-component factory model strongly, supports business objectives of cost
efficiency enhanced customer service, and quick time-to-market. [Summers 2000]

The previous chapter outlined some of the other concerns about how legacy systems are coping
with these pressures for change. [Kudrass et al. 1996] outline a real-world example where,
because of a lack of documentation and in-house know-how concerning the legacy MIS it has to
be analysed and documented before being replaced.

In this case, the documentation is supposed to act as an online help system for the MIS
administrator. The documentation should further include an analysis of the system'’s interfaces in
order to maintain these more efficiently.

In this scenario, another well-known problem can be seen, where, as a result of multiple
modifications over time the data structure of the MIS is messy and the data is partially
inconsistent.

All ofthese concerns, when combined place a very real pressure on today's banks to either replace
or upgrade their existing applications.

2.5.4 New Opportunities

However, banks do not have to simply be reactive and wait for difficulties to rise, rather,
information technology provides some new opportunities. [Chen et al. 2000]

They can expand their product range using new technology and the resulting product innovation
and diversification. This will expand the earning base and increase earning stability. In addition,
automation of services becomes easier, an expanded customer becomes a target and the cost of
market entry is lowered by this technology. Examples of this can be seen in the new purely-
intemet based online banks of the dot-com period.

17

2.6 Challenges for the future

As outlined in [Murer 1999], there are conflicting challenges in the new role of IT in the banking
sector. On one hand, new distribution channels require new technologies but a high reliability
requirement along with enhanced security and performance, adds extra risk to the introduction of
this new technology. There is further trade-offs between short project cycles required for the
integration of standard applications compared with possible long project cycles due to cost
restraints.

It is clear as discussed in Chapter 1that as it is difficult for us to know how IT systems will look
in 30 years time, it was equally as difficult for mainframe developers of 30 years ago to foresee
where technology would be today. As a result these older architectures do not suit the
development of new application that meet today's requirements.

Having said that it is also accepted that the mainframe is still at the core of many of the World's
systems. It is also accepted that the full expertise as to how these systems work does not exist, but
there is still a need to get at the information contained within.

Banks will be motivated to overcome obstacles such as systems incompatibility and consumer
privacy concerns, to achieve greater operating efficiencies and to protect their valuable payments
franchise. In addition, on-line purchases of sales and securities by individuals will also continue to
increase, providing a growing source of commission for banks and financial institutions [Me
Donough 1999]

As shall be seen in the next chapter, there now exists a catch-22 situation where it is agreed that
there is a need to modify these legacy applications but that there could be large risks involved. As
a result several strategies for integration or reengineering are required.

The extra complexity ofthese new banking applications is also cause for some concern. Operating
risk, in particular, has attracted more attention in recent years, partly because improvements in
technology and data storage permit institutions to retain and analyse more data and also because
the increased volume and complexity of bank transactions have, arguably, increased this risk for
many banks. [Ferguson 2002]

2.7 Conclusion

In this section it has been discussed how the nature of the banking sector relies on technology to
service its customers. A short look has been taken at early mainframe architectures and it can be
seen how these are no longer adequate for today's business and technological requirements. Inthe
next section there will be an investigation about various methods for integrating these older
systems with today's technology.

As outlined in the aims and objectives of this research, a key focus is to see possible difficulties
with integrating older mainframe technology with modem object-oriented technologies. This
chapter gave an overview of the mainframe operating system plus the applications that run on it.
Some of the pressures from business and technology that are forcing industry to integrate these
different technologies were seen.

18

It is possible to see that there is really no alternative but to integrate or replace the legacy systems
and the next step in the research will be to see what options are available today to facilitate this
migration.

These results make the objectives of this research somewhat clearer. There are pressures on
modern Banking IT Systems to adapt to newer technologies. However, the existing systems in
place are not easily replaced. The next step of the research is to examine some integration
strategies available today.

19

3 Approaches to Integrating Legacy Systems
3.1 Introduction

This chapter introduces the various approaches that are available in today’s market place for
integrating legacy systems. Each of the approaches is being used in real world projects but some
are more suited to different kinds of projects.

There are currently many definitions of legacy systems. As outlined in Chapter 1, the definition
by [Brodie Stonebraker 1995] best matches the problem facing the Financial Sector today.
[Bennett 1995] extends this to state that legacy systems are those that cannot be easily changed
with but that are vital to the organisation. A narrower definition for our purposes, and as defined
by [Juric et al. 1999], states that

A legacy system has existing code, is useful today as well as in use today and the
architecture ofthe system it resides on is notdistributed and not object oriented.

This is commonplace with old mainframe based IMS and CICS transaction. This definition is a
somewhat limiting, as a legacy system does not have to be an old system. However, as this thesis
focuses on legacy systems as those running on the mainframe platform, it is a valid definition.

Another view of these systems is outlined in [Lauder, Kent 2000] where it can be seen why
organisations are afraid of replacing their legacy systems, as it is a significant drain on the
organisation’s resources. Another reason is that they have undergone years of debugging effort
and truly reflects the workings of the business.

This chapter will look at exactly these of types of legacy systems and consider how best to bring
them into synchronisation with the newest technologies and the changing business requirements.

3.2 Replacing the entire banking system

In principal, the simplest solution to the problem of outdated banking applications would be to
replace the whole system and start from scratch. Looking a little deeper into this solution
however, one can quickly see how difficult this would be in reality. As mentioned in the previous
chapter, many banking applications have had up to 30 years of continuous development and have
reached a degree of integration and sophistication that would be extremely difficult to replace
without major effort.

[Lauder, Kent 2000] warn how the legacy system itself is often the only source of recorded
domain expertise. The question that arises is whether the new systems will really contain all the
functionality of the older systems. The danger of building such a new system would be that itjust
contains the knowledge of which the business is aware and misses much of the implicit
knowledge added into the older systems over decades. Missing this knowledge could result in
further updates required to the new systems, which are costly in development terms and customer
trust terms.

20

However this solution was found also to be not financially viable [Erlikh Goldbaum 2001] and
could take many years to implement at a cost of many millions and even then it is particularly
difficult to describe the requirements for a banking system five years into the future. [Koch
Murer 1999] outline how a first estimate for Credit Suisse showed that it would cost roughly 800
million Euro over a period of 5 to 7 years to replace their existing mainframe solutions.

Another approach would be to adapt the system from another organisation that had already
migrated their legacy technology. This would be a way of getting a mature system quickly. But it
has been found that this has only really worked historically in merger situations and has not
solved the problem for large organisations [Koch, Murer 1999]. It was also found to be not
possible to buy a complete solution, as there simply is not a large scale, complete application that
matches all of the requirements of a modem bank in existence.

For many organisations, the only solution is to try and re-engineer their existing systems so that
they can work side by side with the newer technologies.

3.3 Approaches to Integrating the Legacy Systems

Some obvious choices for integrating our mainframe applications with new technologies include
emulation, screen scraping, using adapters to pass information, and full integration between the
two paradigms.

Generally, there are two possible solutions to modifying a legacy system [Jiang 1998]
» Legacy extension
» Legacy integration.

Legacy extension is a means of matching the short-term requirements placed on an existing
system by fixing system deficiencies and adding enhancements.

Legacy integration however, attempts to reuse the legacy system to implement a new architecture.
The idea is to hide these systems behind consistent interfaces that hide the implementation details.
It is a solution that tries not to propagate the weaknesses of past design and development methods.
Unlike legacy extension, this is a long-term solution as the use of interfaces allows for changing
or replacing the implementation at a later date without affecting other systems.

Each project will need to decide on an integration strategy that best suits the needs and
requirements of that project. This strategy would have to be based upon different criteria that will
be investigated throughout the rest of this section but include obvious topics such as cost, risk
involved, levels of intrusiveness etc

3.3.1 Level of intrusiveness

As mentioned in an earlier chapter, one of the biggest headaches in re-engineering or integrating
legacy code is to really understand the older system. If a company has full access to all the
documentation and all the source code it might be relatively painless, but if there is not full
knowledge of how the older system worked, this might be impossible.

This knowledge of the existing system can be crucial in determining the level of invasiveness of
an integration strategy. [Morris, Isaksson 2002] compare the problems associated with the
different levels of invasiveness. When a solution actually intrudes upon the functional legacy code
there is a risk of tampering with the programming as the code is often old, may have been
extensively modified and the original developer may not be available. A non-invasive approach
usually involves working from the legacy green screens or source files.

If a more invasive approach in chosen, and attempts are made to change this original code, there is
a risk of compromising the integrity of the enterprise data. There are some benefits to the less
invasive approach:

» The Business logic has been tuned and refined over time

» Developers do not have to change mainframe application logic
 Strategic business processes remain intact

» Risks of reuse are minimal and returns typically high

» Development is rapid and costs are comparatively low

A common non-invasive approach is integrating purely at the presentation level, i.e. screen-
scraping. This involves an Object Oriented client navigating its way through the legacy
application screens and submits and retrieves results through screen fields. The advantages above
are clear but there is a negative side. These negative points include:

e System is still not truly understood
* Future changes difficult
» Inefficient

A Company could opt for integration at the functional level. Using this approach would involve

1 Modularising and componentising the existing legacy applications
2. Wrapping these components with an Object Oriented wrapper
3. Integrating these Object Oriented components.

The benefit of choosing this approach above the others would be that it is now possible to share
functionality as well as data in a peer to peer relationship.

3.3.2 Reusability and Robustness

Any integration strategy needs to be considered in terms of its Reusability. When any of these
approaches are used and the system requirements change, the question will be posed as to how
easy will it be to implement or update the existing infrastructure.

Also in question will be the robustness of the system, if a screen-scraping approach is taken.
Compare this robustness to that of a system with full integration between the legacy system and
the rest of the system. A reason for this comparison is that projects that opt for a screen-scraping
solution run the risk of having a less robust solution because the internals of the application are
not modified and there is less chance to adapt the application to the new architecture. This is an
important area that must be investigated at an early stage.

22

There is a fundamental problem in that legacy applications do not look like distributed objects and
this makes it difficult to reuse these systems [Juric et al. 1999]. Attention must be focused on the
object interfaces, so that legacy applications are encapsulated in order that collectively they
implement reusable, virtual distributed objects.

Enterprise Systems require an infrastructure that contains the various components of the system.
Certain approaches require less work building such an infrastructure and this point can be linked
to the intrusiveness of a given approach.

3.3.3 Complexity

When an integration approach has been decided upon and is implemented, it must be estimated
how complex will it be to actually use this system. Some of the less intrusive approaches require
very little extra effort in terms of building an infrastructure but then to actually use the approach
can cause some headaches.

[Reddy 2002] outlines an example where the green-screen custom application that provided all
the information for a bank’s employee to do their jobs is replaced by a GUI enterprise package
application. In order for the employee to do their job, they must now navigate 14 different screens
as opposed to just one screen in the older customised application. In an example like this, no
amount of GUI or computing power will replace the ease of use of the older application.

3.4 Emulator

3.4.1 TN3270 Protocols

TCP/IP based mainframe connectivity is most often furnished by the TN3270 protocol [TN3270
2001] which enable TCP/IP nodes to emulate 3270 terminal sessions and deliver 3270
functionality to the desktop over TCP/IP networks. This protocol is one of the most popular
means of desktop to mainframe connectivity with an estimated 23.1 million clients in use in 2000.
The hierarchical structure SNA (Systems Network Architecture) devised by IBM for mainframe
connectivity is being abandoned in favour of TCP/IP - a protocol noted for its openness,
extensibility, manageability and real world functionality. These features make it ideal for
enterprise connectivity.

3.4.2 Using the Emulator Approach

Using an emulator simply brings 3270 screens to the desktop with no intrusiveness into the legacy
application and no GUI functionality as well. There is little overhead but there is no real gain in
terms of new GUI and OO technologies.

The original design of 3270 devices deliberately favoured high performance over user interfaces.
From the early 1970s, 3270 devices brought transaction processing to the end user. A key design
feature was to provide useful data to the end user over the network in less than one second. This
was to be completed with a bandwidth that would be considered to be abnormally narrow today.
[Horswill 2000]

23

3.5 Screen Scraping (Presentation Layer Integration)
3.5.1 What is Screen Scraping

Screen Scraping is the presentation layer integration approach where an OO client navigates it's
way through the legacy application screens and requests and results are submitted and retrieved
through screen fields.

[Froidevaux et al. 1999] outline how this is achieved with traditional legacy systems. In the case
of IMS and CICS, transactions are terminal oriented. The transaction receives a request from a
terminal, processes the request and sends the response back to the terminal. There is a terminal
session manager that is responsible for managing terminal sessions. Terminals handle form-
oriented user interfaces. Forms contain constant text and a set of input and output fields. The user
fills in the input fields and after completion transmits the form. Input fields are transmitted to the
terminal session manager who sends the request on (to the TP monitor scheduler in a TP monitor
such as IMS). The TP monitor handles the request.

[Stroulia et al. 2000] outline an experiment to integrate a legacy system that uses a block-mode
transfer protocol between the mainframe application host and the user terminals such as the 3270
protocol. The idea behind the project is that during its interaction with a user, the legacy
application goes through a sequence of distinct behavioural states, which correspond to the
distinct screens that it forwards to the user. The implication then is, that identifying the distinct
screens that an application may forward to its users corresponds to identifying the behavioural
states that it goes through, during its interaction with the users. This is an example of a project
successfully using screen scraping to access their data.

3.5.2 Advantages and Disadvantages

The Screen Scraping approach to integrating legacy systems is known for being "quick and dirty".
This approach is relatively easy to implement and to get access to the legacy's applications core
via the screens is relatively straightforward. However, there is still no real insight as to how the
application works and any functionality changes that are required by new business requirements
cannot easily be met.

With the focus of screen scraping on the user interface rather than modifying core process models,
screen scraping offers the least benefits to business [Erlikh, Goldbaum 2001].

3.6 Functional Level Integration

Another approach involves componentising the existing legacy system and wrapping these
components with an OO wrapper. This can then be integrated with OO components and
functionality and data are shared. The result of this approach is a peer to peer relationship between
OO and Legacy Systems.

Integration with wrapping makes legacy systems look like distributed objects. [June et al. 1999]

These wrapped objects are like any other object in the distributed system and clients do not have
to know about the implementation details

24

This is essentially the approach that adopts the middle ground. Intrusiveness is kept to a minimum
in as much as possible but there is also have a chance to get access to the functionality of the
legacy systems.

3.7 Using CORBA for Functional Level Integration

The CORBA framework allows us to define interfaces for components and provides a transport
mechanism for requests between components. Appropriate components must be identified and
their interfaces defined. The next step is to design the newly integrated system to use these
components.

Even within the CORBA world, there are differing degrees of invasiveness.

3.7.1 CORBA and Screen Scraping

There is a possibility with CORBA that allows our legacy applications to communicate with real
distributed objects in the system but not being wrapped themselves. This is a halfway solution but
still has all of the problems of traditional screen scraping.

Terminal oriented transactions can be re-used by simulating a terminal. A form is modelled by a
two-dimensional 25*80 character array. The CORBA client fills in the input-fields into the array
and submits the request to the terminal session manager. The response is received as a character
array and the CORBA client extracts the output fields.

IONA Technologies provide a static adapter for this purpose. This adapter is a standard CORBA
server that implements a fixed set of CORBA interfaces for mainframe communication. The
implementation of an operation might call a transaction for example. CORBA input parameters
would be serialised for the receiving transaction (in a string). The request is parsed and returned
as CORBA out parameters. Static adapters can be automatically generated from a CORBA
Interface Definition Language (IDL). If the adapter contains application logic, manually written
hooks (extra application code) have to be written.

3.7.2 CORBA Adapter Technology

The CORBA Dynamic Adapter permits existing transactions to be exposed in IDL and thus
connected into the wider CORBA-based computing environment. An example of a dynamic
adapter is the Orbix IMS Dynamic Adapter from IONA Technologies.

From the CORBA perspective, strictly speaking, the Orbix IMS Adapter is a conventional
CORBA server. From the client perspective, it simply presents a set of client-callable IDL
interfaces. In practice the Adapter, upon receiving a request from an Orbix client, consults a pre-
defined mapping repository, looks up the appropriate IMS transaction name keyed on the
incoming interface and operation names, and submits the request to the relevant IMS transaction.

When the IMS transaction receives control via the normal IMS dispatching process, it uses a set
of Orbix-provided services to read in the operation’s arguments and to return a result. The adapter
will then return the results of the operation to the client.

A dynamic adapter performs the same operations as a static adapter but implements a dynamic set
of interfaces. Dynamic adapters can be built analogously to inter-ORB bridges. They are
implemented as CORBA dynamic skeleton interface (DSI) servers or as a GIOP (generic inter
ORB protocol) routers. Because the adapter does all the necessary marshalling and demarshalling
the request can be handled in the transaction without stub and skeleton code. [Froidevaux et al.
1999],

In the case of the Orbix IMS Dynamic Adapter, an adapter is a running CORBA process. It
imports its set of interfaces from an Interface Repository (IFR) and has a mapping file which
maps each interface to an IMS or CICS Transaction. When a client request reaches this adapter,
the request will be re-directed to the correct Transaction based on the interface name.

CORBA supports the use of this approach rather well. DSI objects allow the routing of requests of
any interface available in the Interface Repository (IFR).

3.7.3 Full Integration

Due to the nature of existing CICS and IMS transactions, it is difficult to have these as true
CORBA objects in a distributed system. However, there are industry solutions available that allow
them to be seen as CORBA objects without the use of Adapter technology.

Take for example a legacy CICS transaction. A lull integration with CORBA can allow a
transaction to receive CORBA I1OP (Internet Interoperability Protocol) requests without the use
of screen scraping and adapter technologies. This requires having a full CORBA implementation
existing inside CICS and due to the short running nature of traditional transactions this is still not
a perfected technology.

After deciding to adopt this approach the legacy system and our OO system must co-exist and co-
operate. There must be transparency of implementation and technology. There must be
consistency of interfaces and the system must act as peers. As has been seen earlier, CORBA
provides all of these and more and consequently is the approach best suited to such integration.

Another popular method of having CORBA on the mainframe is by building CORBA objects on
Unix System Services (a Unix Shell on OS/390), or as BATCH Jobs. It is possible to build C++
(or Java) CORBA objects on this platform that are true CORBA objects. Also possible is the use
of Linux for OS/390 to hold these CORBA abjects.

3.7.4 Why CORBA

One of the worries for banks before introducing a CORBA system is the perceived complexity of
CORBA, particularly for the mainframe developers to understand the concepts of Object Oriented
distributed programming.

However, the benefits of using CORBA to integrate legacy applications usually outweigh these

fears. [Murer 1999] outlines just why Credit Suisse chose CORBA to integrate their mainframe
applications.

26

» There is clean construction of heterogeneous distributed systems

* CORBA is a clean model with complete middleware functionality

» There are clean interfaces for application integration

» CORBA supports bridges to other important component standards that may be available on
the market. This enables integration into standard software

 PL1 and COBOL CICS and IMS Transactions can be accessed from Java and Smalltalk
clients

» There is a decoupling of interfaces from technology

» CORBA has mature implementations on many platforms (including OS/390)

» CORBA is a standards based solution

CORBA is becoming a mature and trusted technology that can be used for integrating legacy
systems. However, technology is moving forward at a faster pace than ever at already there are
alternatives on the market to CORBA that could be used in its place.

Two of these alternatives, namely XML (Extended Markup Language) and J2EE (Java 2
Enterprise Edition) Connectors could, when fully mature reduce even further the complexity of
integrating Legacy Applications.

However, it should be noted that large corporations, especially banks are wary of non-mature
technology and are usually among the last to "jump on the bandwagon" of advances that will
"solve all their problems”. The two technologies mentioned below are still in their infancies and
until they are proven in enterprise solutions, they will be only regarded from a distance by large
banks.

3.7.5 Using J2EE Connectors

[Hermansson, Akerlund 1997] outline the use of J2EE Connectors which are a part of the J2EE
specification and manage integration with existing Enterprise Information Systems, EIS.

The J2EE Connector architecture provides a Java solution to the problem of connectivity between
the many application servers and Enterprise Integration Systems already in existence. Using the
J2EE Connector architecture, EIS vendors no longer need to customise their product for each
application server.

This connector architecture is gaining popularity in the industry. It is also a standards based
solution, but does not make legacy CICS and IMS transactions available as distributed objects. It
is a Java based solution and does not completely suit the PL/T and COBOL based applications that
require integration. Finally, there are industry concerns about the performance of Java and Java
based applications within enterprise systems [Chang 2000]

27

3.8 Data Level Integration

This is another integration strategy that exists. In this approach, the OO and Legacy Systems share
access to a Database Management System (DBMS). All existing DBMS's are accessed via a Meta
DBMS.

With this approach there is only shared data, therefore the OO System cannot access the
functionality of the legacy system and there is still a need to rewrite the business functionality on
the client.

Using this form of integration has many of the same positives and negatives as screen scraping. It
can be relatively easy to get at the legacy data but again, any new business requirements that are
placed on the system will be problematic.

A newer form of Legacy Integration comes with the introduction of XML to the mainframe
world.

3.8.1 XML

XML is a World Wide Web Consortium (W3C) standard for representing complex data with
human readable labels and structuring.

XML allows complex data to be published with both context and structure preserved. This
complements the closed, encapsulated data structures of CORBA and OO languages.

XML is encouraging a new generation of data centric legacy integration solutions. These
solutions no longer need object wrappers or proprietary Enterprise Application Integration (EAI)
solutions. Any applications that use XML to communicate will need either to understand XML or
be wrapped in some form of translator.

XML essentially frees data from its dependence on software infrastructures. Its hierarchical data
model makes it well suited for storage in object-oriented databases, and database vendors have
been quick to leverage their edge by adding XML storage and query capabilities to their product
offerings. [Coyle 2000]

In terms of its relationship to a middleware technology such as CORBA, XML provides a
standard way to represent complex, object-oriented data without forcing all software components
to use the same underlying OO or relational database. This type of database independence
translates into greater flexibility when using a middleware technology such as CORBA to
integrate diverse types of components into a single distributed application.

3.9 Conclusion

In this section there has been a discussion of some of the approaches available on the marketplace
today for integrating legacy applications with object oriented solutions. These approaches vary
from "quick and dirty" solutions to full integration. Moving forward, after examining the factors

28

affecting an integration strategy, there will be an investigation of the best approaches for
integrating sample legacy applications using CORBA.

There was a brief overview of some new technologies that are gaining momentum as integration
strategies. These however are immature technologies and the banking industry will not be
prepared to jump in until they are tried and tested.

As pointed out by [Harding 2001] finding people to program the older applications is becoming
increasingly difficult so by making these systems available with CORBA in the distributed world
can take away from some of these headaches.

At the moment CORBA offers the best solution for long term success while still maintaining the
power of the legacy applications.

Alternatives to CORBA include messaging systems from large IT companies, such as IBM’s MQ
Series product. Typically if an organisation wants asynchronous communication they will chose
MQ Series, but if synchronous communication is required, CORBA is the favourite.

As outlined in the previous sections, the first aim of this research is to investigate possible
strategies for integrating the mainframe based legacy systems with modem Object Oriented and
GUI-based technologies. The approach that is recommended by this research is the CORBA
standard by the OMG.

The next step in the research is to examine this CORBA standard a little more closely to see if
actually provides all of the advantages outlined in this section. One of the aims of this research
was to provide a solution for integrating mainframe based applications and it would appear that
the CORBA standard is the best approach that provides this.

29

4 Inside CORBA

4.1 History of Distributed Transactional Computing

4.1.1 Centralised versus de-centralised

The history of the computing industry has switched between a centralised model of computing
and a de-centralised model. The early banking systems investigated previously were very much
oriented towards a central server with many clients [FIGURE 4.1].

FIGURE 4.1: The Centralised M odel of computing

In recent times there has been a definite move away from this centralised model to a scenario
where de-central platforms can perform their own computing.

1960 1970 1980 1990

0 ---------- 0 ------------- 0 ----m-m-m-mmmmmeoeoe- 0 --m-m-m-mmmmmemeoee- >
Centralised Personal Computers 3 & n-tier computing EJB/J2EE

Hosts 2-tier computing Internet CORBA/RMI/DCOM

FIGURE 4.2: A TIMELINE FOR DISTRIBUTED TRANSACT IONAL COMPUT ING

4.1.2 GUIs and Smarter Clients

The dominance of the central platform began to change in the early 1980's when client/server
computing began to appear.

This movement started around the same time as the arrival of the Personal Computer and
immediately proved popular due to the possibility of stylish GUIs (Graphical User Interfaces).

Some of the computing power and business logic was also moved to the client side and these
clients became "smarter".

The technical roots of object technology led to the development of several other object languages,
in particular C++ [Stroustrup 1991] [Stroustrup 1992] and Smalltalk [Goldberg, Robson
1989]. Only later was object technology applied in other areas such as databases, operating
systems and the analysis and design of information systems.

4.1.3 The Client/Server Model

As more power went into the clients, the industry saw a shift further towards the decentralised
model. Some immediate benefits were felt as PC development environments quickly became
available and evolved to make client side GUI development a popular role.

These early Client/Server systems were very much 2-tier models. Such a model would include a
"Fat" PC client connecting to a database server. These "Fat" clients would contain both GUI
presentation logic and business logic as well as the code to access the database. The client would
use database APIs for transactions.

Presentation Logic b Database
Business Logic ‘
Data Access Logic

Client Server

FIGURE4 3:THE 2-TIERMODEL

The immediate disadvantages of this 2-tier model were apparent very quickly. When presentation
logic, business logic and data access logic are all mixed together, reuse, and performance
immediately lose out.

Database servers suffered frequently from bottlenecks and, as a result, the scalability of the
system suffered. This was heightened by the fact that a database connection for every client
caused even more scalability difficulties.

Maintenance was difficult as application and database drivers needed to be installed and
configured on every client and so some versioning or deployment strategy was required but was
not easy, as the entire software would need to be reinstalled for upgrades.

The fat clients make maintenance and reuse difficult. Update and maintenance costs are high,
because changes have to be re-deployed on every client. Any change in the logic must be
redistributed to all clients. They are also difficult to use because applications are tightly bound to
data schema since the client contains SQL queries.

They can also cause high network traffic because data is transferred for processing at the client.
Finally, database connection costs are high because there is one database connection per user with
no connection pooling or multiplexing.

The advantages of such systems included fancy GUIs and nice user interaction, especially when
compared to the 3270 Screens many operators were used to.

4.1.4 3-tier Computing

Given the problems with the 2-tier approach, it did not take very long for a new approach to come
on the scene. This was the 3-tier model of computing.

The difference between the 2-tier and 3-tier model was quite simple: separate the presentation
logic from the business logic

Each of these tiers would be implemented on a separate machine. The middle tier would take care
ofthe business logic and the business methods would run on the server.

The client would then make "requests” that the server would execute these methods. The client
and server use a protocol that represents a conversation at the level of business transactions,
instead of atthe level of SQL.

4.1.5 Difficulties with 3-tier computing.

The 3-tier and n-tier models solved many of the problems of 2-tier computing. With this model,
clients were far easier to keep up to date as they separated presentation logic from business logic
and re-use became a possibility.

Various new problems became apparent however. For example, applications became significantly
more difficult to program as programmers needed to manage multithreaded concurrency,
transactions and security themselves.

4.1.6 Remote Procedure Call

Remote Procedure Call came along with the advent of n-tier computing. RPC is a standard and
transparent way to call procedures remotely. This is a type of protocol that allows a program on

32

one computer to execute a program on a server computer. Using RPC, a system developer need
not develop specific procedures for the server. The client program sends a message to the server
with appropriate arguments and the server returns a message containing the results of the program
executed.

4.1.7 Object Oriented n-tier computing

RPC was not object-oriented and the next phase in the distributed computing world was 3 tier
computing using objects. Here there was more than one choice.

CORBA: Object Request Broker is equivalent to object oriented RPC. It allows clients to
communicate with remote objects. Interoperability with a wide variety of software
follows. The communication protocol OOP is an inter-orb protocol so the Financial
Institution is not tied to a specific implementation.

RMI: This is the Java Object Request Broker from Sun Microsystems. It is also like an
object oriented RPC. It is simpler to use than CORBA but only for Java to Java
communication. There is now RMI over I1OP allowing Java to non-Java communication.
DCOM: This Microsoft product allows modules to communicate remotely, like a binary
RPC. But distributed computing, with multiplexing, connection pooling, concurrency and
multithreading is difficult to program.

Only the first of these three (CORBA) was going to prove useful for interacting with legacy
systems as most of these older systems were not written in Java or C++ and were not Microsoft
based. CORBA was the only option that really allowed communication with any older platform
and language.

This does not just apply to the Banking Industry, for example [Sang et al. 1999] outline how
many scientific applications in aerodynamics and solid mechanics are written in Fortran and that
refitting this legacy Fortran code with CORBA objects can increase the code reusability.

4.1.8 Internet Revolution

The next revolution to come to the industry that everyone wanted to be a part of was the Internet.
This really changed the way companies did business and as was seen, the banking sector needed
to be a part ofthis change if they wanted to stay ahead.

Geographical barriers of enterprise LAN no longer became an issue and the format of clients
started to change to much "thinner" browser based clients.

However, the quick pace towards decentralisation started to go into reverse. With the arrival of
HTTP, HTML, Java, Applets, JSP etc, the concept of the "fat" clients became redundant and large
number of "thin" clients became popular as they could have the same functionality as their large
counterparts.

Because of this defined, but limited, set of functionality, this created the trend of centralising
business logic on the server. The server in this context was no longer a mainframe or mini-
computer, but any machine running a web server.

4.1.9 Different Connectivity Models

Applications that were starting to be based on this new model with an Internet Browser based
client immediately had to choose between one of many connectivity models. Examples of these
included CGI1 (Common Gateway Interface), NSAPI (Netscape Application Programming
Interface), and ISAPI (Internet Server Application Programming Interface) to name a few.

The web server concept also caused headaches as it tried to provide the connectivity between the
browser-based client and each individual enterprise applications. Maintenance was once again
very difficult, as was the programming of these applications.

Using the Internet was obviously a big advantage in terms of business requirements, as the
application became available to any user with a desktop and browser.

Disadvantages include the fact that mission critical transaction oriented applications can not be
done easily and maintain-ably with CGI and Perl.

In most of these cases a monolithic application was created on client and server sides. This
monolithic application was typically composed of one binary file. Any changes meant
recompiling and redeploying the application. This made it difficult to maintain because the
requirements and environment may change and updates may be needed.

4.1.10 Component Applications

This changed for the better with the advent of component applications. These software
components can be changed or updated without recompiling and replacing the entire application,
like hardware components can be changed. They simplify the deployment of updates. Upgrades
and bug fixes are easier to make.

Business
Logic

Presentation

Client Request

Business
Process

Server Side

FIGURE 4.6: Component Model

With components, the application is separated into logical separate pluggable parts like
presentation parts, business process parts, business logic etc. Component programming allows
building an application using pre-built components with well-defined interfaces. Implementation
is separated from the interface, meaning that the implementation can be changed without
changing the interface and the other components using the interface. This reduces complexity,
because other developers do not have to understand how it is implemented, just how to use it.

4.1.11 Improvements in Design

Dividing an application into components improves the application’s design. Component
programming forces developers to define the application in terms of well-structured objects,
which have well defined interfaces so that they can interact properly with each other. Business
logic can be reused; multiple instances of the same component can be used in multiple
applications. Updates are easier because it allows the changing of a part without changing the
whole. Development is easier because it allows the testing and building of small parts
incrementally, and to divide development into smaller parts developed by different people.

4.1.12 General benefits and problems with N-tier computing

N-tier computing has various advantages. One tier can be changed without changing the rest,
there will be lower development costs and maintenance costs are a reality. Resources can be
pooled and re-used. Applications become more flexible, scalable and performant. Thin clients can
be made available on the Internet.

It does however match these advantages with a new level of complexity when programming
multi-user sessions. Thin-client multi-tiered applications are hard to write because they involve a

lot of complex code to handle transaction management, multithreading, database connection and
resource pooling, performance issues etc. Developing distributed applications is difficult and
requires highly skilled and experienced people

4.2 Introduction to CORBA

4.2.1 Difficulties of Distributed Object Programming

Today's IT Systems have become even more diverse that their counterparts of the early days of
computing. This is especially true in the world of network programming where the diversity of the
networks needing to be integrated makes the task quite a challenge. Coupled with this, there are
many programming languages available and in-use today. Sometimes even these languages will
perform differently on different operating systems.

In the area of object technology, much work is being done to make objects interoperate in a
heterogeneous networked environment. The standardisation efforts of the Object Management
Group lead to a general API for distributed objects, the Common Object Request Broker
Architecture. The most recent version of this specification is the CORBA 3.0 Specification.

As per this OMG Specification, CORBA (Common Object Request Broker Architecture) is a
standard that defines a framework for developing object-oriented distributed applications.

Using the CORBA architecture makes network programming easier by allowing a developer to
create distributed applications that interact as though they were implemented in a single
programming language on one computer.

CORBA enables the distributed applications to be developed in an object-oriented manner. It
allows us to design a distributed application as a set of co-operating objects and to reuse existing
objects in new applications.

4.2.2 What is an ORB

An ORB (Object Request Broker) is a software component that mediates the transfer of messages
from a program to an object located on a remote network host. CORBA defines a standard
architecture for ORBs.

Essentially the role of the ORB s to hide the underlying complexity of network communications
from the programmer.

An ORB allows you to create standard software objects whose methods can be invoked by client
programs located anywhere in your network. A program that contains instances of CORBA
objects is often known as a server.

When a client invokes a member method on a CORBA object, the ORB intercepts the method
call. The ORB then redirects the method call across the network to the target object. The ORB
then collects results from the method call and returns these to the client.

4.2.3 The Object Management Architecture (OMA)

An ORB is one component of the OMG's Object Management Architecture (OMA). This
architecture defines a framework for communication between distributed objects. The OMA
includes the following elements.

- Application objects

- The ORB

- The CORBAServices
- The CORBAFacilities

Application objects are objects that implement programmer-defined IDL interfaces. These objects
communicate with each other, and with the CORBAServices and CORBAFacilities, through the
ORB. The CORBAServices and CORBAFacilities are sets of objects that implement IDL
interfaces defined by CORBA and provide useful services for some distributed applications.

4.2.4 The Nature of CORBA Obijects

CORBA objects are standard software objects implemented in any supported programming
language. CORBA supports several languages, including C++, Java, COBOL and PL/I.

By making calls to an ORBs' application-programming interface (API), it is possible to make
CORBA objects available to client programs in the network.

Clients can be written in any supported programming language and can invoke the member
methods of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming languages, each
CORBA object has a clearly defined interface, specified in the CORBA Interface Definition
Language (IDL).

The interface definition specifies what member methods are available to a client, without making
any assumptions about the implementation of the object.

To invoke member methods on a CORBA abject, a client needs only the object's IDL definition.
The client does not need to know details such as the programming language used to implement
the object, the location of the object in the network, or the operating system on which the object
runs.

The separation between an object’s interface and its implementation has advantages. For example,
it allows you to change the programming language in which an object is implemented without
changing clients that access the object.

It also allows you to make existing objects available across the network.

37

4.2.5 The Structure ofa CORBA Application

To start developing a CORBA application, you must define the interface to the objects in your
system using CORBA IDL. These interfaces should then be compiled using an IDL compiler.

For example, an IDL compiler can generate Java or COBOL from IDL definitions. This code
includes client stub code, which allows you to develop client programs, and server skeleton code,
which allows you to implement CORBA objects.

When a client calls a member method on a CORBA object, the call is transferred through the
client stub code to the ORB. If the client has not accessed the object before, the ORB refers to a
database known as the Implementation Repository, to determine exactly which object should
receive the method call. The ORB then passes the method call through the server skeleton code to
the target object.

4.2.6 The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the IDL associated
with your objects and use the generated code in your applications. This means that your client
programs can only invoke member methods on objects whose interfaces are known at compile
time. If a client wishes to obtain information about an object's IDL interface at runtime, it needs
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the IDL interfaces
implemented by objects in your network. A client program can query this database at runtime to
get information about those interfaces. The client can then call member methods on objects using
a component of the ORB called the DIl (Dynamic Invocation Interface).

4.2.7 Dynamic Server Programming

CORBA also supports dynamic server programming. A CORBA program can receive method
calls through IDL interfaces for which no CORBA object exists. Using an ORB component called
the Dynamic Skeleton Interface, the server can then examine the structure of these method calls
and implement them at runtime.

4.2.8 Interoperability between ORBs

The components of an ORB make the distribution of programs transparent to network
programmers. To achieve this, the ORB components must communicate with each other across
the network.

In many networks, several ORB implementations coexist and programs developed with one ORB
implementation must communicate with those developed with another. To ensure that this
happens, CORBA specifies that ORB components must communicate using a standard network
protocol called the Internet Interoperability Protocol.

38

4.2.9 The CORBA Services

The CORBAServices define a set of low-level services that allow application objects to
communicate in a standard way. These services include the following:

The Naming Service: Before using a CORBA object, a client program must get an identifier for
the object, known as an object reference. This service allows a client to locate object references
based on abstract, programmer-defined object names.

The Trading Service: This service allows a client to locate object references based on the desired
properties of an object.

The Object Transaction Service: This service allows CORBA programs to interact using
transactional processing models.

The Security Service: This Service allows CORBA programs to interact using secure
communications.

The Event Service: This service allows object to communicate using decoupled, event-based
semantics, instead of the basic CORBA function-call semantics

4.2.10 The CORBA Facilities

The CORBAFacilities define a set of high-level services that applications frequently require when
manipulating distributed objects. The CORBAFacilities are divided into two categories.

The horizontal CORBAFacilities consist of user interface, information management, systems
management, and task management facilities.

The vertical CORBAFacilities standardise IDL specification for market sectors such as healthcare
and telecommunications.

4.3 Looking inside CORBA

4.3.1 The Basics

IDL is a part of the OMG's CORBA specification and it is an ISO (International Organisation for
Standardisation) standard. However it is not a programming language and in fact it enables
interfaces to be developed independently of the languages used to implement these interfaces.

An interface definition provides all of the information needed to develop clients that use the

interface. Essentially it provides a description of the functionality provided by the CORBA
objects.

39

Interfaces are the basic unit in IDL and define the interface to a service/object. An interface is
composed of operations and attributes.

Conceptually, attributes correspond to the variables that a component implements. Attributes
indicate that these variables are available in a component and that clients can read or write their
values.

Attributes normally map to a pair of functions in the programming language used to implement
the component. These functions allow client applications to read or write the attribute values. If
proceeded by the keyword readonly, clients can only read the attribute value.

IDL operations define the format of methods that clients use to access the functionality of a
component. An IDL operation can take parameters and return a value, using any of the available
IDL data types.

CORBA must know the direction in which a parameter is being passed in order to manage these
parameters. There are three modes for parameter passing

In: The parameter is passed from the client to server
Out: The parameter is passed from the server to client
Inout: The parameter is passed both in both directions

An interface can be defined within a module: this allows interfaces and other IDL type definitions
to be grouped into logical units.

Names defined within a module do not clash with names defined outside the module. Essentially a
module defines a naming scope within an IDL file.

An IDL operation may raise an exception indicating that an error has occurred. This will be
investigated in more detail in a later chapter.

Inheritance in IDL is a method for using the properties of an existing interface in a new interface.

IDL provides preprocessing directives that allow macro substitution, conditional compilation and
source file inclusion. The IDL preprocessor is based on the C++ preprocessor. For example, the
#include directive allows an IDL file to be included in other files.

A tvpedef declaration can be used to define a meaningful or a simpler name for a basic or user-
defined type. This definition can be used to make code easier to read.

An interface must be declared before it is referenced. A forward declaration declares the name of
an interface without defining it. This allows the definition of interfaces that mutually reference
each other. The interface definition must appear later in the specification.

4.4.2 IDL Mappings

Mapping for basic types include short, long, unsigned short, unsigned long, float, double, char,
boolean, octet, any, string.

An IDL string is a one-dimensional array of characters with a variable length
Mapping for constructed types include struct union, enum
A struct is an IDL data type that can package a set of named members of various types.

A union provides a space saving type whereby the amount of storage required is the
amount necessary to store the largest possible element. Only one element will be held.

An enumerated type allows the members of a set of values to be depicted by identifiers.
Other mappings are provided for arrays and template types such as sequence.

An IDL sequence is a one-dimensional array with a variable length.

4.4.3 Finding CORBA Objects

A common problem is distributed programming is enabling a client to find the correct object. The
purpose of CORBA is to enable a client to use remote objects if they were local. Local object
references acts as a proxy for the remote object. Every time operation is invoked on a local object,
the ORB passes the request onto the remote server.

The client (or client proxy) needs details of where the service is located in order to forward the
request.

The information needed includes the interface name, machine name or IP address and the port
number

A CORBA Object Reference (OR) or an Interoperable Object Reference (IOR) hold this
information. An IOR is an OMG specified string that uniquely defines the location of a CORBA
object but also adheres to the CORBA 2.0 specification that introduces interoperability between
ORBs

Real-world distributed object computing requires much more than a communication mechanism;
it requires infrastructure. [Curtis 1997]

» Applications need to find objects that are migrating about the network

» Objects that the applications need may be dormant and require activation

41

» Applications need to obtain services based on general property descriptions rather than
specific identities

» Applications need transactional integrity among groups of distributed objects

» The software components that constitute a distributed system need to be administered and
managed through standard interfaces

» The underlying mechanisms that support communication, location, and other basic services
must be reliable, able to recover from errors and re-configure themselves as necessary to
provide high availability

These requirements are met by a distributed computing infrastructure, an architecture of
underlying mechanisms and basic services that provide a stable, powerful platform upon which
applications can be built. The OMG Object Management Architecture (OMA) (see section 4.2.3)
provides this platform, including the core CORBA ORB specification and a set of object services
(called CORBAServices).

4.4.3.1 The Naming Service

The Naming Service is a simply another CORBA server. It maps IORs to a humanly readable
name. A server program can then publish its IOR in the Naming Service database and a client
program can retrieve the IOR using the provided name.

The names that are used to identify objects in the Naming Service are made up of contexts and
application objects. Application objects are actual objects that you can invoke operations upon.
Contexts hold the application objects. A single context can hold multiple application objects. The
root context is the primary context (or first point of contact). All names must start from the root
context.

The typical sequence of events that takes place is the server starts and its name will be registered
with the NS. The client then starts and resolves to the root context (top ofthe naming structure) of

the NS and then resolves the name and retrieves the IOR for the object. It can then use this IOR to
invoke a remote operation.

4.4.4 Exception Handling

IDL operations can raise exceptions to indicate the occurrence of an error. CORBA defines two
types of exceptions

System Exceptions are a set of standard exceptions defined by CORBA
User-defined Exceptions are exceptions that you define in your IDL specification.

All IDL operations can implicitly raise any of the CORBA system exceptions. No reference to
system exceptions appears in an IDL specification.

42

To specify that an operation can raise a user-defined exception, first define the exception structure
and then add an IDL raises clause to the operation definition. An IDL exception is a data structure
that contains member fields.

4.4.5 ORB Interoperability

Since its inception in 1991, CORBA has proven itself as a solid basis for heterogeneous object-
oriented distributed systems. Like all technologies, however, CORBA must evolve in order to
remain viable. [Vinoski 1998]. It must allow for different ORB implementation to co-exist and
co-operate within the same company network.

ORB Interoperability allows communication between independently developed implementations
of the CORBA standard. ORB interoperability enables a client of one ORB to invoke operations
on an object in a different ORB via an agreed protocol. Thus, invocations between client and
server object are independent of whether they are on the same or different ORBs. The OMG has
specified two standard protocols to allow ORB interoperability, GIOP and HOP

The OMG-agreed protocol for ORB Interoperability is called the General Inter-ORB Protocol
(GIOP). GIOP defines on-the-wire data representation and message formats. It assumes that the
transport lawyer is connection oriented. The GIOP specification aims to allow different ORB
implementations to communicate without restricting ORB implementation flexibility.

The Internet Inter-ORB Protocol (I1OP) is an OMG defined specialisation of GIOP that uses
TCP/IP as the transport layer. Specialised protocols for different transports such as OSI, NetWare,
IPX) or for new features, such as security can also be defined by the OMG.

4.4 Service-Based Architecture

[Koch, Murer 1999] outline how that analysing the characteristics of large-scale systems lead to
the concept of a managed evolution and a service architecture. Service Architecture is based on
the idea of using large-grained Services instead of fine-grained objects to represent the objects in
the banking system. This leads to an architecture where fine-grained components, like customers
or accounts, reside within large grained components. There will be further discussion of this
approach in chapters on Performance [Chapter 6] and Scalability [Chapter 8].

The benefits of using a Service-Based Architecture include

 Simplify evolution by decomposing systems into services

» Encapsulation of Data

» Having well defined interfaces

» Useable independent of technology (Implementation Independence)

» Renewable (easier to upgrade) without affecting other parts of the system, reducing risk
» Leads to more IT efficiency when building new applications

 Better reuse of Services

 Lessrisk for complete system, due to isolation by service interfaces

CORBA is a suitable choice for a Service-Based Architecture for the following reasons:

» Clean Model for construction of heterogeneous distributed systems

» Potentially complete middleware functionality

» Clean interfaces for application integration

» Bridges to other important standards available, therefore integration into standard software
possible.

* Provides a technical bridge - i.e. Java Client to PL/l IMS Transaction

» Decouples interfaces from technology

4.5 Conclusion

In this chapter there has been a closer examination of a standard known as CORBA (Common
Object Request Broker Architecture) and how applications can be built using this standard. It is
clear from the previous chapter why CORBA is a popular solution for integrating legacy systems
and in the next chapter there will be an investigation into how a real legacy application can be
integrated with modem technologies using CORBA.

The OMG is a very active consortium. Its many task forces and special interest groups cover
nearly the entire spectrum of topics related to distributed computing, including real-time
computing, Internet, telecommunications, financial systems, medical systems, object analysis and
design, electronic commerce, security database systems, and programming languages.

As a result, Request for Proposals (RFPs) and technology adoptions in almost all of these areas
have either already occurred or soon will

In the last chapter, CORBA was put forward as one possible solution to the integration problems
that modem Banking Sector companies are facing. This chapter focused on looking deeper inside
CORBA to see some of the extra benefits that could be used. One interesting usage of CORBA,
the Service-Based Architecture, was discovered. This approach meets the requirements of an
integration strategy but also provides for larger and enterprise scale banking systems.

The use ofa Service-Based CORBA Architecture is now the preferred solution moving forward in
this research. The next few chapters will assume the use of this approach and look at potential
problems using it will cause to such large-scale integration projects.

Before this however, there will be a brief look at the concept of Patterns. These are a way of
providing well-known solutions to every day problems and this research will be looking for such
solutions to the potential problems with large-scale integration projects.

5 Patterns

51 W hat are Patterns

The concept of a pattern in software development has arisen over the last few decades. Essentially
a pattern is a solution to a well-known or recurring problem that occurs during the software
development cycle.

As software development has evolved over the years, teams of developers have come across the
same problems over and over again. Often a development house would provide a Frequently
Asked Questions (FAQ) list of common problems for other developers in the company.

However, in the last twenty years there has been a movement towards sharing this knowledge
with all developers who could use this information. Experienced programmers began to recognise
the similarity of new problems to problems they had solved before. With a little more experience,
they realised that the solutions for similar problems follow recurring patterns. As these
programmers become used to the concept of a pattern, they can learn when to apply this solution
to a situation without having to stop and analyse the problem and investigate possible strategies.

This concept of sharing solutions to well known problems originally came from the field of
architecture. In the late 1970's there were two revolutionary books published by Christopher
Alexander. These books "A Pattern Language, Towns, Buildings, Construction™ (Oxford
University Press, 1977) [Alexander 1977) and the "Time Timeless Way of Building" (Oxford
University Press 1979) [Alexander 1979] described patterns in building architecture and urban
planning. These patterns could be applied again and again in different areas of architecture and
building. Taking one of these patterns, "Pedestrian Street" for example:

Context: The simple social intercourse created when people rub shoulders in public is one of the
most essential kinds of social "glue” in society.

Problem: This glue is largely missing, in part because much of the process of movement is taking
place in indoor corridors and lobbies.

Solution: Pedestrian street. Arrange buildings so that they form pedestrian streets with many
entrances and open stairs directly from the upper storey to the street, so that even movement
between rooms is outdoors, not just movement between buildings.

The field of software development was quick to see the usefulness of this concept and in 1987,
Ward Cunningham and Kent Beck [Beck Cunningham 1987] used some of Alexander's ideas to
develop five patterns for User Interface Design. This paper "Using Pattern Languages for Object-
Oriented Programs™ was published at the OOPSLA-87 conference.

Following on from this was the book "Design Patterns” by Erich Gamma, Richard Helm, John
Vlissides and Ralph Johnson [Gamma 1995], This book was first published in 1984 and is
considered one of the major advances in software development in the last 20 years.

Most of the developers in today's IT projects will know some or all of these and other patterns.
Experienced developers will know when and where to use some or all of them and in which
circumstances they do not add to the solution but simply add more complexity.

There are many benefits to having various patterns in your "toolbox™ for use when programming
IT solutions, just as any builder would have similar solutions when building a house but there are
also drawbacks. In some way patterns have been over-hyped and there are solutions available
today that are not really patterns but rather idioms or rules-of-thumb. The trick to being a good
developer is to know which patterns are useful but more importantly in which circumstance they

apply.

This "toolbox™ mentioned comes in the form of a "Pattern Language" where a number of patterns
are used together (and are even designed to facilitate each other) to solve various problems that
arise in the system as a whole. These problems can occur either at an application design level or in
a larger scale at the system architecture and design level.

For example, Enterprise systems are often developed without security in mind, as applications
programmers are more focused on trying to learn the domain than worrying about how to protect
the system. In response to this requirement [Yoder, Baraclow 1997] define a collection of
patterns to be used when dealing with application security.

5.2 How does a pattern come to be

As outlined above, programmers come across many problems in their daily work effort, the trick
is to find patterns that can be applied to similar problems in different environments. A recognised
way of doing this is to articulate the problem/solution pair in words. One this can be done, the
pattern can be discussed among programmers who know the pattern to collaborate on the details.

When the pattern is in words, it can be explained to others who are not familiar with the problem.
It can be fine-tuned and changed as the discussion develops so that what is there at the finish is a
solution that can be applied not to one problem domain but to many situations in different
projects.

[Levine, Schmidt 2000] offer a fascinating slant on using patterns within software design and
architecture by comparing it to becoming a Chess Master.

To how become a Chess-Master involves following some steps

» First learn the rules and physical requirements such as names of pieces, legal movements,
chesshoard geometry and orientation etc.

» Secondly learn the principles such as the relative value of certain pieces, strategic value of
centre squares and power of a threat etc.

» To become a master of chess, one must study the games of other masters. These games
contain patterns that must be understood, memorised and applied repeatedly. There are
hundreds of these patterns.

In the same way, to become a software design master has certain steps

» Firstly, learn the rules such as the algorithms, data structures and languages of software

e Secondly, lean the principles such as structured programming, modular programming, object
oriented programming, generic programming etc.

e To truly master software design, one must study the design of other masters. These designs
contain patterns that must be understood, memorised, and applied repeatedly.

There is a recognised form for a pattern definition to take. This written form will contain the
following details:

e« Description ofthe pattern

e« Concrete example

» Specific solution for this example

e Summary ofissues involved in the initial formulation ofthe general solution

e The General Solution

 Any consequences ofusing this pattern

 Pros and Cons ofthe pattern
« Listofrelated patterns

This list, in its complete form is designed to give any developer who has not previously come
across this problem an insight into the pattern that can be applied. One common form of pattern
definition presents these details using the following headings:

PATTERN NAME

Name, Bibliography reference (where did pattern come from)

SYNOPSIS

Description ofthe pattern that conveys the essence ofthe solution provided by the pattern. This is
directed at experienced programmers who may recognise them.

CONTEXT

The problem the pattern addresses as part ofa concrete example and a suggested design solution.

FORCES

Summarise the considerations that lead to the general solution presented in the solution section.

SOLUTION

This is the core of the pattern. Describes the general-purpose solution to the problem the pattern
addresses.

CONSEQUENCES

Explains the implications - both good and bad ofusing the solution.

IMPLEMENTATION

47

Describes the important considerations to be aware of when executing the solution. It may also
describe some common variations of simplifications ofthe solution.

CODE EXAMPLE
Contains a code example showing sample information for a design that uses the pattern.
RELATED PATTERNS

List of patterns related to the one described

5.3 Design Patterns

A distinction should be made between the various types of patterns that are popular in industry
today. Typically the common flavours are Design Patterns and Architectural Patterns. These differ
in mainly in scale. Design patterns are medium scale patterns that are used to organise subsystem
functionality in an application domain independent way whereas Architectural patterns typically
are used to define the structure and high-level architecture on a larger scale.

There are also other solutions to these problems that do not fit the definition of a pattern. A
framework for example is a set of co-operating classes that makes up a reusable design for a
specific class of software [Gamma 1995], These frameworks can be used in specific cases but are
not general solutions to industry-wide problems.

Such a framework does however provide architectural guidance by partitioning the design into
abstract classes and defining their responsibilities and collaborations. A developer customises the
framework to a particular application by sub-classing and composing instances of framework
classes.

One definition of a design pattern is that is describes a commonly recurring structure of
communicating components that solve a general design problem in a particular context.

Design patterns facilitate architectural level reuse by providing "blueprints" that guide the
definition, composition, and evaluation of key components in a software system. In general a
large amount of experience reuse is possible at the architectural level. However, reusing design
patterns does not necessarily result in direct reuse of algorithms, detailed designs, interfaces, or
implementations. [Schmidt Stephenson 1995]

Examples of Design Patterns

It is possible to group design patterns into categories of related patterns. These groupings can look
like

e Structural Decomposition
e Organisation of Work
 Access Control

e Management

e Communication

48

There are quite a number of Design Patterns that fit into each of these categories. Certain ones
such as Proxy, Facade and Iterator which fit into the Access Control group apply in the case of
integrating CORBA and Legacy Solutions and these will be looked at later. Likewise the
Communication Group contains patterns such as Forwarder-Receiver, Client-Dispatcher-Server,
and Publisher-Subscriber that are inherent in any CORBA solution.

54 What aren't Design Patterns

There are also many solutions to well-known problems in the software world that do not make
good design patterns. Typically these are known as Idioms whereas others that can have more ofa
negative effect on a systems are known as anti-patterns.

Idioms can be thought of as low-level patterns specific to an particular implementation problem.
They describe how to implement particular aspects of components or the relationships between
them using features of a given programming language. These can include naming conventions,
source code formats, memory management rules etc.

The easiest way to distinguish between design patterns and idioms is that idioms are less portable
implementations of design patterns. They cannot be easily adapted to other similar solutions but
should not be completely forgotten about as they can also help in problem solving and training of
new team members.

Every software-architecture typically builds on certain principles. The understanding and
acceptance of these principles is crucial in understanding the architecture because they guide
architectural decisions. The most important difference between a principle such as Information
Hiding and a pattern is that patterns define structure and interactions. Principles, on the other
hand, do not have a specific structure, they are more guidelines, or rationale, for the structure of
specific patterns.

[Volter 2000] outline how principles can also be regarded as high-level goals, which we want to
reach by applying the patterns. Many patterns will reference the principles in order to explain why
a pattern has some specific structure.

[Foote Yoder 1997] document various "anti-patterns" that detail real-world architecture problems
as seen in the design and growth of major cities over time. An anti-pattern outlines both what
should not be done in a system but also what does happen in the real world. Many of these are
applicable to software architecture and particularly to the mission-critical mainframe systems that
have evolved overrecent decades.

BIG BALL OF MUD
When a system has reached a state equivalentto BIG BALL OF MUD, it is already in a state that

makes change or adaptation difficult or impossible. Such systems can continue to function in their
current state but any attempt to change itwill be resisted.

49

THROWAWAY CODE

This pattern details a fairly common problem in software development. When the developers or
designers are producing the proof-of-concept or prototype for a system, they do not worry about
the elegance or efficiency of that system. Rather they are concerned to show that it works and will
be re-written correctly at a later stage. The danger comes when this prototype is chosen in its
current state for release. This can easily happen for time and budget reasons and will lead to
further problems at a later stage.

PIECEMEAL GROWTH

Many mainframe applications have fallen victim to the PIECMEAL GROWTH situation.
Essentially they began their life as small, simple applications that provided certain functionality.
As time went on, extra features were continuously added and these in themselves may have
required extra features. Like many cities of today, these applications became massive, system
critical enterprise systems even though they were not planned to be.

KEEP IT WORKING

This is one of the most common situations in a company that relies on mainframe systems. The
business has come to rely on these systems and the data behind it. If the system was to become
unavailable it would cause chaos in the day-to-day business. These systems are mission critical
and must be kept running at all costs. So many systems throughout the world are in exactly this
state.

SWEEPING IT UNDER THE RUG

Another common situation with mainframe systems is hiding the mess. As with the run-down
areas of a large city, the system can be made to look cleaner by putting cleaner, newer modules
that hide the mess and complexity of some ofthe other code and modules.

RECONSTRUCTION

This situation is somewhat less common in the mainframe world. In large cities, there comes a
time when the only solution to a problem building is to demolish and start again. This can happen
when the existing building simply cannot be extended or enhanced to meet the requirements. In
the mainframe world the costs of such an approach and be prohibitive and there is the problem of
what to do while the newer system is being built.

5.5 Architectural Patterns

W hile software patterns are useful for developers writing code to solve business requirements, our
interests lie in a slightly different place. There also exists the concept of an architectural pattern,
which is used to specify the fundamental structure ofa software system.

An architectural pattern does not only express a fundamental structural organisation schema for

software systems. It also provides a set of predefined subsystems, specifies their responsibilities
and includes rules and guidelines for organising the relationships between them. It can be

50

considered as a high-level strategy that concerns large-scale components and the global properties
and mechanisms of a system.

[Keshav, Gamble 1998] define an integration architecture to be the software architecture
description, using integration elements, of a solution to interoperability problems between at least
two interacting component systems. In this regard, we will look at various architectural patterns
that are already available and used in the industry.

Such type of pattern is particularly useful for us in the CORBA-Legacy Integration architecture
design. Our predecessors will already have come across the problems of ensuring that our
integrated solution is secure, scalable, reliable, available and meets the performance requirements
we need.

These patterns can have a large impact and implications, which affect the overall structure and
architecture of such a system and as a result have received much attention over the last few years.

The architecture of a software system is unique. It depends on the context in which it is developed
and on various aspects: Expected lifetime, cost of development, foreseen evolutions, experience
ofarchitects and developers etc.

For a particular problem, there does not exist one optimal architecture but rather an architecture
adapted to a given context. [Gueheneuc Juissen 2001]. Therefore, we focus on general and
context-independent architectural problems.

Software and Design patterns often simply provide a "better” way to code an application so that a
developer will avoid various pitfalls that are inherent with this process. The Architectural patterns

that we will consider are aimed at getting the System Architecture correct in the first place.

In this research into CORBA and Integration approaches, we have already come across two
possible Architectural Patterns

Managed Evolution [Section 4.4] involved an evolutionaiy approach when migrating to a new
technology.

Standard-Based Solutions [Section 1.4.2] are solutions with a industry-wide consensus coming
together to provide standards on a certain technology

5.6 Categories of Architectural Patterns

Architectural Patterns can be broken down into the following subcategories according to their
properties.

5.6.1 From Mud to Structure

This type of pattern is used in the creation of the initial system. Some well-known patterns that fit
into this category are Layers, Pipes and Filters, Blackboard.

51

The Layers pattern for example, structures the system into groups of subtasks working on a
particular level of abstraction. This pattern can be useful when re-using the different layers and
supports standardisation. In addition the various dependencies are kept local. On the negative side
there can be changing behaviour, lower efficiency, unnecessary work and difficulty in
establishing the correct granularity. Examples of this pattern include OSI and the Internet Protocol
Suite.

5.6.2 Distributed Systems

Distributed Systems patterns are the type of Architectural patterns that have special interest for
those of us trying to implement distributed solutions in an enterprise situation. The types of
pattern that can be applied in these cases include Broker, Pipes andFilters, Microkernel.

The Broker pattern is used to co-ordinate communication between distributed software systems in
order to enable remote use of services. CORBA, OLE and Active X are examples ofthis pattern
in use.

5.6.3 Interactive Systems

Interactive Systems patterns are very much geared towards user interaction and human
involvement in an application or architecture. Such patterns include Model-View-Controiler,
Presentation-Abstraction-Control.

The Presentation-Abstraction-Control pattern (PAC) defines a structure for interactive software
systems in the form ofa hierarchy of co-operating agents. Every agent is responsible for a specific
aspect of the application's functionality and consists of three components: presentation,
abstraction, and control. This subdivision separates the human-computer interaction aspects of the
agent from its functional core and its communication with other agents.

5.6.4 Adaptable Systems

Finally we have Adaptable Systems patterns which will need to be used in systems that can be
easily adapted. These include Reflection, Microkernel.

The Microkernel pattern applies to software systems that must be able to adapt to changing
system requirements. It separates a minimal functional core from extended functionality and

customer-specific parts. The Microkernel also serves as a socket for plugging in these extensions
and co-ordinating their collaboration.

5.7 Implementing Architectural Patterns

When Architects and System Designers come together to design the outline of an enterprise
project or evolving an existing one, they do not want to start from scratch. They will be aware of

52

patterns that exist and will use these in conjunction with experience and convention to lead them
to apply common ways to solve common problems they will encounter.

Architectural patterns aid developers in resolving coarse-grained integration problems among
components. These patterns are assembled from functionality slices that resolve various
communications problems between applications. However little attention has been paid to how
interoperability problems and their resolution are embodied in these patterns.

[Davis Gamble 2001] notice that mapping these problems to specific functionality promises
insight into composing integration architectures by illuminating the consistent, high-level
solutions that resolve individual conflicts.

For example, in the case of some attempting to design a user-intensive system, one proven way to
organise the abstractions is to use a model-view-controller pattern, in which you clearly separate
objects (the model) from their presentation (the view) and the agents that keep the two in sync
(the controller).

Another example would be, ifyou are building a system for solving cryptograms, one proven way
to organise your system is to use a blackboard architecture, which is well suited to attacking
intractable problems in opportunistic ways.

Object-oriented patterns and frameworks describe architectural aspects of software. Both are
based on the class/object concepts which are available in object oriented analysis and design
methodologies and in object oriented programming languages [Jacobsen et al. 1997]

It is clear to see that patterns can help us to visualise, specify, construct, and document the
artefacts of a software-intensive system. In addition, we can forward engineer a system by
selecting an appropriate set of patterns and applying them to the abstractions specific to our

domain.

It is also possible to reverse engineer a system by discovering the patterns it embodies, however
this is not really an elegantway to engineer such a system.

A better approach would be, when we deliver a system, we can specify the patterns itembodies so
thatwhen someone later tries to reuse or adapt that system, its patterns will be clearly manifest

5.8 Qualities of Patterns

As patterns as a conceptare almost twenty years old, there is now somewhat of a broad consensus
as to what qualities a pattern should have to make it useful and not just a rule-of-thumb. [Lea
1993] outlines some ofthese qualities:

 Encapsulation and Abstraction

Each pattern encapsulates a well-defined problem and its solution in a particular domain. Patterns
should provide clear boundaries that help crystallise the problem space and the solution space.

* Openness and Variability

53

Each pattern should be open for extension or parameterisation by other patterns so that they may
work together to solve a larger problem. A pattern solution should be also capable of being
realised by an infinite variety of implementations (in isolation, as well as in conjunction with
other patterns).

e Generativity and Composability

Each pattern, once applied, generates a resulting context, which matches the initial context of one
or more other patterns in a pattern language. These subsequent patterns may then be applied to
progress further toward the final goal of generating a “whole” or complete overall solution.

e« Equilibrium

Each pattern must realise some balance among its forces and constraints. This may be due to one
or more invariants or heuristics that are used to minimise conflict within the solution space. The
invariants often typify an underlying problem solving principle or philosophy for the particular
domain, and provide a rationale for each step/rule in the pattern.

5.9 Conclusion and further developments

In this chapter we have seen some definitions for the concept of Architectural Patterns. We shall
see various uses for some or all of these patterns throughout our investigation on Integrating
Legacy Systems and CORBA. Many of the patterns we see will have been used similar projects
throughout the world-wide banking industry and others will be little more than idioms or rules-of-
thumb that can help with a particular implementation solution.

As discussed in Chapter 3, one of the newest competitors for CORBA in the legacy integration
area is Enterprise Java Beans. Although Enterprise JavaBeans provide simple APIs for relatively
complex tasks, designing and implementing a scalable, maintainable and reasonably fast
application based on EJB is not trivial. Over time, a set of proven patterns has emerged and these
can be seen in [Wolff, Schmid, Volter 2001]

[Quinot et al. 2001] outline DROOPI (Distributed Reusable Object-Oriented Polymorphic
Infrastructure) , which is a novel middleware that will allow interoperability of distributed object-
oriented applications across distributed platforms. This paper outlines the completed first step of
this project, which consists of the definition of a generic middleware architecture. This
architecture integrates and extends several aspects of existing middleware and is an interesting
view ofwhere the future of middleware integration projects could be headed.

In the context of this research, Patterns are an approach we can use at a later point when
encountering difficulties and blockages with large-scale integration projects. Specifically, the next
few sections deal with some of major areas where such difficulties are usually encountered.
Knowing that we can use "well-known" solutions of others to overcome these difficulties will
make the task of this research significantly easier.

In addition, this research does not aim to find new patterns but to apply existing patterns related to
CORBA and Integration to any of issues arising in enterprise integration projects. To start this

54

process we must discover what problems are being faced when migrating legacy systems to
CORBA.

For example, [KimBieman 2000] discuss how we must solve the following problems:

e Variety of the interfaces to legacy systems: There are many interfacing styles in legacy
systems, they have different implementations from each other and are also dedicated. This
makes it difficult for server-side application developers to implement wrapper objects for
legacy systems even though they understand some ofthe interfaces to the legacy systems.

» Representation of interfaces to legacy systems: To generate wrappers automatically, a
server-side developer should submit interfacing information for legacy systems to an
automatic wrapper generator. Thus, some representations are required to describe easily the
interfaces to legacy systems.

55

6 CORBA Performance Issues
6.1 Introduction

Another of the areas of uncertainty that is introduced into a Banking environment when older
systems are reengineered as peers in a distributed computing environment is performance.

Traditional mainframe applications could rely on good performance and as we shall see, when we
introduce distributed applications to this platform, there are various performance overheads that
will be associated.

What we need to look at is various ways of minimising this overhead so that access to critical data
can still be retrieved quickly, whether from a 3270 Terminal or a Java Applet.

[Kahkipuro 1999] details some of the ways in which the performance of CORBA based
applications can be compromised. These include

» Distribution transparencies

e Marshalling and demarshalling of parameters
e Invocation routing

* Network bandwidth and latency

e UseofNetwork connections

e Server Contention

As noted in [Gokhale, Schmidt 1998], the success of CORBA in mission-critical distributed
computing is dependant on the ability of the Object Request Broker to provide the necessary
quality of service (QoS) to applications. These quality of service requirements include high
bandwidth, low latency, and scalability of endsystems and distributed systems. We will
investigate the firsttwo ofthese in this chapter and consider the latter in a later chapter.

It is important to note that for this discussion we will focus on what can be done in the CORBA
environment and specifically in terms of IDL and Service granularity to improve performance.
We can assume that a large organisation is using the latest hardware and software technology and
this does not require a discussion.

Various other issues such as the Availability and Scalability of the system will also have real
affects on the systems performance and in later chapters we will look at these topics and at
various solutions that can be applied from these areas to the performance of the system

6.1.1 Performance of Distributed Systems

The very first thing we can assume with distributed systems is that there will be a performance hit
due to network latency. It is accepted that a call across the network will always be substantially
slower than a local call. In reality, this factor may be thousands of times slower. [Koch, Murer
1999].

56

Even the modem advances in technology and various CORBAServices have not overcome this
problem. Extending this problem, it is also likely that inter-process calls on the same physical
machine will be slower than calls that execute in the same process.

Naturally this performance hit that comes with distributed systems is going to be of big concern in
a CORBA environment where there can be direct communication between many objects.

[Gokhale, Schmidt 1997] detail how the QoS requirements for delay-sensitive applications
include an absolute need for low-latency. Modem banking high-speed networks (such as ATMs)
support quality of service in terms of bandwidth and latency. Using CORBA means significant
performance overhead in such applications, which have to be overcome or lower level
communications would be preferred such as sockets, which do not have the other benefits of
CORBA such as reliability, flexibility and reusability.

In fact, [Rackl 2000] suggests that these requirements are heading in two distinct directions. He
maintains that on one hand, optimised platforms for specific application domains like high-
performance computing are being developed but on the other hand, integration solutions like
CORBA have improved interoperability as their primary goal, allowing communication between
different middleware products and the integration of legacy applications.

However, as seen from earlier chapters, there is in fact many large organisations that require both
improved interoperability and high performance and this isthe target we need to reach.

6.1.2 Other Performance Problems

The performance degradation of an application due to network latency is not the only issue we
need to consider in the CORBA world. [Slama et al. 1999] outline how we must consider the type
of data being passed between CORBA objects, and the amount ofthis data being passed.

[Silva et al. 2000] also outline how there is a performance cost due to the creation and deletion of
CORBA objects, specifically with the start-up of the Java virtual machine when this is the
operating system of choice for CORBA servers. This additional cost is added for the start-up of
each server.

57

6.1.3 Designing IDL for performance

The Interface Definition Language defined by the OMG for defines CORBA interfaces have been
outlined in a previous chapter and it can be seen how IDL is a flexible way of defining our
interfaces and other associated elements.

FIGURE 6.1: Interfaces Define whata CORBA Service will provide

However IDL is more than a useful tool. It is the key to designing our CORBA Services and can
have a massive impact later on if notthought out properly in the early phase. One key component
to remember is that IDL is for designing interfaces for the Service and not the implementation.
This is especially true when dealing with Legacy Applications or Legacy Data. We must design
the IDL irrespective of how itis or will be implemented.

[Smith, Williams 1998] also recommend considering performance issues early in the

development process to ensure optimal performance of an application. They outline various
problems with applications using the "fix-it-later” approach.

6.2 General Solutions to the CORBA Performance Problems

[Grahn, Holgersson 2002] and [Slama et al. 1999] provide some general performance guidelines
that can help to improve the performance ofa CORBA based system. These are

- Reducing the number ofremote operations

- Optimising the amount of data passed
- Optimising the IDLs types used.

58

For the reasons outlined above, the single best solution to performance problems in a distributed
system is to reduce the number of remote operations. The cost of network communication can be
significantly reduced if each invocation deals with a reasonable amount ofwork.

Another performance improvement can be made in recognising that different IDL datatypes cost
more to marshal and unmarshall than others and to design the IDL with this in mind can reap big
benefits. In the same manner, IDL can be designed so that the number of remote operations is kept
to a minimum. We shall see how this is done later.

Finally, another common solution to improving system wide performance isto implement a load-
balancing policy. This policy is a way of ensuring that the load on the system is spread evenly so
that queues and bottlenecks are keptto a minimum.

We shall look at some of these general solutions to ensuring that the addition of CORBA to the
mainframe environment does not have catastrophic effects on performance.

6.3 Minimise the number of remote operations

We should offset network latency at an early stage ofthe applications development lifecycle. As
we have just seen, distributed computing adds significant overhead due to slower communication
than the traditional centralised mainframe model.

(Kahldpuro 1999] outlines some well-known techniques, such as caching and pre-fetching to
reduce network latency and [Gokhale, Schmidt 1998] outline some system level options that can
help. These include

e Changing socket queue size

e Turning on the TCP "No Delay" option

e Modifying the data buffer size

e Changing the number of servants on the host side.

These will of course help reduce existing network latency but to reduce the actual amount of
network communication will lead to the increased performance benefits. [Koch, Murer 1999]
outline two general rules to help us.

1.Use sequences whenever several calls to the same operation may occur

A network call is the most expensive part of distributed communications. To minimise the number
of network calls will reduce the overall performance costs. Instead of a client calling a remote
operation n-times, it should create a sequence of n entries and allow the operation to deal with all
of these at once. The size ofthe in and out requests will be much larger but there will be just one
network call.

2. Communicate structures that contain all or at least several attributes of an object

Another approach to reduce the amount of network calls is to group attributes inside a structure
and allow the server to set or get their values at the same time rather than individually.

59

This type of architecture known as "Service-based Architecture"” results in smaller grained objects
such as customers or accounts residing within larger grained components. [McCauley 1999]. The
users ofthis system will then access a "Service" rather than a small grained object.

Such an architecture is particularly suitable for the mainframe environment where existing CICS
and IMS Transactions can be offered as services on an interface. This makes the integration or
wrapping of such legacy transactions as CORBA interfaces rather simple.

6.4 Optimising the type of data sent or returned

Another well-known solution to CORBA performance reduction is to consider the types of data
that are sent in remote invocations. [Gokhale, Schmidt 1998] The different CORBA data types
require different marshalling and unmarshalling times depending on their complexity as some are
more expensive to marshal than others.

[Slama et al. 1999] detail how that every time a distributed invocation takes place, the data being
passed has to be copied from variables into a buffer by the sender and extracted from the buffer
into variables by the receiver. These IDL data types map to different constructs depending on the
programming language and thus have different costs associated with this marshalling and
unmarshalling.

This is another CORBA optimisation that can take place in the IDL design phase of the
application development lifecycle as we can chose which datatypes to use in our interface
definition.

However, there is also some good news when using CORBA as outlined in [Khandker et al.
1995]. The performance metrics for DCE, Java/RMI and several CORBA vendor products show
CORBA in a favourable light. In fact, their results show an improvement of at least five-fold over
DCE for complex data types when using Java and CORBA.

6.4.1 Orders of Magnitude

As outlined above, different data types map to different constructs depending on the programming
language but there are general guidelines outlining which of the CORBA data types are more or
less expensive to marshal.

The "simple" datatypes are the easiest to marshall and unmarshall. An IDL short for example will
be relatively fast to marshal and unmarshall since it is small and of fixed size and maps to a native
data type. An octet can be even faster to unmarshall as it never has to undergo any character
conversion.

An IDL string however will be more expensive since it is of variable length and in JAVA maps to
an instance of class String and in PL/l maps to a pointer. An ANY is even more expensive
because not only does it hold variable length data, it also has to hold typecode information
detailing the type ofthe data held in the ANY.

60

Object References are the most expensive to manage. They are of variable length as the size of an
object reference depends on the length of the interface, the size of the ORB-specific object key
and the number ofadditional profiles associated with the IOR.

To unmarshall an IOR within a receiving process involves more than simply extracting data from

a buffer. A proxy object must be instantiated and initialised, which involves some further
overhead

IDL Type

Octet

Short

String

Sequence

Any —

Object Reference

FIGURE 6.4: Marshalling Costs ofthe Various IDL DataTypes [Slama et al. 1999]

6.5 Optimising the amount of data sent or returned

Another area where we can reduce performance costs is when deciding how much data will be
passed with each remote invocation. One result of our using a Service based architecture is that
we will now tend to pass more information per requestthat a non-optimised CORBA system.

The amount of data passed can affect a system performance as, simply put, it takes longer to send
a lotof data than it does to send a little data. The more data being sent the longer it will take.

61

The graph of Throughputversus Message Size Looks like :

Throughput (MB/Second)

FIGURE 6.5: Throughputversus Message Size [Slama et al. 1999]

However, studies by [Grahn, Holgersson 2002] and [Slama et al. 1999] have shown that this in
not a linear graph. Just by increasing the amount of data passed per request does not always
increase throughput ofthe system.

The graph above outlines the approximate results of a study on throughput of CORBA requests.
Naturally, this graph is different depending on platform, operating system and language but
generally ittends to look like this.

W ith this in mind, we can once again decide at design time, just how much data we expect to send
with each request and can design our IDL accordingly.

In a real world study of Audio/Video streaming using CORBA, [Mungee, Surendran, Schmidt
1999] found that when smaller buffer sizes were used in their experiments, there was the largest
disparity between CORBA and TCP or A/V streaming implementations, with about 50% worse
performance with the CORBA option. However, when the buffer sizes were increased, the ORB
performance improved considerably and attained nearly the same throughput as the TCP and A/V
streaming options.

62

Some general solutions to this problem involve reducing the amount of data sent across the wire.
If the server were to pre-process the data for example and send these results to the client there
could be an improvement.

There is an Iterator design pattern that is quite common and rather powerful but should be
considered carefully in the performance context. [Froélich, Gal, Franz 2002] note that certain
programming languages offer an iterator construct to traverse encapsulated data structures in a
modular manner. The lterator design pattern uses this concept when there is a large amount of
data to be passed with a CORBA request/reply. Rather than returning the entire result set to the
caller, a CORBA server will return an initial chunk ofthe data plus an iterator.

This iterator is an object-reference which the client can then use to make on to obtain further
chunks of data. If the client uses a subset of the data this can be a very beneficial solution.
However, if the client is always requiring the full set of data, an iterator can have a negative
performance impact by adding more network calls.

When and where to use iterators very much depend on individual applications. If there will be
significantly more network calls as a result then they may not provide the benefit expected.
However, when the data being sent really is large, this pattern can ensure that the ORB is not
overwhelmed.

6.6 Additional CORBA Patterns

There are also various well-known CORBA Patterns that can also be applied in general cases to
enhance the performance of a system. We have already seen how a Service Based architecture is
probably the most ideal for a mainframe based system but some or call of the others can also be
considered.

Distributed Callback Pattern [Mowbray, Malveau 1997]

This pattern is useful when a client process needs the result of a service, but cannot afford to wait
during processing.

If a client is using synchronous messaging, server-side processing can entail significant delays.
For example, a client application needs to guarantee a reasonable response time to a user. A user

interface program must have continual awareness of user events and respond accordingly.

In CORBA terms this pattern often entails the use callbacks so that the client does not have to
wait. We will see some more ofthis in the section on Scalability.

Fine Grained Framework Pattern [Mowbray, Malveau 1997]

This pattern is used to define and use fine-grained objects in a distributed system without
incurring prohibitive costs in terms of performance and system complexity.

In a Service based architecture, coarse-grained objects are typically preferred but this pattern can
also be considered.

63

Independent Objects Pattern [Mowbray, Malveau 1997]

This pattern is used to resolve processing bottlenecks due to tight coupling of implementations,
such as separating the factory implementation from the objects that it creates.

Instant Reference Pattern [Mowbray, Malveau 1997]

The Instant Reference Pattern is used to optimise performance of object instances through shared
sever implementations. It provides a mechanism of mapping from the implementation of an
object's interface to a specific object instance.

Library Skeleton Pattern [Mowbray, Malveau 1997]

The Library Skeleton Pattern can be used to limit the amount of network calls by collocation of
clients and object implementations. Again, any attempt to reduce the amount of network calls in a
system will provide immediate performance improvements.

Partial Processing Pattern [Mowbray, Malveau 1997]

The Partial Processing Pattern can be used to improve the performance of a CORBA-based
application by optimising the amount of parallelism.

Replication Pattern [Mowbray, Malveau 1997]

This pattern shows how to provide improved performance and reliability by replicating an object
in multiple distributed locations.

Load Balancing is the technique of spreading the work of a server over many servers that support
the same implementation. Replication is most often used to implement a load-balancing policy.
We will investigate Load Balancing and Replication in a later chapter.

Flyweight [Gamma 1995]

The Flyweight pattern outlines a design pattern that can be uses sharing to support large numbers
of fine-grained object efficiently. In a Service-based architecture there will typically be a few
large-grained objects that contain many finer-grained objects. As a result, there is not a need to
manage large numbers of fine-grained objects.

Interceptor \from the OMG CORBA Specification]

The interceptor pattern enables the transparent adding of services to a framework and for them to
be triggered automatically when certain events occur. As per the CORBA specification, there is a
request interceptor that is designed to intercept the flow of a request/reply sequence through the
ORB allowing a service to transfer context information between clients and servers.

64

6.7 Conclusion

We have seen in this section that the largest factor that affects the performance in a distributed
system is network latency. What we have provided here are various approaches to reducing this
network latency through the design of performance enhancing IDL and by adopting a Service-
Based Coarse grained Architecture.

[DSRG 1999] point out in their report, that there is also a different in performance between
different ORB implementations and an organisation should be aware of these differences before
committing to a product.

In the Sections on Scalability and Availability there are further approaches and patterns that can
be used to further enhance the performance of the network by balancing the load on the system,
by managing the connections in the system, by managing the sessions and by providing multi-
threading.

Unfortunately the addition of Security can impose performance overheads too but we want to
reach a status quo where the CORBA Service only adds a marginal performance overhead when
compared to that ofthe legacy application that preceded it.

The CORBA specification does provide enhancements such as the interceptor pattern to further
assist system designers, but [Schmidt et al. 1997] reckon that CORBA in general is not well
suited for performance-sensitive real-time applications due to lack of standard quality of service
policies and mechanisms.

They also argue that CORBA has a lack of real-time features as well as a lack of performance
optimisations. In addition [Wang, Schmidt, Levine 2000] outline a possible extension to the
ORB specification defining a local keyword to the IDL syntax that would support locality
constrained object interfaces. This keyword would allow developers to define and use their own
locality-constrained objects to avoid wunnecessary traffic and marshalling/demarshalling
operations. This solution is also an example of the optimising principle pattern Avoiding
gratuitous waste.

There is an OMG Realtime Special Interest Group to consider all such extensions to the core
specification.

Among the initial goals of the research was to find areas such as system performance, which
could prevent the enterprise integration project being successful. We have seen some industry
standard solutions in for improving performance in a distributed environment. In a later section
we will see the application of the approaches recommended here and how they can be used in
real-world situations.

65

7 Security Issues

7.1 Mainframe Security

Previously, the mainframe was typically inside the private company network and so the chance of
attack from the outside was often not of considerable concern for System Administrators.
However, as we are now making Legacy Applications available to the Intranet and to external
Internet users requiring banking functions, the industry needs to completely re-evaluate its
security measures.

Private
Company
05/390 Network
Mainframe DB/2
Application

External Attack

FIGURE 7.1: The Private Company Network

Typically, mainframe security utilised the IBM RACF or Computer Associates ACF2 on
0S390/MVS. These access control facility models are a centralised and well-proven security
model. They work by controlling access to mainframe resources by legitimate users.

Where once it was the case that no requests from outside the Private Company Network should
get through (with some exceptions but over secure lines), we now need to supportrequests from a
variety of different clients (some of whom will be external to the network). These clients will end
up accessing secure data.

As noted in [Slama et al. 1999], enterprise systems are moving increasingly into the Internet
environment. This typically involves building Java front ends to existing systems, or developing
new Internet-focused systems. With this, come requirements for thin client models, and therefore
lightweight security libraries not typically available from, or suitable to, traditional DCE/RACF
security solutions.

However, even with the traditional security mechanisms, security is never absolute. [Johnson

1989] states that the probability of a compromise may approach, but is never, zero. Securing a
system is the act of moving that probability closer to zero than it was before

§9)

7.1.1 RACF (Resource Access Control Facility)

The RACF component of OS/390 works together with the system to protect critical data in the
enterprise and give only authorised users to this data.

Terminal

Terminal

Terminal

FIGURE 7.2 : Resource Access Control Facility

RACF uses aunique user ID to identify each person trying to access the system and a password to
authenticate that identity. After the system has been accessed, RACF then controls the level of
access authority for each resource a user tries to get at. It will check the security classification of
both the user and the data and give access ifthe required conditions are met.

RACF can be tailored to interact with the bank’s operating environment and adapt to its changing

security needs. The RACF remote sharing facility gives you the flexibility to move work from one
system to another and administer several systems from a central database.

7.1.2 RACF Record Keeping

One ofthe important features ofa security model as we shall see in modem requirements is some
form security logging.

RACF keeps statistical information, such as the date, time, and number of times a user enters a
system, and the number oftimes a specific resource was accessed by any one user.

RACF also writes security log records to help you verify the security of the system. And, RACF
provides utilities that create reports from this data to help you detect possible security exposures.

67

FIGURE 7.3: RACF SECURITY ADMINISTRATION

7.1.3 Mainframe Security in a Client/Server Model

It must be noted that the traditional mainframe security model has been tried and tested and is
regarded as an adequate security mechanism when inside the private company network. Opening
this network to external clients in addition to internal distributed systems with the mainframe as a
peer, lead to immediate questions as to the effectiveness ofthis model.

[Mowbray Malveau 1999] rate security as an important aspect of management of IT resources.
The secure control of information and services is becoming more important as systems become
increasingly networked and Interoperable

As [Lang 1997] points out, it is more difficult to establish a basis of trust in distributed systems.
More than one global systems mechanism needs to be trusted. The degree of trust in elements of
distributed object systems may change over time whereas in mainframe systems trustworthiness is
typically static.

In modern object-oriented systems, it is also true that objects cannot be trusted to enforce their
own security, since application developers may lack the necessary security knowledge or may
simply notwant any security-related performance overhead.

As we will see in later sections, PKI (Public Key Infrastructure) and SSL (Secure Sockets Layer)
are among the most popular security systems used in decentral computing systems. If we can use
a combination of PKI, SSL and traditional mainframe security to protect the key data we can go a
long way towards satisfying the most nervous of Managers that the critical data is safe.

RACF has been designed however so that it can be integrated into a system that uses public key
SSL technology and this will make our task somewhat easier. It has various defined mechanisms
to allow it use SSL integration with its own access control facility.

7.2 Banking Security Requirements

In Chapter 2 we discussed and formulated the business requirements of modem Banks and we
saw some ofthe I.T. systems that were required to meet these requirements. A modem bank will
require many different types of functionality in their systems but will also require additional
aspects such as mail servers to handle e-mail, web servers to handle middle-tier CORBA and EJB
servers and internal applications to administer the company.

However [Slama et al. 1999] rightly point out that with these additional requirements, more
possible attack points are created and protection of non-public information from unauthorised
users is as critical as ever before. Essentially, the biggest challenge facing developers of secure
systems today is trying to find a comprehensive solution that can address all of the features
required ofthe system, while still providing room for the system to evolve and grow.

FIGURE 7.4: Banking Systems Requirements

It is easy to see that the diagram above is flawed and would be difficult to implement. For
example would we really want an external client to have direct access to a mainframe application?
Even if this was to be allowed, how could we guarantee the security of this connection. Rather,
this diagram should be viewed in terms of the requirements of the banking systems. It is the case
that external clients might want access to their account information residing on a mainframe but in
reality, they would not be allowed direct access.

69

7.3 Threats to Banking Security

Forvery obvious reasons, the security of ones money in a bank is taken for granted by the average
consumer. It would be unacceptable to log-on to ones account one morning to find that "someone
else had been there first". From the Banks perspective, this complete faith from their customers
that their assets are safe must be met without question.

From a systems point ofview, there are various threats that apply to each part of a bank's systems
and these must be broken down and considered.

7.3.1 Internal Network Security

The internal network security that a bank must provide includes authenticating users to ensure
they say who they say they are. There must be control over who has access to resources. These
security requirements apply right across the internal enterprise.

In addition, the security model that was used on the mainframe, RACF for example must be able
to be integrated with different security models such as SSL and PKI.

FIGURE 7.5: Internal Network Security Requirements

7.3.2 Internet and Extranet Security

Most banks have as business requirements public internet access. This access is typically provided
to provide easy access for a Banks' customers but at the same time there is a clear requirement to
protect the resources and to monitor unauthorised intrusions and actual attacks.

70

Likewise for Extranet users there is a requirement to authenticate access and to provide access
control for authorised users whilst also securing communications and ensuring confidentiality.

Communication Authentication
Access Control

FIGURE 7.6: Internet and Extranet Security Requirements

7.3.3 Security Threats

There are different categories of Security Threats in terms of seriousness for the banks and
likewise there are different causes of Security threats and these can be broken down into
deliberate or accidental.

7.3.3.1Deliberate Security Threats

Deliberate Security threats typically come from malicious individuals or groups outside the
private company network but increasingly such attacks are coming from disgruntled or agitated
employees from inside the network.

Examples of such attacks include brute fore attacks where all possible combinations of a
password to a protected resource are tried, usually via a piece of software or mechanical tool.
Another popular attack from outside hackers are web spoofing attacks where a false web page
might be used and the users ofthe bank might be tricked into giving their information.

71

Other individuals attempt to gain access to the protected resources by falsifying IP addresses so
that a malicious packet can getthrough the firewall or router that guard the entrance to the private
network. The firewall or router believes the IP address to be valid and allows the packet through.

Another attack on large organisations that has been known is disabling a particular service on a
network or the entire network for example by using a specially constructed packet to crash the
network or continuously sending packets until you flood and crash the server. This form of attack
is known as denial of service.

Attacks from inside the company might include deliberately deleting protected resources so that
the system as a whole fails. Giving protected passwords to outside parties is another way of
compromising security from the inside as is modifying data such as account balances and
overdraft limits.

All ofthese attacks along with the regular viruses and worms that can cause chaos with the worlds

computers are very real threats and need to be taken seriously. Any security policy that a bank
may implementwill take a look at each ofthese in turn.

7.3.3.2 Accidental Security Threats

There is also a threat to a Banks resources from accidental attacks on the protected resource.
These usually happen when an individual modifies or deletes restricted resources by mistake and
may not even realise the consequences oftheir actions.

Large organisations have to be especially careful as to how gets access to the inner restricted

resources so that only those with knowledge of what they are doing can modify or delete such
critical information.

7.4 Required Security Services

There are certain security services that every bank needs to protect its resources. The most basic
of these need to be supported by any security policy implemented by the bank. These include:

7.4.1 Security Services
Authentication - Proving that someone is who they say they are.

Access Control - Giving a user access to different parts of the system, also known as
authorisation.

Integrity - Proving that a message sent from a user has not been tampered or altered in any way.
Confidentiality - Maintaining the privacy of messages sent from a user

Auditing - Logging of user interactions and tracking of these actions for reporting purposes. We
wantto know who did what and when.

72

Non-Repudiation - Users must take responsibility for their actions. We must ensure that someone
cannot do something and then claim they did not.

FIGURE 7.7: Protecting the Banks Resources

7.4.2 Applying Security Services

Each ofthese services detailed above has a very real place in modem banking systems. What we
need to do is find the difference inthe services offered and work out where they should be applied
in the different places in our system.

Any security policy needs to be enforceable both technically and organisationally and needs to
address all aspects of security. To address these aspects there must be a certain amount of risk
management applied - i.e. a bank must decide what needs to be protected and how well it needs to
be protected.

There must also be an investigation into the cost of security, there is no benefit in spending large
amounts on a security system that is protecting resources which if compromised will only cost the
bank a fraction ofthis amountin losses.

One of the major problems in finding an adequate security solution is outlined by [Slama et al.
1999]. They note that the today's market is showing the strains of having emerged quickly from a
DCE- and RACF- dominated world into an Internet arena that is focused on more lightweight

technologies than the established DCE or RACF solutions.

There is a myriad of emerging standards, technologies, and products that solve one piece of the
security puzzle or another, but do notyet interoperate well.

7.4.3 Addressing different System Areas

There are different areas of a banks’ IT system that need to be addressed. These include the
procedural, the physical and logical security ofthe system.

73

The Procedural security is the administration of the system. For a bank this would include new
user accounts, disaster planning, backup procedures etc. The Physical Security includes access to
buildings, rooms, machines, disk drives, printers, etc.

The Logical Security includes authentication, access control, integrity, confidentiality, non-
repudiation and auditing.

Procedural Physical

- Account Admin -Building &RoomAccess

- Disaster Planning - Machine Access

- Backup Procedure - Disk & Printer Access
Logical

- Authentication & Access Control
- Integrity & Confidentialiy

- Non-Repudiation & Audting

FIGURE 7.8: Different Security Areas

There are further design and architectural issues to be considered when implementing any security
policy. A decision must be made whether to deny access to all services and only allow those that
are required. Perhaps known security vulnerabilities such as services and ports should be
restricted and maybe access to and from certain hosts should also be restricted. The question of
how much monitoring is required should also be looked into.

Someone needs to decide how much time and money needs to be spent on the security system
both in terms of money and in terms ofhours spent on implementation and design.

7.5 Firewall Technology

In a previous section we have looked at traditional mainframe security that provided adequate
security for earlier distributed systems. However, as was mentioned, since we now required
heterogeneous and distributed computing both inside and outside the private company network,
new solutions have to be considered.

Firewalls are a technology than can be used to protect the perimeter as well as providing access
control and auditing to protect the systems resources. Firewalls are in essence like a brick wall in
a building that prevents a fire from spreading. An Internet Firewall is a facility to secure a web-
sites perimeter.

74

Private Company

Network Mainframe System

External Clients
NT System

External Systems Internal Clients Unix System

Firewall

FIGURE 7.9: Firewall Technology

7.5.1 Firewall Security

Firewall Technology can be added at the boundary of a private company network and it can be
used to control access to and from the private network. Essentially it does this by providing a
single entry point to the system at which point security authorisations can be added and auditing
procedures implemented.

The addition of this authorisation will restrict the services that can be accessed and reduces
security vulnerabilities. Likewise, a firewall can stop unauthenticated interactive logins from the
Internet to stop unwelcome individuals accessing the system resources. However, a firewall will
not protect against viruses and other forms of external attack as detailed previously.

A firewall can also work in the other direction and can be used to restrict internal employees
accessing external systems. This technology will still not protect against disgruntled employees
and those on the inside wishing to do damage.

It should be noted that a firewall by itself will not provide all the security required as there are
many other ways to compromise a banks security, other measures will be required and we can see
these in the following sections.

There are different types of firewalls include Packet Filter which are simple packet routers that

can make basic access decisions (sometimes called Network Level). Proxy servers understand
protocols and can filter based on this (sometimes-called Application level).

75

[Slamu et al. 1999] point out how, in the Internet-oriented world, firewall technology is
understood and established, but does not solve all the issues around system and data protection. .

The OMG provide now provide a CORBA Firewall specification. This details how, ina CORBA
environment, firewalls are used to protect objects from clients in other networks or sub-networks.
A firewall will either permit access from another network to a particular object or will prevent it.

When access through a firewall is permitted this may be at various levels of granularity. For
example, access could be permitted to some objects behind the firewall, or access could be
restricted to certain operations on particular objects.

An enclave is a group of objects protected by a firewall. The firewall protects the enclave's
network (or sub-net) by separating it from other enclaves and/or the Internet at large. The
separation is the result of the fact that all communication between the enclave and the outside
must pass through the enclave firewall (or one of its firewalls, if there are several). Firewalls have
two distinct duties: inbound protection and outbound protection. Inbound protections are used to
control external access to internal resources. Outbound protections are used to limit the outside
resources that can be accessed from within the enclave.

For a real-world example, the Xtradyne Domain Boundary Controller (DBC) is a CORBA
Firewall (application layer firewall) that securely transmits CORBA requests and replies across
the domain boundaries including packet filter firewalls and NAT Routers. Acting as a CORBA
Firewall the DBC checks the correctness of HOP messages (or RMI/IIOP messages respectively)
and filters out hostile and destructive messages.

7.5.2 Packet Filters

Packet Filters are routers that can base access decisions on source destination addresses and ports
in the IP packets. There are generally mounted on a single secured host, a bastion host and
separated from the internal network. They provide a single point of access and are usually
transparent to users. There are some more sophisticated products that hold internal info about the
state of connections.

7.5.3 Proxy Servers

Proxy Servers are pieces of application component software on a firewall that understand the
application protocol. These are especially useful when using a standard such as CORBA as there
exists on the marketplace such Proxy Servers that understand IIOP.

These Proxy Servers can make more detailed access decisions based on the protocol message and
only allow certain types of messages to pass in either direction.

There are varying levels of sophistication and some Proxy Servers can perform user
authentication and various auditing procedures.

In the CORBA world, use of these Proxy Servers mean that every IIOP request passing in or out
of the private company network would pass through and this can impact performance. They are

76

also typically protocol specific and if a new application or protocol were added to the system, then
a new Proxy Server would need to be added.

FIGURE 7.10: CORBA Proxy Server

In the diagram above, an HOP Proxy Server sits at the entrance to the private company network.
Valid I1OP requests are allowed to pass through to the CORBA server in the network and valid
HOP results are allowed to pass back in the other direction.

7.6 De-Militarised Zones

The concept of a De-Militarised Zone (DMZ) is an additional way of providing more security
when using firewalls. It completely isolates the internal network from the external internet by
placing an intermediate/buffer network in between them and this buffer network is the De-
Militarised Zone (DM2Z).

7

Firewall

FIGURE 7.11: De-Militarised Zone

It can be arranged to have multiple subnets in the DMZ each with their own security level. This
provides another level of security. The reason you might want to have such multiple subnets is
because often breaking into an unsecured host/subnet can then allow a hacker to abuse or utilise
trust relationships with more secure host/subnets. So by isolating hosts of different security levels
from each other, you are providing another barrier to the hacker.

A DMZ can also act as a Network Address Translator (NAT). NAT is also known as IP
masquerading because it basically hides internal hosts from the outside world. It hides IP address
by converting them to the address of the firewall, and so it hides all TCP/IP-level information
from hackers.

78

There can be multiple proxy-servers acting as firewalls. In the diagram above there is a firewall
between the Internet and the DM Z and another firewall between the DM and the internal network.
In this case an external client never has direct access to internal hosts (even Proxy Servers on the
internal network)

7.7 Public Key Infrastructure

Public Key Infrastructure is one of the more popular solutions available on the market today. Its
role is essentially to support public key technologies that provide authentication, integrity and
confidentiality.

Public Key Technologies make use of the SSL protocol and X.509 to provide the required
elements of a security model that can provide secure communications by ensuring integrity and
confidentiality. Such a solution is an absolute requirement for banks that are looking at expanding
their mainframe based legacy systems to work as true peers in a heterogeneous distributed
environment.

7.7.1 Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol was originally defined by Netscape and is a transport
layer security protocol layered between application protocols and TCP/IP. It is a lightweight
Internet security solution but is very useful for our requirements as it fits nicely between 11OP and
TCP/IP to provide a security layer. The SSL protocol uses RSA (Rivest Shamir Adlemann) public
key cryptography for authentication.

79

SSL authentication is based upon the use of Certificates. These Certificates are signed messages
specifying a name, a public key and the name of the Issuing Certification Authority. We will see
the full details in the next section on X.509 certificates.

Commonly known as "‘credit card security' as defined by [Siama et al. 1999]. SSL is extremely
well suited to the security needs of Internet commerce systems. Fast, lightweight, but providing a
robust and strong level of security, it is ideally suited to the Internet where public servers are
common, but protection of sensitive information such as credit card details in transit is of extreme
importance.

There are many successful products on the market that deal with these issues, providing full
support for SSL and X509 security standards, and that can be used with the CORBA security
services to manage a large-scale secure distributed system.

The thinking behind SSL Authentication involves the use of public key cryptography. In public
key cryptography, each application has an associated asymmetric public key and private key pair.
Client messages are encrypted using the server's public key and the server decrypts the message
using its private key.

When sending a reply, the server encrypts this with its own private key and the client decrypts it
again using the server's public key. This Public Key Cryptography is also known as asymmetric
key cryptography. There is an overhead, in that the authentication handshake adds an extra 5-20%
performance overhead, but this is reduced for the remainder of the connection.

Symmetric (or secret key) cryptography relies on the client and server sharing a single key, which
is used to both encrypt and decrypt a message. Symmetric key cryptography is faster and more
efficient than asymmetric key cryptography. The most widely known and used symmetric key
algorithm is the Data Encryption Standard (DES) and its more secure derivative Triple-DES
(3DEYS).

80

SSL also defines cipher-suites. These cipher-suites are groups of mechanisms that the protocol
uses. It allows client and server to negotiate and agree common mechanisms by selection from a
list of supported cipher-suites. Some cipher-suites are intrinsically more secure than others
because the mechanisms they used are deemed cryptographically stronger meaning that they are
harder to break.

Another of the more beneficial features SSL provides is confidentiality. After authentication, SSL
client application sends a once off encoded data value to the server - the "session key". A Session
Key is a key to a secret key cryptographic algorithm, chosen for efficiency. Communications
between client and server are then encoded using the agreed secret key cryptographic algorithm.
This key is called a session key because it is only used once for single session between the client
and server.

SSL provides integrity as it adds a Message Authentication Code (MAC) to each message. This
MAC is like a hash value/checksum for the message.

7.7.2 X.509 Certificates

X.509 certificates are ASCII files that match public key and name. The X.509 is standard format
for certificates defined by the International Telecommunications Union (ITU). An X.509
certificate includes information such as the security name of the entity identified by the certificate,
the public key of the entity and the name of the Certification Authority that issued the certificate.
This CA that is used for signing certificates can be either a private or commercial CA).

The Security Name part of the X.509 certificate also contains further fields such as the Common
Name, the Organisation Unit, the Organisation, the Region and the Country as well as an expiry

date.

The Public Key is publicly available, allowing users to encrypt messages to the owner of this key.
Only the holder of the inverse Private Key (password protected) can decrypt the message.

81

7.7.3 Certificate Authority

A Certificate Authority (CA) is the authority that is primarily concerned with proving the identity
of users and generation of X.509 certificates for those users. Trust of these certificates is only
possible because they are signed by the CA, and this CA is trusted.

The CA can be trusted because their public key is so widely known or easily available that it can
usually be accessed from several sources and thus easily verified. The selection of a CA used with
SSL is a very important first deployment decision. The CA under-pins the security of your
network and can also aid in certificate management.

The CA is used during the authentication phase to introduce unknown processes to each other by
acting as a trusted third party. At runtime authenticated users are those users that have a valid
X.509 certificate signed by the CA chosen by an organisation. In a CORBA environment for
example, the public key of the trusted CA must be distributed to all secure CORBA application.

Some companies choose to use a private CA. This entails having a trusted node that they
themselves set up to use and sign certificates. Securing the CA itselfis also vital and in the case of
a private CA, a bank has to ensure to take extra steps to ensure its security. Obvious measures are
not putting it on the network, providing physical security to the machine etc.

Other issues with using a private CA include the large overhead that comes with acting as CA.
The bank itself is now responsible for signing and deployment and this latter can be quite a task
for large-scale deployments. There must also be a plan in case CA keys get compromised. The
bank then needs to re-issue all certificates signed by the compromised CA

When using a commercial CA there is a company that signs certificates for many other
companies e.g. Verisign, Entrust, RSA. The benefits of Commercial CAs" include a reduced
responsibility with regard to certificate management. The CA can be globally recognised and
therefore easier to extend the user base across the Internet or with other partnering companies.
Commercial CAs' usually also provide tools to help with the PKI/Certificate Management. There
is a downside to using a commercial CA and that is there is still a need to re-issue certificates if
the CA is compromised and issuing is outside your control

7.7.4 Other PKI Issues

They are various other certificate management issues that arise when a bank chooses the use of
Public Key Certificates as a security model.

When a certificate is no longer legitimate and needs to be revoked, a certificate revocation
process can be a useful addition to the security model. The revocation process holds a list of
revoked certificates and will check any certificate it is processing against this list to ensure they
are still valid.

If a user loses their private keys they can be in a certain amount of difficulty as they will then be
unable to operate within the Public Key Infrastructure. For example they might not be able to
access documents they had encrypted with their key. A key backup mechanism is a solution to
re-issue the private key to the user.

82

Of course there are further security issues arising from this. Where should this backup information
be held securely while still protecting the user’s private key as the private key usually remains in
the sole possession ofthat user?

A central repository of certificates would be an advantage for holding public keys to be
accessible to everyone. In a banking environment, the options available might include LDAP,
DNS, or the corporate database.

Automatic Key Update is a way of automating the process of updating certificates that reach
their expiry date. This can be done in a way transparent to the user.

Using Key History Management, we have away of keeping a history of expired certificates plus
the private keys as a user may have encrypted certain data with this older key and as a result this
cannot be decrypted with a new key. Key History Management should be automatic so that a user
does not have to intervene when trying to decrypt old documents.

Throughout this discussion on PKI we have only considered one PKI in one system. In reality
there are many PKls on different systems throughout the world and these need to interoperate.
Cross-Certification is a way of ensuring this interoperability.

As in most IT systems, timestamps provide a very usefiil record of seeing what happened and
when. In secure systems, secure timestamps are a key element in providing non-repudiation.
They can show when something happened and thus can be used to decide whether an action
should be allowed to occur.

Repudiation is the denial of having done something. Non-Repudiation support in security terms
means we can ensure that if a user has completed an action, they cannot deny in the future that
they were responsible. A PKI will have the evidence to prove the user completed the action.

7.7.5 PKI Locations

The use of PKI raises further issues as we have seen above. However some of these issues are
more important in different systems and with different integration models in mind. We should
have a closer look at these systems.

Internet PKI is essentially the security that is required when sending emails between friends or
when browsing the web securely. This type of PKI essentially only requires the four basic
components for SSL. These are Authentication, Integrity, Confidentiality and Certification
Authority.

Extranet PKI is required when Extranet support is added to a system, as extra security needs to
be provided also. A secure browser is still used but because users may come from outside the
company more emphasis will be placed on validating certificates and ensuring that they have not
been revoked.

Therefore the security components required for extranet security include Authentication, Integrity,
Confidentiality, Certification Authority, Certificate Revocation and Key Backup

83

In the case of inter-enterprise signed transactions Cross-Certification will be used as two secure
systems are interacting. Non-repudiation and Secure Time Stamping are required to ensure that all
actions are accountable in between the two enterprises. Authentication and Authorisation as
always real issues. This is known as Inter-Enterprise Signed Transactions PK1

Inter-Enterprise Signed Transactions require the most basic PKI components plus some additional
features. The list includes Authentication, Integrity, Confidentiality, Certification Authority,
Certificate Revocation, Key Backup, Cross-Certification, Non-Repudiation Support, Automatic
Key Update and Secure Time-Stamping.

7.8 Integrating with other Security Models

We have taken a look at Firewall technology plus Public Key Infrastructure Technology and have
seen how these can address the Internet side of banking systems but not how to provide internal
security.

This internal security can be provided by RACF in the mainframe world but in general a
comprehensive solution is required to provide internal access control to properly controlled
resources and to provide internal auditing to aid intrusion detection and alarm and to provide
management and administration facilities.

To recall, the RACF (Resource Access Control Facility) on OS/390 is a centralised and well-
proven security model for OS/390. It controls access to mainframe resources by legitimate users.
It also has defined mechanisms to allow it use SSL integration with its own access control facility.

Other security models that exist are often operating system based models. For example NT
Security uses Domain, User Roles, File Permissions and Logging. The problem with these
solutions is that the problem then becomes too platform specific.

There are various Distributed Systems Models available. These include COM+, which can inherit
a security infrastructure from NT. Authentication, Authorisation (roles), privileges (provided by
NT). The problem is that COM+ is really NT based.

Another Distributed model available is DCE (Distributed Computing Environment) which has a
Kerberos based solution that uses Principals, ACLs (Access Control Lists), and tickets. This is a
good security solution but in reality is too heavy weight for most users. There is a large footprint
and considerable administration

A Banking System needs a solution that can cover a distributed heterogeneous system. In the
Banking Systems we have been looking at there is typically an ORB used for the middleware, and
these need to be secured. CORBA Security can do this for us.

7.8.1 CORBA Security Service

There are different levels of the CORBA Security Service (CORBASec) available from the
specification. These include Level 0 (Internet Security), Level 1 (Security-unaware), applications,
Level 2. (Security-aware applications)

84

As noted by [Lang 1997] CORBA Security builds on the underlying mechanisms and adds
additional features which make it possible to use the mechanisms in a complex large distributed
object systems environment.

The CORBA Security Specification provides security via Authentication, Access Control,
Integrity, Delegation of Credentials, and Auditing. Some of the features it has available to provide
these services include X.509 Certificates, User ID's with password login, Secure ID tokens and
use of SSL over TCP/IP. Often there will be a Master Security Server (MSS) which is the central
security server with runtimes for the clients and servers.

When Securing the Internal Network we need an MSS to be a central point of administration
which can be accessed by the server runtime to verily policy information. The Security runtimes
can be installed on both clients and servers and will facilitate security services in conjunction with
the MSS

CORBA integrates all these Security Technologies using the CORBA Security Service
Specification, the CORBA Firewall Specification and the CORBA/SSL Specification. It is
possible to use all of these technologies and still work within a CORBA environment whilst still
having a standards based solution and working within a single, but distributed security model.

[Alireza et al. 2000] outline some of the many problems that exist with the CORBA Security
specification but also offer some guidance:

* Take into account the security of the entire system, not just the CORBASec components. It is
always necessary to look at the system as a whole and at the interplay of its various
components.

* Detect and solve weaknesses of CORBASec. (For example the management of users or
domains).

» Develop creative solutions when needed, such as making the firewall ORB-friendly when it
isn't

e Ignore absurd issues in the specification, such as the predefinition of the TCP ports for
IHOP/SSLIIOP

The CORBA security model is security technology neutral. For example, interfaces specified for
security of client-target object invocations hide the security mechanisms used from both the
application objects and ORB (except for some security administrative functions). It is possible to
implement CORBA security on a wide variety of existing systems, reusing the security
mechanisms and protocols native to those systems.

The CORBA security service can control access to an application object without it being aware of
security, so it can be ported to environments that enforce different security policies and use
different security mechanisms. However, if an object requires application level security, the
security attributes must be delegated and made available to the application for access control

In addition to the CORBA Security Specification from the OMG, there are now various other
security related options.

The OMG Common Secure Interoperability Specification, version 2 (CSIv2) defines the Security
Attribute Service that enables interoperable authentication, delegation, and privileges. The SAS

85

protocol is designed to exchange its protocol elements in the service context of GIOP request and
reply messages that are communicated over a connection-based transport. The protocol is
intended to be used in environments where transport layer security, such as that available via
SSL/TLS or SECIOP, is used to provide message protection (that is, integrity and or
confidentiality) and server-to-client authentication.

The OMG Resource Access Decision Facility (RAD) provides a uniform way for application
systems to enforce resource-oriented access control policies. By standardising this service, we
enable the enterprise to define and administer an Enterprise Security Policy for use by all their
software components - and allow these components "plug-in" to the enterprise security.

The OMG The Authorisation Token Layer Acquisition Service Specification (ATLAS)
specification describes the service needed to acquire authorisation tokens to access a target system
using the CSIv2 protocol. This design defines a single interface with which a client acquires an
authorisation token. This token may be pushed, using the CSIv2 protocol in order to gain access
to a CORBA invocation on the target.

7.9 Sample Architectures

In this section we will look at a few "real-world" examples and see how we can combine the
technologies detailed above to provide the type of security that a bank would need.

[Lang 1997] points out that since all requests and responses in the CORBA model are inevitably
sent through the ORB, and since objects cannot locate or call target implementations without
ORB services, security enforcement is guaranteed. This removes the responsibility for security
enforcement from potentially many application objects, which minimises the code responsible for
security policy enforcement

The fact that a high level of security can be provided for applications completely unaware of
security is one of CORBA's top security features. It is possible to put objects in domains where
certain policies are automatically enforced during invocation and some security management is
done, even if the object was not even designed to run on a secure system.

[Beznosov, Deng, Blakely 1999] present an approach in decoupling authorisation logic from
application logic for those CORBA based application systems, which resort to application level
access control in order to achieve fine granularity of protection or to use factors specific to the
application domain in authorisation decisions or both.

They describe the design of an authorisation service that allows any level of access control
granularity, applying authorisation policies of different types and from different authorities, as
well as providing application domain-specific factors for evaluating such policies.

Finally, [Bennett, Kannenberg 1996] describe a project where by migrating its student
administrative system from the mainframe to the Web, Stanford University provides functionality
for students in an easy to learn and use format.

This Web-based system allows students to register, apply for housing, see grades, file study lists,
update addresses and more. It is accessible day and night and provides a platform for increased
functionality in the future.

A study in the real world example showed that security issues could not be solved by a single
solution but rather by a combination of approaches. (1) establishing an authentication and
authorisation approach (2) keeping data secure as it travels across the lines and (3) preventing the
misuse of the Web access.

7.10 Security Patterns

[Yoder Baraclow 1997J outline some patterns for providing security

Single Access Point Providing a security module and away to log into the system

Check Point Organising security checks and their repercussions
Roles Organising users with similar security privileges
Session Localising global information in a multi user environment

Full View with Errors Provide a full view to users, showing exceptions when needed
Limited View Allowing users to only see what they have access to
Secure Access Laver Integrating application security with low level security

7.11 Conclusion

As we have seen there are many options available for a Security solution. The key is in finding
optimal solution for particular needs. Therefore a bank needs to assess its risk, define a security
policy and implemented the policy using proven technologies. It needs to provide a single,
cohesive architecture than can be easily administered.

CORBA offers security solutions for distributed, heterogeneous systems and RACF provides the
various access control and authentication required by mainframe applications. The key is to make
us of each technology in its place.

[Koch, Murer 1999] confirm that many CORBA products are now mature enough to be used in
an enterprise environment and that Necessary features like integration into a systems management
framework or logging facilities for accounting and security can be integrated with reasonable
effort

[Slama et al. 1999] also agree that for large-scale systems, while CORBA has comprehensively
addressed many of the functional aspects for providing security in the system, manageability and
scalability issues have not been fully addressed.

Various issues have yet been addressed by CORBA, and there are no plans for these issues to be
supported. These include distributing and updating user authentication certificates or authorisation
credentials, maintaining records of users that may not be permitted access to systems under any
circumstances, and the implementation details of the storage of the authentication information
(whether to use Smart Cards, secure tokens, or login and password). CORBA deals with
functionality specification rather than implementation details, so these issues must be solved
separately outside of the CORBA security area.

87

As per the previous section on Performance, this section continues the theme of this research of
finding weakness areas in the enterprise integration systems that need to be reviewed. Again, we
can apply some well-known patterns and industry solutions where these weaknesses arise.

At a later point in the research we shall apply these solutions to see how they can ensure the
security of an enterprise integration project can be as reliable as that of its mainframe predecessor.

Given that security is of large concern to any financial institution, the original objectives of the
thesis, which aim to find any weaknesses are still being reached. Only after we apply these new
found solutions can we ascertain whether the advantages will outweigh any disadvantages.

8 Scalability
8.1 Introduction

Another important issue that needs to be considered when integrating legacy systems using
CORBA is the area of scalability. It is relatively easy to wrap a legacy CICS or IMS transaction
using CORBA and make this service available to a number of CORBA Java Clients within the
system. It is an entirely different matter however to ensure that the CORBA service scales to
supporting many thousands of client requests per day, per hour or even per minute.

As outlined in the [ORBOS 1998], scalability can be thought of in terms of the number of users
and/or objects that can be supported on either a single node or collectively on all nodes in a
system. It mentions how the exact methods for measuring scalability have been widely debated
but that measuring the throughput or capacity of the system is one good definition. With this
proposal, there is a discussion about how scalability can be increased by adding additional
memory, or processing power.

Ifwe really expect to replace or reengineer legacy systems as CORBA Services we must ensure
that these new Services scale as well as their predecessors and do so with no significant
performance degradation.

[LaLiberte Braverman 1999] defines scalability in a distributed system like CORBA as meaning
being able to meet the requirements of clients of the services being provided even when the
number of different variables describing the size ofthe system vary, sometimes dramatically

There are a number of tools at our disposal that help us to ensure that these Service scale. These

are the concepts of Multithreading. Session Management and Connection Management and we
will look at each in turn.

FIGURE 8.1: MAKING CORBA LEGACY APPLICATIONS SCALE

Multithreading is a technique used at the application level to ensure that the application can
perform several different tasks at once. Connection management and Session management can be
applied throughout the enterprise to ensure that connections and sessions are only *alive™ for as

89

long as is necessary. All three combined can be a powerful tool that can be applied to ensure that
we can support as many client requests simultaneously and at peak times as is mandated by the
business requirements.

8.2 Multithreading

8.2.1 Concepts behind Multithreading

Threads are concurrent paths of execution within a process. Each thread has code, which it
executes and is usually provided as a function. Each thread also has its own stack and registers
and all the threads share the address space ofthe process they run in.

[Shultz 2001] outlines how the use of threads can significantly improve an applications structure

and make its development more intuitive by delegating specific tasks to threads which otherwise
would have required sophisticated mechanisms to integrate them into a single execution flow.

8.2.2 M ulti-processing

In today’s operating systems, it is common place to support multi-processing whereby the
operating system automatically arranges for slices of CPU time to be allocated to multiple
processes to create the illusion that they are all running concurrently. The concurrency may be
real on a multiprocessor machine or time-sliced on a single processor.

8.2.3 Multithreaded languages

A lot of modern operating systems and languages are also multi-threaded. In this case within each
process there may be multiple threads of execution which run concurrently, allowing an
application to be doing several things “at the same time”. The concurrency of threads, like that of
processes, is achieved by time slicing the threads to be run on the available processor(s).
In multi-processor machines there may be genuine concurrency when two threads are running on

separate processors - but since there are usually more threads than processors, time slicing still
occurs.

8.2.4 Difference between threads and processes.

Both threads and processes are scheduled by the operating system on the available CPUs to
execute some piece of code.

e Threads exist within a process whereas processes may contain threads.

e Threads share an address space whereas processes have their own address space

90

¢ Threads communicate easily via memory whereas processes only communicate via costly
inter process calls.

* Threads are intimately interrelated where as processes have a limited ability to affect each
other.

¢ Threads must use thread synchronisation to cooperate where as processes may use process
synchronisation to cooperate

« Finally it is relatively cheap to start or switch a thread whereas this is relatively expensive
with processes.

8.2.5 Choosing threads or processes

It can be more prudent to choose multiple threads for concurrent activities when there is a lot of
sharing of information that can be kept in memory. Also when there is a need to communicate
very efficiently between each other and there is tight coupling that depends heavily on each
other's results, threads are the most efficient. Finally when the activities are developed together a
thread can be better.

It is usually wise to use multiple processes for concurrent activities that do not share much
information or can share via an external repository such as a database or CORBA server.
Activities that need to be isolated from each other should be implemented as processes such as
activities being developed by different teams or that use incompatible libraries. Finally activities
that need to be run on separate hosts are other classic process material.

Popular example for thread usage are asynchronous blocking 1/0O, possibly long running or
blocking code sequences like database queries, sorting of large amounts of data or number
crunching. Multi-threading also allows to make full use of the CPU resources provided in multi-
processor systems [Schultz 2001]

8.2.6 Choosing Multithreading or Single Threading

There are various costs and overheads that are associated with multithreading. These include the
synchronisation costs that significantly complicate coding and debugging. The runtime overhead
of thread creation and synchronisation can be another stumbling block and the overall
performance can decrease the performance of compute-bound code on a single processor.

As [O'Ryan et al. 1999] outline, highly scalable systems may want to use a pool of threads to
dispatch events, thereby taking advantage of advanced hardware overlapping and 1/O computation

The benefits of multithreading include increased server or GUI responsiveness while long running
computations are handled. There is additional deadlock avoidance in re-entrant servers for
example and the throughput of 10 bound applications such as CORBA calls can be increased.

Finally, the harnessing o f multi-processors gives an obvious advantage.

The performance of multithreading depends on several factors: [Chan 1998]

91

¢ Whether there is enough parallelism in the application such that a ready-to-run thread is
always available upon remote operation

e Whether the overhead of context switching is high relative to the latency of a remote
operation and

e Whether the locality effects of sharing the same local portion of the memory hierarchy are
positive or negative

8.2.7 Using threads

When a process starts running, it contains a single thread of execution called the main thread. This
thread may choose to start additional threads that will run concurrently with the main thread. The
application terminates when all threads have completed.

Thread packages provide a call to start a new thread. This call typically takes a function pointer
and some data or in object oriented APIs a thread object may provide a ‘start’ function to start a
thread. Once athread is started, it executes concurrently with the remaining code in the thread that
started it.

A thread can be joined’. This is where one thread can wait for the completion of another thread.
The join statement blocks the calling thread until the requested thread has finished executing, so
statements following the join are guaranteed to occur only after the joined thread has completed.

8.2.8 Dangers of M ultithreading

Threads share an address space, and can potentially read or write any memory in that address
space. This allows very efficient communication between threads, since they can read and write to
normal memory (without having to map it to the file system as processes must when they share
memory)

It is possible as a result for threads to badly damage each other by attempting to use common
memory at the same time. Access to shared data structures by concurrent threads must be
carefully synchronised.

A race condition occurs when threads attempt to access the same data, and because they are both
running concurrently they produce invalid results. This can happen if the operations involve
several steps, and the steps being performed by one thread are interleaved with the steps being
performed by another in such a way that the threads operate with inconsistent temporary results.

A critical section is a section of code which accesses shared data and could cause a race. To
prevent races we need to ensure that the operations in two critical sections do not occur
concurrently, i.e. in two threads. We need to ensure that critical sections are executed atomically.

Implementing an Object Adapter in the CORBA world that works correctly and efficiently in a

multi-threaded environment is hard. [Pyarali et al. 2000] show how there are many opportunities
for deadlock, unduly reduced concurrency, and priority inversion that may arise from recursive

92

calls to an Object Adapter while it is dispatching requests. Likewise, excessive synchronisation
overhead may arise from locking performed on a dispatching table.

8.2.9 Managing Threads

A mutex is the simplest thread synchronisation primitive. It is a mechanism that allows one
thread to get exclusive access to a resource and block other threads until it is finished. There are
two operations in a mutex, lock and unlock. Only one thread may hold a mutex at a time, other
threads which to try to lock the mutex are blocked until the holder releases it with unlock. We
must be extremely careful of deadlock. This means holding two mutexes at once or holding a
mutex while waiting for a signal.

The Reader-Writer Lock is a variation on the simple mutex that allows two different kinds of
lock. Many threads may simultaneously hold a “reader” lock but on only one thread can hold a
“writer” lock.

A Semaphore is a ‘resource counter’ A thread that needs a resource waits on this semaphore.
This decreases the counter, unless the counter is 0, in which case the thread is blocked. A thread
that makes a resource available can post to the semaphore. This increases the counter by one or
allows one ofthe waiting threads to proceed continue.

Code that can be correctly executed by several threads concurrently is called thread safe. All
functions that use only local variables are thread safe as each thread has its own stack. Functions
that access shared data must be synchronised. They can use Mutexes to serialise access to the
sensitive resources or use conditions/semaphores/Events to wait for other threads.

Overall however, using threading in a CORBA server improves overall throughput. [McCauley
1999] show how using threads in a CORBA environments can raise issues where slow IDL
operations "hog" the system. It also shows how CORBA provides good support for assigning
threads to incoming requests via a filter. In this example, they use a thread pool and reader/writer
locks to allow multiple concurrent read access to servants.

8.2.10 Structured Locking Techniques

There are different approaches to locking. For example we could provide code locking where
there is a mutex per group of related functions. We would put a mutex around critical sections that
access shared data.

We could chose a data locking approach where there is a mutex per data item. This involves
placing a lock mutex around all accesses of data.

Object locking is an object-oriented combination of data and code locking. In this case there is a
mutex per object. There is no public data and a lock mutex is placed around critical sections in
member functions that access private data.

There is a pattern called The Strategised Locking Pattern addresses some of the challenges

associated with developing efficient, predictable, scalable, and flexible dispatching components
[Schmidt 1999]

93

8.2.11 Threading Policies

Developers of enterprise level applications need a method to estimate the resources required to
scale their applications to support thousands of users across hundreds or thousands of servers
located on multiple platforms.

They need to either benchmark their own applications and/or use existing commercial
benchmarks in this effort. For example, the threading policy available with an ORB product and
the efficiency of its implementation would greatly influence different benchmarks and hence,
determine which products were appropriate for a given application.

There are different policies that are commonly used when implementing a threading policy in an
enterprise banking system.

Thread per operation involves creating a new thread for every operation. With this method there
is maximum concurrency but it does not scale well as a solution.

A thread pool is similar to thread-per operation but the total number of threads is limited. A pool
ofthreads is created at start-up and the first available thread in the pool handles each request.

A thread per object policy is less frequently used but can provide concurrency between objects.
A final approach is thread per client, which again is not that common but can provide concurrency
between clients.

There are variations that can be applied within each ofthese policies and they can be combined to
introduce additional constraints. For example special operations can get preferential treatment by
adding operation priorities to the policy. There is a technique known as overload control. A
server imposes a limit on its maximum load and will start to reject requests when load becomes
too high. This stops the server using all available memory and crashing.

8.2.12 Limits

Concurrency can improve throughput of an 10 bound application but single processor
concurrency cannot speed up computation and in fact context switching and synchronisation slow
itdown somewhat and all we can do is spread the waiting a little more evenly.

A sever must always be able to handle its average throughput. Queuing requests helps with

occasional bursts of load but the server must be able to catch up at some point. Overload control
just moves the problem to the client.

8.2.13 CORBA Alternatives to Multithreading

CORBA provides various alternatives to Multithreading. IDL Oneways indicate that the method
implementation will not block the caller. Once the result is sent the caller will continue
processing. This means however that no results can be returned from a oneway call. Asynchrony

94

can possibly be achieved using a pair of oneways where invocation results would be returned to
the caller via a callback object. This can be successful as long as the work being performed is
suited to partial processing, suspension and later resumption.

Deferred Synchronous and DII can also be used with CORBA. CORBA offers this mechanism
for making non-blocking calls, even with non-oneway operations. If a client makes use of the
Dynamic Invocation Interface, the ORB will allow it make an invocation and later retrieve the
results from the ORB.

This DIl approach has lots of difficulties in practice and a simpler alternative is the use of
Asynchronous Method Invocations (AIM) which are part of the CORBA 3.0 Messaging
Specification. With this, client can make asynchronous calls to normal two-way IDL operations.
The use of asynchronous calls is transparent to the server and the IDL compiler generates the
client-side support.

[Henning 1999] shows that the CORBA POA specification also permits a server application to
arrange for a callback if the server-side run time cannot locate a servant in the active object map.
This mechanism allows a server to bring objects into memory on demand instead of permanently
having all servants in memory.

8.3 Connection Management

For a fixed system with a given throughput (e.g., a single node), there is an inverse relationship
between the response time and the numbers of clients. The more clients submitting requests the
longer the delays. [ORBOS 1998]

Extending this, because client connections use resources (i.e., memory and cycles), the more
client connections (even if they are collectively not submitting requests more requests) the less
throughput and hence the less scalable the system.

Similarly, while adding additional servers/objects to the system could initially improve
throughput (e.g., ifthere were less servers than processors), at some point the throughput declines
as the instantiation ofthe servers/objects increases.

Some other factors that cause scalability problems are outlined by [Luomala 2000]. These
include

e Growth ofuser base and hence service requests and hence network traffic
 Size ofthe data objects moving in the network

e Amountofaccessible data in the system, (handling becomes more complex)
* Non-uniform distribution ofuser requests (time, geography)

8.3.1 Establishing Connections

With CORBA we need to decide on the number of connections that exist. Connections are
established when a client calls a remote operation on a reference to a server (IOR) which it is not
already connected to. This is basically the first time a client invokes on an object in a server. We

95

should note that it is only created when invoking on an object reference, not when the reference is
created.

8.3.2 Reconnection

When a connection is closed it can be re-established by the ORB. This can happen when a server
times out while a client is connected and re-establishing the connection will re-launch the server.

8.3.3 IIOP Connection Features

HOP object references contains host and port for the server and allows TCP connection. There is
an object key that identifies the object instance and this is passed to the server. The HOP
location forward reply can be returned in response to any remote invocation and this means that
the requested object is not available on this connection but provides a new object reference for
where it can be found.

The 11OP locate request probes for existence of an object on a connection. The nOP locate reply
may provide the actual location is its not there.

8.3.4 Callbacks

With Normal IIOP there will be one listening socket on each client. There will be additional
connections per server that invokes any callbacks. Certain ORB implementations support bi-
directional HOP in which case there will be one listening socket on the client and that's all. The
client-server connection will be reused for callbacks.

[O'Ryan et al. 1999] outline how, in many applications, only a small fraction of the consumers
are interested in a particular event. To reduce the time required to dispatch an event by reducing
the set of consumers tested would improve scalability.

8.3.5 Direct IIOP Connection

The server can embed its own port directly in a reference. The client using this reference can
connect directly to the server. The server must run persistently on a well-known port.

Another major source of scaling problems comes are outlined in [Ballintijn et al. 1999], These
come from the limitations of services that form part of middleware. The research shows how
using a naming service allows different users to find, access, and share distributed resources.
Consequently, if scaling the implementation of the naming service fails, it hardly makes sense to
put any effort in attempting to scale other parts ofthe middleware system.

Another major problem is with object references with location information encoded within. Once
the object moves to another location, the reference becomes invalid [Ballintijn et al. 1999],

96

8.3.6 CORBA Daemon

Some ORBS use the concept of a daemon to act as the middleman between clients and servers.
These daemons are CORBA servers in their own right and can accept all incoming client requests
and redirect them to the relevant server implementation.

By embedding the daemon port in object reference, the daemon is able to launch servers even for
client of other CORBA compliant ORBs. References can be exported to foreign clients using the
naming service or object_to_string()

If the transient port is embedded in a reference, then the server must be already running and
listening on the correct portto it needs to be launched persistently

The decision to use a daemon or a fixed port is completely up to the individual project and simply
boils down to whether or not the project wants to use a daemon to manage its connections. The
dangers to this approach are that the daemon is a single point of failure. On the plus side with a
daemon we do not have to worry about managing lists of ports for the servers.

8.3.7 Closing Connection

Connections are only closed when TCP closes them. This is automatic when a client or server
exits or crashes. When a network fails or a host crashes it will only be detected if TCP keepalive
is enabled. Applications can explicitly close the connection using various implementation specific
approaches.

8.3.8 Connection Limits

There is a per process limit count on clients and servers that is mandated by the ORB limit of
connections per process or the operating system limit on file descriptors. It should be noted that
not all descriptors are available for connections. For example, sdtin/out/err, open files, other 1PC
libraries used by application etc also use FDs. All servers must live within these defined limits.

There are also per host limits to be considered. A daemon typically has the same connection limits
as a normal server. The sum of clients connecting to a host plus the persistent numbers running on
the host all count towards the limit. TCP may impose a per-host limitation.

8.3.9 Connection Patterns
Three useful patterns that will help in connection management are outlined in [Slama et al. 1999]
* Client Disconnects

. Concentrator
. Server Disconnects

97

8.3.9.1 ClientDisconnects

The idea here is that clients would disconnect when they are finished using a connection. The
TCP connection will close so the server file descriptor will be closed also. In principle the client
will know when it is finished with a connection.

The issues that exist are that the server depends on polite clients and there is no defence against
faulty clients. In addition, the client must know what collections of objects are sharing a
connection. There is ORB functions that give the descriptor associated with a proxy. The
connection is re-established ifthe client uses objects again.

Many clients fit this pattern. This is especially true of servers that are used by clients at
application start-up such as the naming service or the daemon. Once a client has initialised, it no
longer needs this server and can safely close the connection. This helps central servers such as the
naming service scale up and be able to service large numbers of clients.

8.3.9.2 Concentrator

A concentrator server is a forwarding server that simply passes on operation calls to some
application server. Concentrators can reduce the number of connections to any one process in the
system or the overall number of connections in the system as a whole.

Concentrators can be on different hosts to avoid host connection limits. There are certain
implementation issues that need to be looked into. There may be a need for multiple threads. If a
static concentrator is used then it may be necessary to rebuild the funnel if new interfaces are
involved. A dynamic concentrator can be difficult to implement.

There will be an obvious performance overhead on each call but it can make for more scalable
systems. Security and Resource Management issues can also be overcome.

8.3.9.3 Server Disconnects

A server can close connections from client using ORB functions. Client connections can be
detected using other ORB functions in a per-process filter inRequest filter point. An 10 callback is
called for every connection (listening socket, daemon, to other servers) notjust client connections.
Using an inRequest filter point will detect only client connections, and will also detect every use
ofa client connection that allows connections to be time stamped for idle time calculations.

To time-out idle connections, one could check the last used time in a filter point or periodically in
a separate thread. Instead of timing out connections, a server could close connections when the
total number of connections passes some threshold. An 10 callback can count the total
connections and initiate a cleanup ofold or idle connections when the count gets too high.

Closing a connection while there are still requests being processed mean the reply cannot be sent
to the client, and will be discarded by the server.

98

8.3.9.4 Other ldiom s

Connection limits are not typically a large problem. In practice systems with large numbers of
clients will already need to be distributed across multiple server processes and/or hosts for load
balancing and faulttolerance purposes.

Centralised services such as the Naming Service or a daemon may need connection management.

8.4 Session Management

8.4.1 Sessions

The concept of a session needs to be defined, as there are many interpretations. A Session can be
any ofa login, an extended unit ofwork, an instance ofa client process.

We must decide how long a session should last, and how can it be terminated. Finally we need to
look if there is always a human user involved in the session. In reality the final definition of a
session will depend on the enterprise banking application that is being architected.

Construction of scalable components in CORBA requires a solution ofwell-known trade-off. This
is between simplicity of navigation in a large collection of objects on the one hand and a system
time ofreaction which is a major scalability factor on the other. [Szymaszek, et al. 1998]

8.4.2 Session Management Issues

A common requirement ofa banking system is that it maintains session information on behalfof
the user. In this case we can define a session as a login, usually of short duration and usually tied
to an instance ofa client application.

Long-lived application work in progress is not a session as we have defined it - it is workflow.
Sessions are typically associated with server resource allocation and cleanup. Client may make
invocations on multiple servers within a session.

8.4.3 Availability

We must look at where in the system the session is available. In a single available session the
session is only available through the server process with which the client initiated the session. In
this case other server instances will not recognise the session. In fact the session may be implicitly
tied to a TCP connection to the client or to an object instance.

In the case of multiply available sessions, the session is available through any server process

supporting a given set of interfaces. A session key may be replicated across servers or managed
centrally as in the case ofa Security Service.

99

8.4.4 Termination

Sessions must be terminated at some point for business as well as resource reasons. Explicit
termination is a common approach where the client explicitly terminates the session via a logoff()
invocation. The server will immediately free any resources allocated to the session.

In the case of implicittermination, which is also a common approach, the server will terminate the
session and free any allocated resources. There is potential for losing information but server
robustness will require this. This approach is used in backup mechanisms as well as session
timeout or idle detection mechanisms

8.4.5 Service Architecture

In terms of a Service based Architecture, the scalability of the system can be broken into two
types of scalability. The first is the number of concurrent clients required and the second is the
number of process requests per second.

8.4.5.1 Concurrent Clients

In a legacy application, the system could be expected to deal with many thousands of concurrent
clients. When we make these legacy applications CORBA compliant, they must still be available
to many thousands of clients. The concentrator pattern seen with in the performance section can
also be adopted to ensure that a maximum number of concurrent connections are never reached.

8.45.2 Number of Requests

Legacy applications, especially those implemented using CICS or IMS can rely on these highly
scalable transaction-processing monitors. Any CORBA application using these technologies must
scale to the limits of CICS or IMS as the overhead of CORBA is low compared with the
application logic.

This means that in large banking enterprises we can expect to reach several hundred or even
several thousand requests per second.

[Froidevaux et al. 1999] show how we can differentiate between scalability of the number of
concurrent clients and the scalability ofthe number of processed requests per second.

[Ezhilchelvan et al. 2001] outline a real-world application where the applications with large and
geographically dispersed client bases are currently supported in a centralised manner:

Client requests are sent (over the Internet) to systems located in a central place for processing.
This centralised approach has serious scalability problems. A customer who is close to the central
server can have faster server access than a remote client, and thus may have an unfair advantage
over the latter. As the number of simultaneously arriving client-requests increases, the server load
increases - resulting in performance degradation.

The solution involves describing a hierarchic architecture to satisfy the quality of Service and
reliability requirements of a large number of geographically dispersed clients (of an auction
system).

Individual projects must make decisions about the importance of scalability as detailed in
[Carzaniga et al. 1999] . They envision a wide-area event service as an effective platform for the
integration of distributed heterogeneous objects. The realisation of such an infrastructure sees two
major conflicting challenges, namely scalability and expressiveness. Some systems offer rich
selection mechanisms but with a centralised architecture, others adopt a more scalable distributed
architecture, butthey give scarce accuracy in filtering events.

8.5 Conclusion

We have seen a few approaches to providing the scalability required of CORBA Services. As
mentioned this is especially true of Services that wrap or reengineer Legacy Applications because
these applications will have provided the scalability required as per the mission critical business
requirements.

The ability to run distributed applications over a set of diverse platforms is crucial for achieving
scalability as well as gracefully handling the evolution in hardware and platform design. [Shen et
al. 2000]

Providing Multithreading, Connection and Session Management within a large enterprise system
will go a long way towards reach this goal.

[Vinoski 2000] sums up the state of scalability in CORBA systems. He states how many areas of
the middleware and the application affect middleware scalability. These include server
implementation, persistent storage, connection management, object location techniques, binding
techniques, configurability, installation, versioning etc. Ourjob is to apply some of the tools and
patterns available to us to ensure that we maintain a high level of system scalability.

Giventhat scalability is of high importance in any integration project, it automatically became one
of the objectives of this research. In this section we have seen some modem techniques and
patterns that can be used to overcome this possible area of weakness in Object-Oriented based
systems.

At this point in the research we have seen three ofthe major areas of weakness for an enterprise
integration project. The next area we must investigate is the availability of CORBA Services in a
Service-Based Architecture.

9 Availability (Locating CORBA Services)
9.1 Introduction

In the context of enterprise CORBA systems, the Availability of these systems is of utmost
importance. Essentially it can be broken down into two separate areas. "How does a client find a
Service?" and "How does a client continue to find a Service?"

In the banking world, the integration of legacy systems with Java and OMG CORBA has led to a
variety of Internet applications. These applications can experience communication and node
failures on occasions, which affect both the performance and consistency of the service being
provided. Such failures in commercial services can resultin a loss of both revenue and credibility
[Little 1999]

A second related issue for banking applications is that problem of initially obtaining the location
of, or reference to, an object in a distributed system. This task, and that of maintaining the
reference is often solved by naming an object and then making that name known to other potential
clients via some repository. [Falkner 2000]

These two areas that when combined together make banking applications "available" are of
utmost importance to the success the application. This chapter will investigate the first of these
two topics, i.e. making a service available to clients wishing to use it, with the latter being
investigated in the next chapter on Failover.

9.2 Locating a Service

In any client server communication, the client must first be able to find the server that contains the
object it wishes to invoke upon and this is especially true in a CORBA environment. The client
needs a reference to the object it wishes to invoke upon and this is known as an object reference.

This Object Reference is defined in the CORBA Specification by the OMG as the information
needed to specify an object within an ORB. The representation of an object reference handed to a
client is only valid for the lifetime ofthat client. [OMG CORBA 2001]

This concept of the object reference maintains some of the principles of CORBA. If a service is
moved to another machine, or implemented in a different language, or completely re-written in
the same language, the client does not need to know. All that is required is that the clientwould be
given the new object reference and it can invoke on the object it needs. In such a case when the
server details have changed, so long as the IDL remains the same, there is no need for a clientto
be recompiled.

9.3 Providing an Object Reference

The usual way to provide an object reference to a remote object is when the server itself publishes
its own object reference. However, a CORBA object is useless if no one knows where it is, and
therefore cannotaccess it [Claesson 2001],

A solution to this is to store the Object Reference in some central repository of Object References
so that when a client is looking for a particular object, it will do a lookup in this Repository and

getthe OR itrequires. It can then use itto invoke on the remote object.

CORBA provides various solutions for each of the steps outlined in this object location model.
These include the CORBA Naming Service and the CORBA Trader Service.

3. Using object reference

FIGURE 9.2: OBJECT LOCATION MODEL

9.4 Interoperable Object References

There was however, a fundamental problem with Object References that needed to be addressed.
Prior to the CORBA 2.0 specification, any ORB vendor was allowed to use proprietary methods
for distributed communication. This met the criteria ofthe CORBA specification but it meant that
ORBs from different vendors were unable to communicate with each other.

To put this right, the CORBA 2.0 specification introduced the IIOP (Internet interoperability)
Protocol for distributed CORBA communication and also a standard for Object References called
Interoperable Object References (IORs)

An Internet Inter-ORB Protocol (IIOP) defines a transfer syntax and message formats (described
independently as the General Inter-ORB Protocol), and defines how to transfer messages via
TCP/IP connections. The HOP can be supported natively or via a half-bridge. [OMG CORBA
2001]

This IOR is a data structure in a standard format containing information clients use to establish
connections to servers and information servers use to identify target objects. The main elements of
an IOR include.

The Port Number which is the TCP/IP port number that a connection will be opened on, the
hostname or IP address of the host on which the object is implemented and the Object Key which
is opaque to clients which servers use to uniquely identify objects within their domain.

9.5 Proprietary Solutions

Prior to the CORBA 2.0 specification, an ORB vendor could implement their own transport
protocol and object reference as outlined above. In addition, many vendors added functionality
within the ORB for object location outside ofthe CORBA services.

One example of this is the POOP (Plain Old Orbix Protocol) used by Orbix from IONA
Technologies prior to the Orbix 2.3-product version. This proprietary solution had to be re-written
when a CORBA compliant protocol became available with the CORBA 2.0 specification.

Typically these solutions were easy to implement but were flawed in that they required clients to
have some knowledge ofthe server location, registration information or internal object keys.

9.6 Getting the Object Reference

Once an object comes into existence (is instantiated) it is then possible for a client who has its
object reference to invoke upon this object. As outlined in the object location model above, the
trick was how to get this object reference to the client.

The most trivial solution in this case would be to take the IOR and copy this by hand into the

client code [Claesson 2001] but this of course requires human intervention and is not particularly
scalable.

104

For example, looking at the information system of the UNICIBLE Data Centre in Switzerland,
where the heart of their OSIRIS system resides on OS/390 and is made up of some 37,000
programs that could become CORBA objects [Clerc 1999], It is easy to see that any time these
object references changed it would be impossible to update all the clients of theses systems by
hand.

9.7 The CORBA Naming Service

There is an OMG provided CORBA solution that is also a well-known Architectural Pattern
called The Naming Service. [Mowbray, Malveau 1997]

The CORBA Naming Service is one ofthe CORBAServices defined by the Object Management
Group in the CORBA Specification and that implements the Naming Service IDL (CosNaming).
(This CORBA Service has a well-defined interface, as would any CORBA Server. This interface
is used by clients and servers to store and retrieve object references from the naming service
database.)

module CosNaming {

struct N\ameComponent {
Istring id;
Istring kind;

}

typedefsequence<NameComponent> Name;

interface NamingContext {
void bind (in Name n, in Object 0);
Object resolve(in Name n);

FIGURE 9.3: CosNaming IDL

All the IDL components are defined with the module CosNaming that defines a structure
NameComponent to hold name components. This NameComponent structure is made up of a
string defining the id and a string defining the kind.

Essentially its function is to provide a repository for object references whereby an object
reference can be mapped to a readable name so that clients wishing to invoke using a particular

object reference can do a lookup ofthis name and hence get the object reference they require

The names are organised hierarchically like a file system and the names are human-readable. The
Naming Service concept is based on a telephone directory where each telephone number is

105

mapped to a name and address, well with the Naming Service each IOR is mapped to a readable
name.

The Names are stored in a hierarchical format and both object references and naming contexts are
stored. A Naming Context can contain object references and is equivalentto a high level qualifier
for names. An example Naming Hierarchy might look like

FIGURE 9.4: NAMING STRUCTURE

In the above diagram Services, Accounts, and Customer Information are all naming contexts
while CServicelO and C Update | | are objectreferences.

9.7.1 Choosing aNaming Service Hierarchy

The Naming Service is a particularly useful solution when clients look up objects based on a fixed
and consistent set of criteria or when clients only want a single object reference returned as the
lookup properties have static values.

There are different ways to structure a naming service and these very much depend on how the

naming service is to be used and the structure of applications within the enterprise. The
conventions adopted in a large-scale project will have significant impact as to how the naming

106

structure is defined - i.e. whether a descriptive or compact hierarchy is preferred or how deep or
flat the Naming hierarchy need be.

Using a descriptive Naming-Service Hierarchy results in a user-friendly method of finding object
references. The names are well defined and easy for users to access viaa GUI for example. With a
Compact Naming Service Hierarchy however, the names have very little meaning to a human user
but rather suit applications that have proxies, helper classes or concentrators doing the naming
lookup.

We may also choose between a flat Naming Service Hierarchy that only allows for the flat level
of Naming Context and where objects are identified by only their name and their id and kind
fields are unique. Alternatively there is a Deep Naming Service Hierarchy where objects are
identified by their positions as well as their name. Id and kind fields can have the same names but
within different contexts. This is the more common form of Naming hierarchy.

In a Service-Based architecture however, the naming service context structure can reflect the
organisational structure of the bank. In fact, preferably the organisational structure should be
implemented as an explicit service, but then we face the problem, that resources and processes are
parts of the organisation and not beside it. [Koch, Murer J999]

In with such a naming context structure, it is up to the bank to decide on a descriptive or compact
naming hierarchy but a deep naming hierarchy would be more common than a flat naming
hierarchy.

9.7.2 Extensions to the Naming Service

There are various extensions to the CORBA Naming Service that further enhance its usability in
enterprise solutions. The first of these is an extension that standardises a number of elements in
the specification. This is known as the Interoperable Naming Service.

The definition of this Interoperable Naming Service as defined in the CORBA specification
outlines a Service that defines one URL-format object reference, corbaloc, that can be typed into a
program to reach defined services at a remote location, including the Naming Service. A second
URL format, corbaname, actually invokes the remote Naming Service using the name that the
user appends to the URL, and retrieves the IOR ofthe named object.

This first feature includes a standard string representation of names. This feature uses a "/" as
context separator and a as id-kind separator so that a name might look like
Bank/Accounting.Customer/C_Update_I_0.

There is also a URL format for these names (both with IOR and stringified names), a standard
configuration of returning a single initial naming context to all clients via a
resolve_intial_references() and various other clarifications and enhancements to the specification.

Another extension to the CORBA Naming Service outlines the concept of an object group. A
typical CORBA Naming Service entry is strictly one to one where a name can only be bound to a
single object reference and names within a naming context must be unique. The notion of an
object group extends this by allowing a one-to-many relationship between names and object
references: in essence, it allows many servant objects to be registered with the same name in the

naming service. Resolution ofthe name to an object reference is mediated with the aid of location
policies such as round robin and random. [Slama et al. 1999]

There is another concept known as a federated naming hierarchy. Within the CORBA Naming
Service, a naming context can contain object references as well as other naming contexts. These
naming contexts can be remote as well as local allowing the federation of naming hierarchies
together.

9.7.3 Naming Service Difficulties

The Naming Service can be a single point of failure for an enterprise banking system so we need
to allocate resources to ensure that it is always available. The next chapter will outlines various
methods of ensuring this and thus enabling continuous access to up-to-date object references for
interested clients.

Another issue that must be considered when using the CORBA Naming Service is ensuring that it
is kept up to date. [Felber 1998] outlines one solution to keeping the information up to date by
doing an update each time a view change occurs. However, even this solution does not guarantee
up-to-date information.

Each enterprise solution will have to consider a framework for keeping the Naming Service up to
date but typically some form of automated tool or script that updates the information periodically
aswell as removing out o fdate references is ideal.

9.8 The CORBA Trader Service

There is another CORBAService that works in a similar way to the CORBA Naming Service and
that isthe CORBA Trading Service. Again, there is a Trading Service IDL definition specified in
the CORBA specification. [Mowbray, Malveau 1997] outline the Trader Service pattern.

The concept behind in the Trading Service is marginally different from the Naming Service. The
Trading Service stores Object References as before, but the object reference is referred to as an
offer and must follow an offer type, where an offer type is a definition of the number and type of
properties ofthe object.

The idea is that instead of returning one object reference as per the Naming Service, a client
lookup would return a group of object references categorised into groups of logically related
object references in the manner that a Telephone Yellow Pages returns groups of numbers based
on the Service required.

Values are assigned to the properties when the object instances are published and the objects are
retrieved based on queries that are evaluated against published object properties of the specified

type
The Trading Service is better suited than the Naming Service when clients look up objects based

on a varying set of criteria or clients want multiple object references returned for further
examination. In this case the lookup properties can have static or dynamic values.

108

As noted in [Slama et al. 1999] the trader's object directory is not structured in any formal way
(as the naming hierarchy is). Rather, the trader service is based on the concept of a service type
that contains an IDL interface identifier plus some data defining attributes associated with this

type.

In [Modi 2000] we see a real-world example of the CORBA Trader services where an object
installs itself with its name, persistence and filter properties. Interested applications and processes
can find the object using these properties. An application that requires filtering but not persistence
would indicate these requirements to the Trader Service, which will provide the application a list
of references matching these requirements. The application may then choose one from this list
depending on other properties it requires.

9.9 Bootstrapping

One of the problems with using the Naming or Trading Services is that they are useful when a
client performs a lookup on a name and retrieves and Object Reference or set of Object
References. However, there is still the problem of how a client locates the Locating Service (i.e.
the Naming or Trading Service). This problem is known as bootstrapping.

CORBA provides a well-known solution to this in the specification by ensuring that every ORB
implementation supports the function:

Object resolve initial_references(in string serviceName)

An initial reference to an instance of the CORBA Naming or Trader Service can be obtained by
calling this resolve initial references with the ObjectID of the required service

This function works when a client supplies a service name (i.e. NameService or TradingService)
and they receive an object reference for that service.

Another approach to bootstrapping would be to obtain an object reference for the desired service,
in string form. This stringified object reference could either be output by the service itself or
generated by an IOR creation tool. CORBA has standard APIs such as object_to_string() and
string to objectQ to make IORs easy to pass around and convert to a stringified form. Once a
client has obtained this string they could call CORBA::ORB::string to objectQ to create a
reference for the object. [Slama et al. 1999]

9.10 Custom Object Location

As we have seen, the use of a CORBA specified object location Service can very much help
making objects and Services available across the enterprise. However, sometimes the architects
of such a system will prefer to use customised location servers to meet their requirements. These
can include helper servers and/or concentrators

109

Implementing or extending the standard CORBAIDL in a customised manner is an appealing
combination as an enterprise can combine its own object location model that might provide
performance or availability enhancements. Helper server or helper classes can be written to
remove any ofthe complexity ofusing the Naming or Trader Service away from the developers.

There is a concentrator pattern that outlines a concentrator or funnel server, which is a process
that sits between the clients and servers. The clients connect to the concentrator process. For every
service a client uses, the concentrator must implement that object (from the client's perspective).
In reality it delegates the call to the real implementation of the service. This can be also used to
avoid connection limits and in load balancing. [Slama et al. 1999]

The customised solutions can then be integrated with the standard solution if required, for
example a client might still use the Naming Service for bootstrapping but then use the customised
solutions.

As we will see later on, the standard Object location models can be single points of failure, and so
certain customised solutions can be implemented to provide a level of fault tolerance and Failover
in critical cases.

9.11 Publishing Certain Objects

Once we have an object location model in place we then have to decide which objects we want to
publish and make available using this model. Typically not all CORBA objects will need to be
published and some enterprises will want to publish a smaller number of entry points instead.

As we have seen in the section on Performance, the world of mainframe integration often opts for
a Service-based architecture where the Services are large grained objects rather than many fine-
grained objects. In such as scenario there will be fewer Services in the system but performing
more work and by their very essence each ofthese Services can be published in an object location
Service.

Where finer grained objects are used in large-scale systems, factories or entry points can be
considered as good candidates for publishing. However, when we only publish a subset of the
objects available in the system, we then must provide "find" and "lookup™ methods for the other
objects, which can lead to complicated systems.

There is a factory pattern that can be useful for dynamically created or dynamically activated
objects. Using a factory is like using a distributed constructor for object creation.

[Slama et al. 1999] outline a factory object pattern is any object that returns a reference to
another object as a result of a method invocation. In an enterprise system, rather than publishing
references to all the servant objects, the server can publish just a few factory objects, which the
clients use to obtain references to the remaining objects in needs.

9.12 Lifetimes of Objects

There are various states in an object's lifetime including creation, activation, deactivation, deletion
and there is even a CORBA Service called the CORBA LifeCycle Service specified to help
manage CORBA objects throughout their lifecycles.

There is an Object Lifecycle Manager Pattern [Levine, GUI, Schmidt 2000] that can be used to
govern the entire lifecycle of objects, from creating them prior to their first use to ensuring they
are destroyed properly at program termination. In addition, this pattern can be used to replace
static object creation (and destruction) with dynamic object pre-allocation (and de-allocation) that
occurs automatically during application initialisation (and termination)

However, in the CORBA-mainframe integration projects that are based on a Service-Architecture
we are typically talking about stateless objects (an object/service with no state) that often resides
inside CICS or IMS and thus has a fixed lifetime. [Koch, Murer 1999] These transactions can be
offered as services on an interface.

There are exceptions such as long running CICS transactions or IMS Wait-for-input transactions.
However, in the majority of cases the lifetime ofthe Service is short (i.e. by its very nature its role
to is provide a Service and then end). As a result we do not need to be overly concerned with the
creation, activation, deactivation and deletion This is especially the case when dealing with TP
Monitors such as CICS or IMS as these are taken care of for us by the TP monitor

In non-mainframe based CORBA applications there sometimes needs to be decisions made as to
how long the object will stay alive for - i.e. until no further clients are connected, or indefinitely
or only while the object. The Evictor Pattern [Henning, Vinoski 1999] can be used in this case to
enable a server to deactivate the objects based on a policy for choosing when to deactivate an
object. The policy can be based on Least-Recently-Used, Least-Frequently-Used, oldest-object
etc. However, this is a very comply area of CORBA and distributed programming in general and
care should be taken.

9.13 Conclusion

In this section we have seen some issues that can arise in an organisations enterprise solution. In
other sections we can see how to provide CORBA Services to the rest of the enterprise but in this
section the important question is ""How do clients get access to these Services ?".

As we have seen there are various OMG Defined CORBAServices that can assist us in this goal
and there are also provisions made for those who require additional features in their system.

An investigation into the concept of making a Service available meets yet another of the
requirements of this research. In this section we continued the investigation into areas of critical
importance and possible danger for enterprise integration projects. This topic certainly fits into
that criteria.

In the next section we will investigate another area related to the Availability of a system and that

is Failover. As noted in the introduction, it is one thing to make Service available but it is an
entirely bigger task to keep those Services available.

m

10 Availability (Failover)

10.1 Introduction

In the previous chapter on Availability we investigated one of the aspects of a CORBA Service's
availability, i.e. how to locate the service. In this section we will investigate the second concept of
availability and that is keeping the Service available. This area includes an investigation as to why
we need to keep the systems up, how we handle the situation when a crash occurs, CORBA
Exception Handling at the application level and Load Balancing as a technique for Availability.

10.2 Mainframe Availability

Mainframes can achieve 99.99% or 99.999% uptime in enterprise solutions, resulting in anywhere
between 5 and 53 minutes downtime per year [IBM]. These figures are very impressive when
compared with some of the more modern Operating Systems available today.

A study by [Turner Brill 2001] finds that the best possible reliability for mainframe data centres
is 99.995%, or about 26 minutes o f downtime per year. IBM's new z/OS mainframe systems stand
for zero unplanned downtime which is quite a claim.

IBM's Server Group also claims that the mean time between critical failures (MTBCF) or the
average time between failures that require a reboot (Initial Program Load) for its S/390 mainframe
is 20 to 30 years. If we compare these figures with other decentral platforms such as the PC it is
easy to see what we are dealing with in terms of reliable systems.

Mainframes are big, complicated systems that often have clusters of CPUs, terabytes of main
memory and many thousands of users, yet they are still very reliable. It is the case that where
frequent crashes on a PC or other decentral platforms are accepted as part of the routine hazards
of computing, a crash of the mainframe is a massive problem and simply would not be accepted.

In reality, any large banking organisation will have dedicated teams ensuring the smooth running
of the mainframe. In addition, there will be redundant hardware, extremely protected operating
systems and stable applications, all of which provide for highly available systems.

Our problems really begin when we attempt to introduce the mainframe as a peer in a distributed
CORBA computing environment. Typically distributed systems do not have the same guaranteed
availability and we are now making host applications available throughout the private company
network and beyond. We must look at various solutions and system services that can be applied to
try to bring the availability of the enterprise network as a whole to where the mainframe already

[Maffeis, Schmidt 1997] define a distributed system as reliable if its behaviour is predictable
despite partial failures, asynchrony, and run-time reconfiguration of the system.

112

In addition, we require reliable applications to be highly available. This means that the application
must provide its essential services despite the failure of computing nodes, software objects and
communication links.

10.3 Failures

There are various types of failures that can happen in an enterprise system, as by its very nature
there are various types of technology used. The most common types of failure include the process
crashing, the processing hanging or being in a deadlocked state, the host system crashing, and a
network partition due to link or route failure.

As outlined in [Scallan 2000] some of the more common problems that occur in distributed
systems include:

¢ Performance bottlenecks

¢« Network resource limitations

¢ Network failures

* Race Conditions (not properly synchronised modules)

« Deadlocks (the synchronisation protocol between modules prevents each from completing its
task

e Design errors in control flow

¢ Timeout Failures

Other types of failures that are more difficult to deal with are failures when a process performs
incorrect actions or persistent storage faults.

We will see that with all these failures, some are easier to handle than others are. However, with a
combination of fault tolerance, load balancing and exception handling we expect to have the
enterprise architecture in such a stable fashion that any or all of these failures would not affect the
continued availability ofthe system as a whole.

10.4 Exception Handling

10.4.1 Introduction to Error Handling.

Put simply, Error Handling is the technique applied by programmers to ensure that their
applications cover all eventualities. That is they should perform the tasks they have been
implemented to perform but they should also be ready for the unexpected.

In fact, not only should they be ready for the unexpected, but also they should have built in

frameworks so that they can act decisively to inform all parties involved of the problem and
maybe do something to fix it depending on the circumstances.

113

10.4.2 Early Error Handling

The concept of error handling has been around since the earliest days of computing. With the
early mainframe applications it became clear to the developers that they needed to account for the
cases when everything did not go according to plan.

The idea was that any errors detected at run time would be relayed by the originator of the
message to a recipient. This recipient would also know how to handle the error.

Of course, the ideal scenario is that all errors should be caught at compile time before the
application is even run but reality dictates otherwise.

In these earlier languages an error was dealt with by returning a special value or a flag and the
recipient could look at this value or flag and work out that something was wrong.

One of the problems with this approach was that often developers would not check every method
they called to see if something was not amiss and those that did ended up with massive,
unreadable code. The discrepancy between applications in terms of error handling techniques was
something that needed to be dealt with.

10.4.3 Dealing with Exceptions

The concept of Exceptions was the solution to the problem in that they helped clean up error
handling code. The idea was that at the point where the error occurred, the problem would send to
a higher authority where someone qualified to make a decision on what to do would take over.

This approach removed the scenarios where at the point of failure the application was not in a
position to make a decision on what to do, so it would simply pass the problem on to someone
who would know.

So now, instead of checking for a particular error and dealing with it at multiple places in an
application, the exception handler will always deal with every exception occurring in the code.
There was no longer a requirement to do a check after every method call since the exception will
guarantee that someone catches it.

The code now becomes more maintainable as you can now separate it so that it describes what
you want to do distinctly from the code that is executed when things to wrong. Reading, writing,
and debugging code becomes much clearer with exceptions as opposed to the traditional error
handling techniques.

10.4.4 Distributed Exception Handling

Catching Errors is important in any application but it becomes even more so in distributed
systems where there may be several different tiers. If something goes wrong in the back end of a
system, it is important that the user or the client receives a suitable message letting them know
that things did not go exactly as they planned it.

114

Take any banking transaction for example. If a user is paying a bill online and the system crashes
before the user's details can be written to the database, a message must be sent to the user letting
them know that their bill payment was not successful. It should also inform this user that if they
want to pay it they must go through the procedure again.

In general, remote method calls are much more complex to transmit than local method calls so
there are more possibilities for error. This makes it even more important to track these errors,
inform the relevant parties, and then decide what should be done in the case of such a failure.

10.4.5 CORBA Exception Handling

The CORBA Fault Tolerance specification defines a standard set of system exceptions. The
exceptions are typically raised by the ORB when something major goes wrong with the basic
client-server communication. Typically the error occurs during the transmission of remote
operation calls. As outlined above, the error must be immediately reported to a client or a server.

CORBA applications used in critical scenarios must be robust. But, with a heterogeneous
environment, the use and reuse of commercial off-the-shelf, third party and legacy software
modules, and their complex interactions will all be likely to trigger exceptions. [Pan 2000]

Thus, the graceful handling o f expected and unexpected exceptions is critical for the robustness of
CORBA-based systems.

The most common types of system exception range from communication failures due to network
problems, to looking for an object that doesn't exist, or looking in the wrong place for an object,
or failures due to problems marshalling operation parameters

There is another type of exception known as a user exception. These exceptions are specific to
applications and allow an application to define a set of exceptions or errors that may occur in that
application and that need to be caught and dealt with accordingly.

10.4.6 CORBA User Exceptions

The OMG defined CORBA specification allows for a raise clause to be defined as part of an IDL
operation and this can then return a more detailed error message to the caller depending on what
exactly happened. Typically the application will not raise a system exception itself but should be
designed so that it can handle both types of exception.

A CORBA client must handle system exceptions raised anywhere on the server side and returned

via the ORB, either during a remote invocation or through calls to the ORB. Such a system
exception might be raised if the ORB encounters problems with the network

115

Example of Exception Handling
//OMG CORBA IDL
interface Employee {

exception Reject {

string Reason;

¥

boolean IncreaseSalary(in string limployeeld, in float nevvSalary) raises (Reject);

FIGURE 10.1 : AbDING EXCEPTIONS TO IDL

In the IDL above we have an interface defining an Employee. There is one operation called
IncreaseSalary and it takes in the Employees ID and the amount of their newSalary. If for some
reason the Employee is not valid or is not due a raise we

can return this information with the User Exception "Reject that canbe thrown is something is
not correct.

10.5 Fault Tolerance

10.5.1 Introduction

To make sure that a system is "fault tolerant™ the design of that system should integrate several
levels including the hardware, the software and the administration.

There are also different levels of fault-tolerant service. The first of these is Recoverability and
ensures that components in the system can be re-started after failure and returned to their previous
state. Some clients may need to be delayed during this restart.

A second level of fault-tolerance is providing continuous availability where the system remains
fully available during component failure. This means the system must have redundant
components. Any clients will be moved from faulty components to the live ones or use multicast
requests to multiple servers.

Performance considerations also need to be looked at. Throughput and response times can be

affected by a fault and we need to decide if the system can degrade during a fault or do our
performance goals always need to be met.

116

10.5.2 Realising the failure

In a CORBA system the first sign that something has gone wrong will be when an exception is
raised. When a system exception is returned we realise that something has gone wrong with the
system. Ifauser exception is returned we can be sure that a user is at fault.

In the case of a system exception, when the remote call fails this means that a process, a host or a
network failure has occurred resulting in the TCP read or write failing. We can easily determine
which of these has occurred by testing if it is possible to contact the remote host or the remote
server and if the host responds to IP ping calls.

When the failure is completely hardware related however, it can be more difficult for the system
exception to return useful information. HOP failure detection that raises such a system exception
is based on TCP connections but when a host crashes or a network partition occurs, TCP cannot
distinguish between them and thus it can be difficult to ascertain what went wrong.

In the case of a hanging server we can use timeout mechanisms supplied by various ORB
implementations that will result in a client only trying a given number of times before giving up.
However, these timeouts have to be carefully used so that a slow system is not confused with a
"hung™ system.

When a process crashes, the TCP connection will be closed. However in the case of a host crash
or network failure these connections are not closed. Remaining processes will realise that the
connection is closed, either when they next attempt to make use of this connection, or if they have
enabled TCP keepalive.

In reality, detecting closure may not be useful if the clients do not have direct connections to the
servers in the case of firewalls or concentrators. Also, clients or servers may have a connection
management policy where idle connections are closed to conserve resources and reopened when
they are needed. Finally, we must also realise that this method will not easily distinguish between
host crashes and network failures.

The OMG issued a RFP in 1998 and produced in 2000 the FT CORBA specification. FT CORBA
provides a set of IDL interfaces to an infrastructure that allows the management of replicated,
fault-tolerant CORBA objects. |Marchetti, Virgillito, Mecella, Baldoni 2001]

The Fault Tolerant CORBA specification adds fault tolerance features to standard CORBA with
minimal modification to existing ORBs.

The specification does have limitations and leaves several issues for the vendors to solve. One of

the major limitations lies on the server side interoperability. All ORBs within a Fault Tolerance
Domain must be from the same vendor. [Korhonen 2001]

10.5.3 Recoverable Servers

This approach to fault tolerance involves the server recovering immediately after a crash or reboot
and returning to a consistent state without losing the results of requests that were processed before
the crash. To do this the server needs to maintain a persistent log of the state of all objects.

17

This persistent state must change as quickly as possible after an update occurs so that there is little
chance of a lost update due to a crash. Typically such approaches will involve the use of a marker
to indicate a complete update has been stored, so that if the server crashes while updating the logs,
any incomplete updates can be ignored on restart.

The use of a recoverable server means that the system can handle a server process crash without
much impact to the system as a whole. After a crash occurs, the server should be able to rebuild
its state from its logs. Different Fault-Tolerant approaches dictate when this should be done. Some
mandate that server builds its state immediately after restart whilst other mandate that this would
be done on demand. The latter approach will reduce the delay that clients might experience while
awaiting the server restart.

We are assuming that after re-start that all the applications important state information has been
successfully recovered and that any information that was lost is re-creatable.

CORBA clients can often transparently re-launch a server that has crashed between client

requests. However, if the crash occurred while a server was processing a client request, an
exception will certainly be passed back.

FIGURE 10.2: Keeping State for Recoverable Servers

10.5.4 Server Monitors

Another method of detecting possible problems with servers is to have a special dedicated
standalone server that monitors all the other servers in the system and restarts them in the case of
failure.

It can detect shutdown by connecting to any of these servers and noticing when a TCP connection
closure occurs.

118

A Server Monitor must be able to also correct deadlocks perhaps by associating a timeout with
each invocation. If the request times out and we are sure that it its not just a slow system, the
server monitor can kill and restart the hung server.

FIGURE 10.3: Server Monitor

10.5.5 Replicating Objects

Both ofthe solutions outlined so far will provide a suitable Failover mechanism in the

case of a process or server crash. However neither will adequately deal with the scenario of the
host crashing or network failures. To adequately deal with these scenarios, the only real solution
is to have multiple copies of the same service running on physically separate hosts. In the case of
failure, clients must then be able to switch to a working replica or else multicast requests to all
members of the group and take the first response.

[Marchetti, Mecella, Baldoni 2000] define a distributed application as being fault tolerant if it
can be properly executed despite the occurrence of faults. Fault-tolerance can be obtained by
software redundancy in that a service can survive a fault if its provided by a set of sever replicas

[Marchetti, Virgillito, Mecella, Baldoni 2001] outline how fault-Tolerance and high availability
can be obtained by software redundancy. A service can survive a fault if it is provided by a set of
server replicas hosted by distinct servers. If some replicas fail, the others can continue to offer the
service. At this end, servers can be replicated according to one of the following replication
techniques: Active replication or Passive Replication.

Replicating these services is quite a trivial task when the service is stateless. However it is an
entirely different matter when stateful services are being used.

Implementing this solution involves the client being made aware of a failure by means of a system
exception. In the case of a host or network failure, this usually involves receiving a
COMM FAILURE system exception on the remote invocation. The client will then switch to

another member of the replicated server group, which implies that the client needs to know about
the group members.

The client can have details of the group members either via a lookup service or by just switching
to another group member it knows about (a cached instance for example).

The concept of distributing group information among clients can make group updates quite
difficult and very inefficient but the concept of a lookup service adds a single point of failure to
the system

In this system requests are delivered to just one object but if we are dealing with stateful objects
then update requests must be propagated to the group.

10.5.5.1 Primary-Secondary Replication

There is a special type of replication known as Primary-Secondary Replication whereby client
requests will be sent to a primary server. This primary will update the secondary and then if the
primary fails, the secondary is in a perfect condition to take over as the primary and a new
secondary will be started up once this has been completed.

The major benefit of this approach is with the consistency of updates as only the primary is able
to make updates there is less chance of difficulties arising. Once again however, a reliable
network connection between the primary and secondary is essential and once again we will not be
able to distinguish between a host failure and a network failure and such a network partition can
create confusion as to who is the primary.

10.5.5.2 Stateful Objects

As mentioned in the previous section, replicating objects is a straightforward way of providing a
Failover mechanism when the objects in question are stateless. However, once we introduce
objects with state into the equation, things become significantly more difficult.

We now require some way of keeping all the server side objects in synchronisation with each
other so that they all have access to the same state information. One way of doing this would be to
provide a shared database. This will simplify the consistency of the data but adds a reliability
concern as the database is now a single point of failure.

The alternative would be not to use a shared database but to have a scenario where the replicas
update each other. This would involve the use of a shared lock service or a transaction mechanism
to make sure the updates are consistent. Again, such a transaction or lock service needs to be
reliable.

Any new replicated object joining the other objects in the group will need to acquire the current
state. This can be retrieved either from the database or from the other replicas. In addition, the
clients of these objects will need to be notified that there are new objects in the group
(alternatively they can stay hidden until they are discovered).

120

For this scenario to work we need to assume a reliable network between replicas as they cannot
stay consistent if separated by a network partition or if separated from the shared database.

10.5.6 Multicast

Multicast is a system where clients will not just make a request on one object but rather each
request will be directed to all members of the group. The client will then use the first response it
receives and ignore the others. Ifthe client requests are reliably delivered, then there is no need
for state sharing between the objects as they will be kept in lock step by receiving the same client
requests. For this approach to work effectively, a guaranteed delivery multicast protocol should be
used.

10.5.7 Fault Tolerance Patterns

There are some well-known patterns occurring in the design of high availability systems defined
by [Coplien et al. 1996].

[Minimise Human Intervention]: Machines don't make mistakes, people do.

fPeople know bestl: Human authority is required to sense the importance of external faults and the
actions needed to repair them. System administrators should be able to override automated
controls

rRidinu Over Transients!: Check the condition really exists before reacting to detected conditions.
(Situation might resolve itself)

iISICO First and Alwavsl: The System Integrity Control Program (SICO) is the core component
that provides diagnostics and operational control of the system. Trust this component to control
the actions of the other system components as well as the initialisation process and normal
application functionality

Further general patterns for use in fault Tolerant CORBA systems are defined in [Natarajan et
al. 2000]

The Leader/Follower pattern provides an efficient concurrency model where multiple threads take
turns sharing a set of event sources in order to detect, demultiplex, dispatch, and process service
requests that occur on these event sources. This Architectural pattern helps avoid missed polls in
the fault detector.

This Active Object design pattern decouples method execution from method invocation to
enhance concurrency and to simplify synchronised access to an object that resides in its own
thread. This avoids excessive overhead of recovery.

There are a group of optimisation patterns that reduce excessive overhead of service lookup.
These are Optimise for the common case. Eliminate gratuitous waste and Store extra information
which optimise by storing information and eliminating gratuitous waste.

The Strategy design pattern factors out similarities among algorithmic alternatives and explicitly
associates the name of a strategy with its algorithm and state. Using this pattern helps with the
problem of tight coupling of data structures.

Abstract Factory is another design pattern used in CORBA Fault Tolerance and provides a single
access point that integrates all strategies used to configure the FT-CORBA middleware.

The Component Configurator design pattern employs explicit dynamic linking mechanisms to
obtain, install, and/or remove the run-time address bindings of custom Strategy and Abstract
Factory objects into the service and installation-time and/or run-time. This overcomes the inability
for dynamic configuration.

The Chain of Responsibility Pattern decouples the sender of a request from its receiver, in
conjunction with The Perfect Hashing pattern to perform optimal name lookups. The Chain of
Responsibility pattern links the receiving objects and passes the request along the chain until an
object handles the request.

Initial efforts to enhance CORBA with fault tolerance have taken an integration approach, with
the reliability mechanisms incorporated into the ORB itself. With the advent of Object Services in
the CORBA standard, other research efforts have taken a service approach, with the provision of a
reliable object group service as part ofthe Object Services. [Narasimhan et al. 1997]

A combination of these approaches results in the Interception approach that involves capturing the
system calls of the objects hosted by the ORB. The intercepted calls, which were originally
directed by the ORB to TCP/IP, are now mapped onto a reliable ordered multicast group
communication system. The advantages of this approach are that neither the ORB nor the objects
need ever be aware of being "intercepted" and, thus the fault tolerance is not visible to the
application objects.

Finally, the internal structure of the ROB requires no modification since the mechanisms that
provide reliability are external to the ORB.

CORBA did not provide tools for enhancing the reliability of distributed systems. This had two
consequences. Many CORBA systems added replication logic to standard ORBs to cope with
object failures and site crashes. Examples of such projects include:

» Eternal [Moser et al. 1999]

¢ OGS [Felber 1998] and [Felberetal. 1996]

¢« DOORS [Chungetal. 1998]

e Isis and Orbix {from IONA Technologies\

e Electra [Landis Maffeis 1997]

¢ AQuA [Cukier etal. 1998]

¢ IRL [Marchetti, Mecella, Virgillito, Baldoni 2000]

122

10.6 Load Balancing

10.6.1 Whatis Load Balancing

The concept of load balancing involves dividing the workload of a banking system across the
network so that bottlenecks are avoided as much as possible and throughput is increased. Ifwe
successfully distribute the processing and communications activity throughout the system we can
be relatively sure that no one process or machine will reach over capacity and bring the entire
system to blockage point.

A load balancing solution can be used to improve a systems performance as well as its availability
and can be used in a fault tolerant approach. The most common load balancing solution is
something we have just looked at - i.e. Replication.

In a CORBA System, a load balancing policy will typically involve having multiple copies of the

same service throughout the network so that client requests can be distributed among these
services.

123

10.6.2 Requirements ofa Load Balancing Policy

In this context we are considering a load balancing policy for its performance improvements to
the system. However in an enterprise application, a load balancing policy will also have additional
requirements such as improved scalability, improved reliability, and increased availability.

The load balancing policy is deployed to share or equalise the workload among the available
resources in order to optimise performance. There are several popular policies as defined by
[Hoon et al. 2001]

A Selection policy selects a task for transferring. This policy is relatively simple as it selects the
task based on First Come First Serve basis.

A Location policy selects a location for transferring the selected task. Basically, this policy will
need to rely on the information policy for collecting certain information (e.g. load level) from
different locations. Usually, this policy will attempt to choose the location with the least load level
or below certain threshold. However, random location policy that was mentioned earlier does not
need collection of any information.

An Information policy determines the level of information needed for task selection or location
selection. It decides on when to collect the information and what information to be collected. It
also decides whether to collect information from all locations orjust part of them, to distribute the
information at different locations or to centralise them etc.

The requirements in terms of performance are simply that the load should be divided across the

system in a predictable and reliable way that will guarantee the same availability of the CORBA
services that an older mainframe application would provide.

124

[Othman et al. 2001] define key requirements that CORBA load balancing services should be
designed to address:

e Support an object-oriented load balancing model

e Client application transparency

e Server application transparency

« Dynamic client operation request patterns

« Maximise scalability and equalise dynamic load distribution

* Increase system dependability

e Support administrative tasks

¢ Minimal overhead

e Support application-defined load metrics and balancing policies.

10.6.3 Benefits of Load Balancing

Typically a load balancing policy will be implemented for services that have a reasonable amount
of clients where there is no obvious pattern to the number of concurrent requests.

In such cases, with increasing numbers of users, early adoption of a load balancing policy will
mean that continuing increases in user numbers will not affect the overall performance of the
service.

10.6.4 Dangers ofimplementing a load balancing policy

Load Balancing can be a tricky addition to a bank's infrastructure. There are occasions when a
particular policy will not provide the performance improvements required and can even reduce the
scalability of the system.

One example of load-balancing failing is where there are a significantly larger number of clients
than services. Another case is if certain methods take a long time to complete, then distributing
the services across the network might not be beneficial. This is less likely in a mainframe
environment where many legacy applications will have been implemented as CICS or IMS
transactions and by their very nature will be short running.

10.6.5 Real World Uses

To implement a load balancing solution, techniques such as replication and caching are used and
we will see exactly how these are used in the following sections.

In any CORBA system there are Services that can be load balanced and there are CORBA
Services such as a Naming Service that can be load-balanced. The idea being that the number of
concurrent client requests on a particular service can be kept to a certain minimum by distributing
these requests among several instances of this service.

125

One important detail to note is that any load balancing is hidden from the client. As far as they are
concerned they are accessing a particular service and need not be concerned with details such as
which instance ofthat service they are accessing.

There is no single way to implement a load balancing policy. CORBA Services can use network
based load balancing at the network layer and the transport layer. This layer use the IP address or
the hostname and port to determine where to forward packets.

Modem banking systems may have requirements to support many clients accessing from
anywhere in the world. There can be no limit on the number of client requests, nor when the peaks
of client interest will occur. The resources of the hardware implementing these services needs
protection and can be costly and the purchasing of extra hardware or server cycles is not always
cost effective.

Rather, a load balancing solution can result in hardware and software mechanisms determining
which server will execute each client request. Such a load balancing solution will distribute any
incoming client requests over all the back-end servers so that the system response time as a whole
will be favourable.

The BaBar Experiment outlined in [Becla, Gaponenko 2001] collected around 20 TB of data
during its first 6 months of running. After 18 months, the data size exceeds 30 TB. Even this is
expected to be only a fraction ofthe size of data coming in the future.

In order to keep up with the data, significant effort was put into tuning the database systems. It led
to great performance improvements, as well as to inevitable system expansion - 450 simultaneous
processing nodes alone used for data reconstruction. It is believed that further growth beyond 600
nodes will happen soon.

In such an environment, many complex operations are executed simultaneously on hundreds of
machines, putting a huge load on data servers and increasing network traffic. Introducing two
CORBA servers halved start-up time, and dramatically offloaded database servers: data servers as
well as lock servers.

10.6.6 Load Balancing Algorithms and Policies

Some ofthe most common policies for load balancing include

« Random

¢« Round Robin

e Host Response Time
* Availability of Hosts

Any load balancing policy should be considered at design phase. When deciding on such a policy,
other scalability issues should be taken into account. For example, a load balancing policy can be

used to overcome resource limits, and limit failure damage as part of a fault tolerance policy.

An enterprise application might consider load balancing as a solution if there are workload
variations on the system. If the timing and frequency of requests differs and the type of requests

126

incoming to a system are subject to variations, it is a good idea to get a feel for the access patterns
of the system. Another consideration is if the client request variations are time dependent or are
there peaks and periods of inactivity on the system.

If certain parts of the system get more client requests that others, i.e. access to different functional
areas has variations, a partitioning of the application logic could yield some immediate
performance results. This partitioning could be based on the usage patterns of the system. For
example, query requests could be partitioned from read/write requests, which in turn could be
partitioned from transactional requests.

The granularity of the components in a system must be also considered when implementing a
policy. For example, if the system contains mostly fine-grained components that are well
encapsulated, the amount of interaction they have with each other must be taken into
consideration. If there is a lot of communication between the components themselves, the
performance benefits could become minimal and there may even be a negative performance
benefit.

Even with today’s high-speed networks, the runtime topology i.e. the geographical concentration
of accesses must be looked at carefully. If network speed and network reliability and even
bandwidth are not considered, again there may be a net loss. The topology of the deployed
application itselfmust be also looked at.

10.6.7 Implementing Load Balancing using the CORBA Naming Service

A CORBA Naming Service can be used to implement Load Balancing. The OMG defined
CORBA Naming Service specification describes a model where a name maps to a user defined
object. A Naming Service can be extended so that a name can instead map to a group of objects.
When a client selects an object from the Naming Service, the Naming Service will select an object
from a group of objects to resolve that request.

10.6.8 Network Based Load Balancing

I.P. routers and domain name servers (DNS) can be used to provide a load balancing policy that
supply a pool of host machines. The DNS can decide which IP address to use when a client
resolves a hostname depending on the resources available to the system. This can be based on the
current load on the systems resources or the response time from the various servers. This load
balancing is completely transparent to the client and it may be the case that each time a client
resolves a host name, it is a different server that is returned with the DNS resolution. Routers can
be used, depending on the load on the system at a particular moment in time to bind a TCP flow to
any of the servers available. It can then use that binding for the duration of the flow.

Load balancing at the lower layers such as the network layer or the transport layer is not always
optimal depending on the actual volume of client requests. Load balancing at higher layers can
base their policy on the content of the requests, for example the pathname information contained
in a URL. Such a policy can be used to determine which Web server should receive a particular
client request for a certain URL. Using this technique, the most popular URLs can already have
extra resources waiting for them.

127

10.6.9 Operating System Load Balancing

The techniques of clustering, load sharing and process migration can be used by distributed
operating systems to provide a load balancing solution. Clustering can result in high availability
and high performance but at a lower cost. It combines different machines to improve the power of
the system and processing power as a whole. It can distribute processes across the system, again
transparently to the processes themselves. Clusters use techniques such as load sharing and
process migration.

Process migration is a technique used to balance the load across processors or network nodes. The
state of the process is transferred between nodes, but this requires quite a lot of platform
infrastructure support to handle the differences between nodes. Programming languages based on
Virtual Machines such as Java are going to have limited applicability when using this approach.

10.6.10 Software approaches to implementing a Load Balancing Solution

The Partitioning Pattern and Replication Pattern are two solutions commonly used in today
enterprise solutions as load balancing techniques. We have seen how replication works but
partitioning is a technique that comes in two flavours - Horizontal and Vertical.

Horizontal partitioning is a technique whereby objects are assigned to a particular partition in a
system. Using this technique, each service a system provides will only exist on a particular
partition and it is the combination of these objects on their different partitions working a whole
that provide the functionality ofthe system as a whole. This technique is also known as “interface
partitioning” and it essentially a way of distributing the load of a particular system across the
system.

Vertical Partitioning works like Horizontal Partitioning but, in this case, the partitioning of the
system is based on the data it holds. Every server provides the services exported by the system
and the particular group of objects will exist on each server. In N-tier CORBA systems there will
be N event channels representing the service. This technique is easily applied to data centric
applications.

10.7 Conclusion

The purpose of this section is to highlight the various approaches that can be used in an enterprise
solution to keep the legacy systems that are now CORBA Services available to users of the
system. As was mentioned, these legacy systems were traditionally highly available in their own
environment but when we reengineer them to be peers in the distributed computing environment
we run the risk of this availability being compromised due to the fault-prone world of network
computing.

[Froidevaux et al. 1999] found that full integration of CORBA with their legacy systems allowed
Credit Suisse to implement CORBA applications with the same availability as traditional IMS-

128

TP-based which is typically > 99% in the Credit Suisse's data centre operation. Thus the full
integration approach provides a CORBA platform for mission-critical applications.

We have seen possible solutions to handling faults in the system. These include a Fault Tolerance
solution, a Load Balancing solution and a comprehensive Exception Handling solution. The
combination of these features added to the enterprise can make for availability figures that we
would expect from mainframe based applications.

This section completes this phase of the research. We have now investigated in some detail, all of
the key areas of concern in an enterprise integration project.

As per the objectives set out at the beginning of the research, our next task is to propose an
approach to solving these problems. This is achieved by applying various approaches discovered

in the last few sections to an "actual™ enterprise integration project.

This next section outlines our approach to enterprise integration that forms the key to this
research.

129

11 Implementation and Recom mendations

11.1 Implementation Introduction

For the implementation of this thesis | will detail how real-world mainframe based, legacy
applications were integrated within the Credit Suisse CORBA Project of whom | was a team
member. In this project we applied many of the concepts, patterns and techniques outlined in
previous chapters. Only those that provided real business value to the bank were considered and
those affecting performance and security were given the highest priorities. This chapter will detail
which of the patterns and techniques were chosen and how the implementation proceeded.

This chapter combines a case-study on how a major bank (Credit Suisse) chose CORBA as their
integration solution, and an implementation of the additional the problems and issues that were
discussed throughout this thesis. [Froidevaux et al. 1999] and [Murer, Koch 1999] outline the
reasons for the choices Credit Suisse made in each case. The application of patterns and solutions
in the areas of Scalability, Performance, Failover and Security by this author, complete the
implementation of this thesis.

11.2 Credit Suisse Mainframe Architecture

Like most major banks, Credit Suisse has relied heavily on technology for some twenty years to
streamline its operations as well as to compete with the rest of the market to match the business
and technical requirements of modem banking.

Some figures for Credit Suisse's Technology Departments [Hagen 2000] include:

e 40 million lines of code in the central system

¢ More than 100 Credit Suisse productive self-made applications

¢ More than 100 simultaneous projects

¢« Up to 1 million payments per day

» 25000 work stations networked

e 1000 Servers

« 400 Million Pages of output on paper per year

e 16 Million IMS Transactions per year

¢« 50000 Databases, 30 TeraByte Disk

« Typically over 99% availability

e Several different electronic banking channels (internet, phone, ATM etc)
e Approximately 1500 employees in the Information Technology Sector.

FIGURE 11.1 Credit Suisse Technology Details
However, in the last decade, the architecture of Credit Suisse's Information Technology has
changed. Like many Financial Institutions, they have moved away from the traditional centralised

mainframe solution and moved towards client/server and n-tier solutions. Credit Suisse has felt
the same pressure for change that all of its competitors in the industry have. These include

130

pressure for new technologies such as ATMs, 24-hour banking, Online banking, Phone Banking
etc.

However, Credit Suisse are not alone in the industry in recognising the mainframe as a key part of
their Information Technology Architecture. This platform has served them well over the last
decades, being powerful, secure, reliable and very fast. Naturally, there are questions being asked
ofthese new technologies so that none of these benefits will be lost with any change.

Not only was it apparent that the benefits of the mainframe could not be lost, it also became
quickly clear that even if a new technology or operating system was available that could guarantee
the benefits, it would be quite a difficult task technically and financially to move.

Looking at the old applications in IMS and CICS, it was quickly realised that these would have to
be re-written from scratch, as not all the original documentation was available. In addition a look
at the costs of such a move indicated that it would cost some 900 million Euro over 5to 7 years to
implement a new system in the Credit Suisse environment. [Koch Murer 1999]

11.3 Choosing a suitable Integration Architecture.

It was decided at an architectural level that the Managed Evolution Pattern outlined previously
would be most appropriate in the case of Credit Suisse. This leads to a good balance between risk
and opportunity. Credit Suisse could decide on a target architecture and work towards it in small
steps.

One of the requirements of using Managed Evolution is that the system be partitioned into
manageable components or layers separated by clear interfaces. Because the Credit Suisse
Information Systems, as a whole, will live longer than any of its technologies, there should be an
interface technology that bridges technology and space. This model results in a Service-Based
Architecture

I found this to be a clever decision from the technology side. It meant there was no "all-in-one"
approach and we could move towards the target architecture in steps. Furthermore, as there were
advances in the COREA implementations by IONA Technologies, these could be included in the
next Architectural Release.

The next decision that was made was to use the Standards-Based Solution pattern. This pattern
involves using a technology solution that is independent of vendor implementation but adheres to
industry standards. Examples of this solution include the EJB Specification from Sun
Microsystems, the .NET Specification from Microsoft, or the CORBA Specification from the
OMG. Other non Standards-Based Solutions such as Screen-Scraping were not accepted due to
lack of a well-defined interface between Services.

I found that using such a Standards-Based Solution made defining the Architecture of our
mainframe systems quite easier. We avoided possible pitfalls that could have arisen in trying to
define a suitable cross-platform interoperability solution that our predecessors in proprietary
solutions had failed in. These pitfalls were discussed in [Chapters 1] and [Chapter 2] and detail
how quickly such proprietary solutions become Legacy solutions in themselves.

131

Another requirement of any solution was that it have a mapping for integration of legacy
programming languages such as COBOL and PL/I which are key in Credit Suisse. The full list of
requirements for Credit Suisse include:

¢ Interface definitions must be independent of the programming language and platform.
¢ A standards based solution allows easy integration of third party products

* Meta-data such as interface definitions should be available within the system

e The service architecture must be available on all relevant platforms

¢ Interface definitions must be extendable to allow a managed evolution

¢ Support for several programming languages is required

e Systems management capabilities are important.

« A Naming Service is needed to ensure location transparency

In the end only the CORBA specification from the OMG adhered to the Managed Evolution and
Standards-Based Solution patterns and could work with a mainframe integration project. .NET
and EJB restricted the architecture to an operating system or programming language and did not
provide support for COBOL or PL/1.

The full list of reasons for choosing CORBA were:

e The standards based solution (HOP in particular) give Credit Suisse the freedom to combine
several different middleware productsin the same system. Credit Suisse combines Promia's
SmalltalkBroker with 1ONA's Orbix. Other major companies provided full integration
products that were not standards based. This would tie Credit Suisse into a specific vendor
whereas choosing CORBA meant that Orbix could be changed for another CORBA
implementation with relative ease.

e Credit Suisse wanted a technology from the market. Previous experience showed that in-
house development of complex middleware is too expensive. It was also important to get a
reasonably mature technology. Various Java based mainframe integration solutions were
starting to appear on the market but as yet had not been proved in mission-critical situations.

e The strong focus on interface definitions (IDL) in CORBA is an ideal match for the service
architecture, where interfaces are the contracts between service users and providers.
Techniques such as screen scraping and other non-invasive techniques would not allow this.

+ CORBA is an excellent technology integrator: IDL interfaces can be mapped into such
diverse technologies as IMS transactions written in PL/1, Java Applets, or Visual Basic.

» Useful additional middleware services like security, naming, trading and transactions are part
of the CORBA architecture. Again these are standards based and so do not tie Credit Suisse
into a specific implementation.

e There are a number of different CORBA implementations spanning all relevant platforms
(programming languages and systems) within Credit Suisse.

¢ Many CORBA products are now mature enough to be used in an enterprise environment.
Necessary features like integration into a systems management framework or logging
facilities for accounting and security can be integrated with reasonable effort.

During different phases ofthe project we considered other non-CORBA solutions to test whether
our original goals were still being met. There had been various Web-Services integration solutions
available on the marketplace during this time and these would have also allowed a Managed
Evolution approach. Such products were also Standards Based. However, | recommended that we
did not pursue these further as they did have the maturity of the CORBA industry

132

implementations. This conclusion was arrived at by an examination of the Security and Failover
possibilities (or lack thereof) coming with these solutions.

11.4 Building An Architecture based on Managed Evolution

The Managed evolution pattern allows continuous adaptation of the IT system. To ensure that
these changes lead to a long-term improvement of the system, each step should be directed
towards target architecture. In addition, design of new software modules and wrapping of existing
transactions should follow a coherent style to ensure a smooth operation.

11.4.1 Services-modules instead of components

It became clear that the existing applications in Credit Suisse do not fit into the conventional
definition of components. It was decided that the name Service-Module was more appropriate
than component.

[Koch Murer 19991explain this naming decision:

The deficiencies of existing applications with respect to the component definition vary in a
wide range. Many ofthe existing applications are not accessed at their interfaces only, they
can not be independently delivered and deployed, and they are tightly integrated with their
environment. While we expect new applications to improve the situation significantly with
regard to clearly defined interfaces and data en-capsulation, the integration into the Credit
Suisse mainframe system will still be very tight.

Service-Modules are encapsulated and accessed at interfaces only. Each interface offers one or
more operations (services)

133

Credit Suisse Service-Modules:

« Contain data and appropriate functionality to manipulate this data. This is achieved by
providing well a well-defined interface, and the Service-Module can only be accessed via this
interface.

e Are stateless entities, in that they do not maintain a session state, but they can operate on
persistent data entities.

« Allow inheritance to be provided only between interfaces.

As part o f the implementation of this project we had to map the concept ofa Service-Module to a
real-world CORBA implementation. This turned out to be particularly easy as Interface Definition
Language (IDL) is the key to CORBA communication and our Service-Modules could be easily
defined in this way.

11.4.2 Bottom-up approach for the existing system

All of the initial CORBA applications in Credit Suisse were those that were being re-engineered
and therefore were designed with a bottom-up approach.

134

The design process was started with an investigation of the existing system. The applications were
grouped into several domains. Each domain is further refined into service groups such as "account
services™ and "‘customer information services™ which are service groups within the "Core Banking
Domain™. Each service group contains one or more Service modules.

For each service an interface definition must be produced based on the features of the current
implementation.

Due to limited resources and dependencies between modules as well as maintenance overhead and
other problems, a decision must be made as to which part of the systems should be re-engineered
and which existing program modules can be used without major changes. Using the Managed
Evolution Pattern this can be achieved in small steps so that eventually all core services are re-
engineered.

FIGURE 11.4 Credit Suisse Service Architecture Overview

As the system relies on IMS for almost 90% of its applications, the integration of existing IMS
transactions provides another motivation for a Service-Based Architecture. Transactions can be
offered as services on an interface. Transactions are in most cases stateless services, dealing with
objects that "live" in the IMS system. Since the implementation behind an interface is of no
interest to a client, we can hide the fact that COBOL (or PL/1) are not Object Oriented languages.

135

11.5 Performance Concerns

Given that Credit Suisse decided upon on CORBA and distributed computing to integrate their
legacy systems, there was always going to be an immediate performance impact due to network
latency. As we have seen distributed systems differ fundamentally from monolithic systems:

We have seen in a previously how using a Service-based Architecture leads to having fewer
coarse grained objects and having fine-grained objects residing within large grained Service-
Modules. This approach leads to a system where more information (i.e. a complete customer) is
passed with each request, reducing the amount of network overhead.

CORBA's address space model is different from that of most programming languages in that there
are no pointers, associations, and relationships between objects are very different. Remote
CORBA calls in general show latencies roughly a factor of 1000 higher than local method calls.
CORBA itself does not prevent simultaneous access to shared resources so this needs to be
implemented by the project. Serialising over a network is much more costly than on a local
machine.

However as we have seen there are various patterns and solutions to help reduce these network
based overheads. The first of these is to minimise the number of remote operations. A call across
the network will always be substantially slower than a local call. With current operating systems
even inter process calls on the same physical machine are much slower than calls that execute in
the same process. CORBA provides a very convenient sequence abstraction that makes it easy to
pass sequences of similar items to method invocations.

In the research on performance enhancement methods, we saw the following techniques:

1. Use sequences whenever several calls to the same operation may occur
2. Communicate structures that contain all/several attributes of an object, instead of asking for
each attribute with a separate remote invocation.

In the Credit Suisse Project, I implemented both of these techniques. Looking at the example
below, Every time an IDL Operation was defined, rather than simply pass in and out a structure
containing Customer_Details, a sequence of structures was used. This meant that as this operation
was typically called many times from the same client, only one network call was required. Typical
IDL design would return an entire customer object for each request resulting in at least n+1
remote invocations for n customers.

136

FIGURE 11.5: USE SEQUENCES INSTEAD OF NETWORK CALLS

Implementation ofthe second technique is easy to see. Instead of having operations such as
String getCustomerName();
Float getCustomerSalary();
String getPhoneNumber();
We can fill up a structure called Customerlinfo{...} and simply have one operation
Customerinfo getCustomerinfo ();
This results in just one network call instead of the previous situation where there were many
network calls. Ofcourse, it does result in possibly more information than is required being passed

back from the operation but unless this extra information was a massive amount of data, there will
still be performance gains.

137

FIGURE 11.6 Use Structures instead of many attributes

Both ofthe approaches outlined here would not be obvious choices for "pure™ IDL as the interface
definition does not detail exactly what the operation is trying to achieve. However in recent times,
designing IDL with performance in mind has become an acceptable option and many enterprise
applications seen in various banks today will have such solutions incorporated early on.

Some of the other patterns and solutions that were outlined previously were also considered for
use in the Credit Suisse CORBA-Mainframe integration. One well-known solution is to optimise
the type of data passed, as some types are more complex to marshal than others are. However, as
the projects that were interested in CORBA used a bottom-up design approach, there is less of an
opportunity to dictate which datatype should be used as it is required to use a datatype that could
contain the legacy data.

As a result, Credit Suisse typically did not enforce the IDL datatypes used by each project this but
produced its own IDL design guidelines. These guidelines outlined the different marshalling costs
so that those projects concerned with the performance impact of CORBA could make their own
decisions.

Optimising the amount of data passed is another way of minimising performance overhead.
However, there is a trade-off here because on one hand we would want to pass as much
information in each request as possible so this pattern was somewhat ignored.

Many of the other patterns designed to optimise CORBA performance do not apply in the case of
legacy systems on the mainframe. Using a Service-based architecture will result in some industry
wide patterns becoming redundant (examples include Fine Grained Framework and Flyweight)
that show solutions for having many fine-grained objects.

138

Because IMS/CICS Transactions are typically short running, other industry patterns such as
Distributed Call-back are also not required in this architecture. There are certain exceptions to this
rule such as conversational IMS Transactions and long-running CICS Transactions but these were
not considered in this project.

Others such as the Replication Pattern can improve performance but are more suited to a
discussion on the Scalability of the system.

One of my roles within the Credit Suisse CORBA project was to continuously test and adapt
performance enhancement techniques. This involved applying patterns such as those above as
well as industry-wide idioms and technology updates. The more successful of these included

* Modifying Stack and Heap size usage by Language Environment on OS/390

» Finding faster images in the system to run the CORBA Infrastructure under

* Applying different Multithreading policies to discover the most appropriate

e Test new Java Runtime Environments for possible performance enhancements

» Testing the different Java and PLI types to discover difference in marhsalling costs

e Fine tuning the IMS (Message Processing Regions) MPR and CICS Regions with techniques
such as Pre-loading of Transactions, Language Environment Tuning and MVS priorities.

e Testing new versions of IONA Technologies’ CORBA implementation software to discover
advances in marshalling techniques and lower CPU usage.

11.6 Security Considerations

Credit Suisse, like any major bank included maintaining the security of its data as among the top
priorities when considering CORBA as an option for integrating its legacy applications.

The bank required clients (both internal and external clients) to have access to information (for
example customer account details) that resided on the mainframe in the private company network.
In this first architecture there is no security provided so this had to be built up.

CORBA supports the use of SSL (Secure Sockets Layer) and so each CORBA request was
required to use SSL on top of CORBA HOP. A Credit Suisse Public Key Infrastructure was
created resulting in the bank having its own Certificate Authority (CA). This meant that each user
of the system would receive their own certificate and that every request entering the CORBA
Infrastructure was encrypted and secure and could also be verified and logged.

Secondly, a RACF/ACF2 lookup takes place for every user trying to access an IMS/CICS
transaction via the CORBA Adapters to ensure that the user have the correct permissions to
complete this task.

Both of these security measures ensured that users inside the private company network could be
verified and meet the requirements of a security service. However, provisions also had to be made
for users outside the private company network. The approach taken by the team in Credit Suisse
was to add a security system in steps as per the Managed Evolution approach.

The very first step was to secure the perimeter ofthe private company network.

Adding a Firewall Proxy Server ensures that all requests entering the private network must pass
through this proxy server. As outlined in the research on CORBA Security, using a Firewall Proxy
Server ensures that each and every request entering the private company network is monitored
and logged, drastically reducing the chances of security holes in the perimeter.

The next phase was to enhance the security of the private company network by adding a
demilitarised zone plus an additional firewall.

140

DMz Webserver Private Company

Network
Client .
Mainframe
Internet Proxy Proxy
CORBA DB2
Server Server
Service
]

Client I /

FIGURE 11.9: Adding ADMZ

With the addition of a (DMZ) demilitarised zone and an additional Firewall Proxy Server, the
internals of the private company network cannot be accessed directly from external clients. There
is now a buffer zone between the outside world and the private network.

Among other things, this helps ensure that outside attackers trying to create a denial of service can
be thwarted as they will only reach the proxy server and not the CORBA Infrastructure or other
servers running inside the private company network.

Adding a CORBA Security Service can be achieved by having a Master Security Server plus
adding a Security Runtime to each Application Server.

This Security infrastructure with the Credit Suisse PKI also added to the system provides
sufficient security to ensure the integrity of the critical data the bank contains in its private
database. There is no possibility of a direct access from outside the private company network.
With CORBA Security and 110P/SSL in place, the requests are also secure. Finally with the PKI
in place the rest of the requirements of a security model can be met.

141

DMz Webserver Private Company

Network
Client .
\ / Mainframe
Internet Proxy <p Proxy

Server Server CORBA DB2
Service

Client / CORBASec
Runtime

MSS

FIGURE 11.10: FINAL CORBA SECURITY INFRASTRUCTURE

One of the problems | found with the approach outlined above is that it added a considerable
performance overhead to round-trip-times. This was particularly increased, as logging of all
requests was required at each stage of the client to server communication. As part of my
performance as described in the previous section, | proposed various solutions that reduced a lot
of this additional overhead. These included:

e Optimising the CORBASec Runtime code for efficiency.

e Rather than clients accessing the CORBA Services, we introduced EJB applications servers
that acted as the CORBA clients. As these were continuously connected to the CORBA
Services, there was a reduction in Connection Management costs.

11.7 Scalability

Scalability was another area of concern for Credit Suisse. All of the areas for improving CORBA
scalability outlined in this research were considered.

Multithreading was possible on the client side when using C++ and Java and also with the Orbix
IMS Adapter on the mainframe. It was not possible for the PL/l and COBOL developers to use
multithreading in their code but IMS and CICS are highly scalable transaction monitors so this
was less of a concern.

142

In terms of connection management, the Orbix CORBA implementation that was used has built-in
possibilities to use the client disconnects and the server disconnects patterns. Essentially this
means that a client will disconnect when finished communicating with the IMS/CICS Adapters
and the Orbix Adapters will close connections to the clients when they are finished. IMS and
CICS Transactions are typically short running and do not keep connections open so this was not a
problem in this case.

An in-house implementation of the concentrator pattern was developed and ensured that the
number of simultaneous connections to the Naming Service does not exceed the limits.

Credit Suisse performed some scalability tests where there was one CORBA IMS/CICS Adapter
scaling up to 1500 concurrent clients. There could be 6500 clients distributed over 10 Adapters.
One Unix System Services image on OS/390 could run 20 adapters so it could handle 20000
concurrent clients. This amount of concurrent clients was deemed sufficient to provide for the
users o fthe bank applications and so the required scalability was reached.

Credit Suisse also did scalability tests outlining the number of requests per second that can be
processed. These tests used a sample application on one IMS-TM system with 10 Message
Processing Regions in IMS. This processed 70 CORBA requests per second.

This could be scaled to the limits of IMS meaning several hundred requests per second or several
thousands in a larger IMS installation or with newer, more powerful hardware in the future.

Again, these figures underlined the continued scalability of Credit Suisse's legacy systems when
made peers in a CORBA based distributed network. One of my roles in this phase of the project
was to determine the optimum usage of IONA IMS and CICS Adapters for maximum scalability.
The following techniques were used.

e Testing Adapter connection management capabilities to determine after how many concurrent
client requests per adapter did scalability and performance degrade

e Determining the ideal number of threads per Adapter for optimum scalability and
performance.

By the end of the implementation of this phase of the project, we found that the results outlined
above most accurately reflected the ideal scalability capability of the CORBA Infrastructure.

11.8 Availability

As per the discussion on Availability, the major question posed to Credit Suisse was "how could
client reach a service". Also, as proposed in this research, probably the easiest way is to use the
Naming Service Pattern.

143

3. Using objectreference

FlGURE 1111 CORBAN aming Service

Credit Suisse used the CORBA Orbix Naming Service that maps readable names to the IOR for
each Service. For example, a client could bind to the Naming Service and ask for
Services. Customer.Customer 1 0 and would be returned the IOR for this Service.

In addition, Naming helper-classes were provided by our team, for developers to simplify even
further the process of locating the object required. These Helper classes were provided for all
programming languages applicable (Java, C++, PL/l, COBOL, Smalltalk) and just provided the
bindO and resolveO functions that come with the Naming Service API. This took all the
complexity away from client side object location.

As per the last section on scalability, | performed some tests on the CORBA Naming Service to
see how many concurrent clients could be accepted before performance and scalability
degradation were seen. In this case, we saw no major problems right up to the TCP/IP limit of
1024 simultaneous clients. After this point, no more connections could be opened an exceptions
were thrown back to the client. However, because client interaction with the Naming Service is
short-lived, this limit was never actually reached in practice.

11.9 Failover

Partial failure can be a problem in that a CORBA call can fail with a status that does not allow
you to determine what really happened (for example when a client sees the
COMPLETION MAYBE exception status). Partial failure requires you to take provisions in your
system design, or to provide very sophisticated recovery mechanisms. In some cases even manual
operator intervention may be required.

144

Credit Suisse used the following design principles:

e« Make update operations in servers repeatable so that an update can be repeated as often as
needed without comprising data integrity

e Given the current mechanisms, use distributed transactions only within a tightly coupled
environment with reliable connections between the resource managers. This results in a
minimum chance of message loss, and controlled scope of possible repair

e Build application control loops wherever data integrity is crucial to the business

Credit Suisse also made use of the Replication pattern to ensure that the Naming Service was not
a single point of failure. Having a replicated Naming Service helped ensure that clients could
always get the Object References ofthe Services they required.

In reality there was a Master/Slave solution where the Main (Master) Naming Service had a
backup called the Slave who would become available only when the Master went down or became
unavailable. If the Slave also went down there would be no Naming Service so the System
Administrators would have to work on getting the Master up again as soon as possible.

The Load-Balancing pattern also ensured both enhanced performance and reliability for the
CORBA infrastructure. Each Service was load balanced over three of four CORBA Adapters in a
round robin manner so that in the event of an increased load, no one adapter could become
overloaded.

145

In this example, each entry in the Naming Service actually has two different IORs that point to
different CORBA IMS/CICS Adapters. Each client request asking for this Service will get an
alternate 10OR so that the load for the Customer Service is spread evenly between both adapters. In
reality this can be extended over many adapters if the load increases.

11.10 Other Idioms and Useful Solutions

There were various other solutions used by Credit Suisse that are not patterns in the correct sense
but rather idioms and rules of thumb that made the CORBA-Mainframe Integration easier to
maintain.

Do notchange an interface in production. The IDL interface is the contract between client and
server and if this changes on either side there can be serious consequences.

¢ Introduce a versioning convention for IDL interfaces. There should be a major version
number and a minor version number. If an operation or attribute is changed or deleted a new
major version must be created. If the interface is extended a new minor version can be
created.

e At any time up to three versions of an IDL interface must be supported. It can be quite a task
for each client to upgrade if a Service is changed so there must be an overlap to allow this to
happen over time.

« An IDL must never contain parameters than refer to the location of an object or service. This
should always be kept transparent.

e Several conventions about the names of interfaces, modules, operations and types ensure a
standardised look and feel and help to avoid misinterpretation.

146

11.11 Credit Suisse CORBA Infrastructure

The following diagram shows the sequence of events for each CORBA Client request to a
CORBA Service implemented on the mainframe (where the Service is implemented using PL/1 in
IMS)

A distributed client issues a request to the IMS Adapter. The IMS adapter is implemented using
DSI as a dynamic server that reads the interface information at start-up from the interface
repository. The request is assigned to the DSI object implementing the requested operation. The
mapping of Message Processing Programs (MPPs) to interfaces and operations is provided in a
mapping file. This mapping file belongs to the Orbix IMS/CICS Adapter.

Inside IMS, the operation gets a free LU6.2 (APPC) session from the session pool and sends the
request to the Control Region. The Control Region receives the request, stores it in a request input
queue from which it is read by an MPR (Message Processing Region). The Object Adapter, which
is the entry point of the MPP (Message Processing Program), reads and demarshals the GIOP
request and builds up a PL/I-compliant data structure which reflects the input parameters of the
operation.

At this point, the application routine is called, which processes the request. The application
routine reads and writes to the data structures by calling functions from the Orbix POD Library.

147

After the application program has terminated, the output parameters are marshalled and returned
as GIOP response to the CR and to the Orbix IMS Adapter which translates the response to an
I1OP response and returns it to the client

11.12 Conclusion

Credit Suisse faced many of the challenges that are faced by every company using older
technology in the financial industry. However, they were a little more radical than others in their
choice of integration strategies were. Rather than opting for a quick fix solution, they chose a path
that is at first more difficult but which is expected to pay off in the longer term.

Choosing CORBA resulted in having a standards-based solution in place that can outlive one
vendors' product set. In addition, there are many industry wide patterns and solutions that Credit
Suisse could learn from other companies in the same situation and apply them in this ease.

This section outlined an approach to integrating an existing legacy system using CORBA and a
Service-Based Architecture. In addition, it tackled those topics outlined earlier in the research as
being possible areas of trouble in an enterprise situation.

In the original aims and objectives of this research, finding and overcoming possible problems
with integration projects involving mainframe based legacy systems and their modem Object
Oriented counterparts was outlined as the number one objective. The last few sections located
these problem areas and this section outlines an approach to overcome these problems.

Some Advantages of using this approach include

The Standards Based solution results in industry-wide consensus on how best to perform

certain roles.

¢« A Managed Evolution allows a migration in smaller easier steps

e« Using A Service Architecture results in a component-based Architecture so that individual
Services can migrate to newer technologies at their own pace

» Various performance patterns ensure less degradation of mainframe application performance
when it becomes a peer in a distributed network.

» The various layers in the Security Model allow the mainframe to be opened up to the wider
world with less risk of attack or compromise of its data

* The use of various CORBAServices help overcome Availability and Failover issues

¢ Making full use of Object Oriented Technologies results in better code, enhanced scalability,

and helps ensure that a similar integration headache does not arise in 10 years time.

Essentially, we have realised the objectives and aims outlined at the beginning of the research in
that the approach outlined above allows mainframe applications to gradually move towards newer

technologies whilst avoiding certain pitfalls and dangers.

Any further problems encountered by using the approaches outlined in this section will be looked
at in the section on further research possibilities.

148

12 Future
121 The Future of Mainframes

Predictions over the last ten years and certainly before the turn of the millennium indicated that
mainframes were finished as operating systems. People were of the opinion that this was a
technology that was too old and too difficult to use and maintain to have any real future.
However, while these predictions are still with us, large enterprises and especially the financial
sector are still buying mainframes. And today this operating system seems more important to the
financial sector than ever before.

As we saw from the first sections of this research, e-business is placing new demands on a banks
IT infrastructure, in terms of demanding highly scalable, centralised solutions. The strange thing
in many peoples eyes is that the S/390 platform and the newer z/Architecture are attracting
renewed attention from IT managers who are looking for a technology that is both proven and
built on the latest technology.

The next phase of mainframe computing comes with the z/OS platform and the z/Series
processors. This is essentially the next release of the OS/390 mainframe except it now has 64-bit
addressing support and advanced workload management. These systems have the ability to host
thousands of Linux images under VM and for many larger companies this is a platform they want
to be tied into over the next decade.

From a purely technical perspective the z/Architecture brings lots of new functionality and new
potential and lots of independent software vendors are trying to bring their technology to mission
critical applications on the host. Any CORBA or J2EE conference these days will have at least
some mainframe integration theme and with the advent of the very newest technologies such as
Web Services, SOAP, UDDI and WSDL; there is already talk of how we integrate the mainframe
with this technology.

From an e-commerce perspective, it seems likely that the massive demands of such network
centric applications will place increasing demands on the enterprise-servers of tomorrow. It seems
that the mainframe and especially the new z/architecture are particularly well placed to meet these
requirements.

12.2 The Future oflLegacy Applications

Many of the enterprises that use CORBA to re-engineer or rewrite their legacy systems have now
made these available to the rest of their distributed computing environment. However, the core
functionality behind these applications has not changed, and whether in this form or written in
another programming language on another system, will not change in the foreseeable future.

For sure there will be additional requirements by banks over the next decade and there will be

applications built to meet these requirements. This time however, there will be one eye looking
into the future to ensure that today's applications in as far as is possible don't become obsolete,

149

12.3 The Future of Distributed Com puting

For almost 10 years, CORBA has been the standard of choice for large organisations wishing to
integrate heterogeneous applications on distributed systems using different programming
languages. For many, CORBA was a little over-complicated and CORBA-based systems almost
always ran over budget and into more complications that they envisaged. The alternatives in
today's market include J2EE, MQSeries, and Microsoft's .NET

J2EE (Java 2 Enterprise Edition) is the very latest in Java technology and includes in its
specification such components as Enterprise Java Beans and J2EE Connectors. Both of these
approaches have a distributed computing element to them and the J2EE Connectors specification
is looking at integrating legacy applications in COBOL and PL/lI with Java Application Servers
and Java Clients. The Connector technology is not mature yet and Java as a mainframe language
is only now gaining respectability.

MQ Series is IBM's solution for asynchronous messaging on the host. MQSeries can easily be
integrated with CICS and IMS and also with Java Clients. It has a guaranteed one-time delivery of
each message and is probably the most popular solution of asynchronous messaging. It is not
really a competitor of CORBA as it fills a different market space.

.NET is Microsoft's end-to-end product offering. However, as yet there is no mainframe presence
for this product suite.

One ofthe problems with standards based solutions is that if one of the major players takes it over
and puts its own thumbprint on the standard - the other players in the market will look at
alternative solutions and the original standard starts looking more like a proprietary solution.

The future of distributed computing looks like there will be an offering from the major players in
this market including IBM, Sun and Microsoft for the foreseeable future. The new WebServices
technology looks like a way of integrating this Websphere, SunOne and .NET technologies.

However, for mainframe integration solutions it seems that the only offerings that will be viable

in the future will be IBM's various integration strategies and CORBA mainframe implementations
such as the ASP OS/390 product suite from IONA Technologies.

150

13 Conclusion and Further W ork

13.1 General Work for the future

In the last section we considered the future of mainframes, their legacy applications, and the
distributed systems of which they can now be peers. We must now look at further work and
research that could be continued in this area.

The most obvious way to approach this is to look at the areas where the solution we outlined in
this research did not meet the requirements or was lacking in some respects

« Some think that CORBA application programming and design is too difficult. This can be
especially true for PL/I and COBOL programmers who need to quickly get and understanding
of Object Oriented concepts

e The success of the CORBA Standard is dependent upon industry implementations. On the
mainframe platform, only IONA Technologies have both PL/I and COBOL implementations.
Having just one company providing this implementation takes away somewhat from the
concept of a Standards Based solution.

e« Having many extra layers to ensure Security and Failover is of the highest degree in an
enterprise solution can effect performance adversely

e Having a solution such as CORBA in place with IDL definitions for a Service does by no
means guarantee that the Service will be well written and without bugs. This age-old problem
is something that continues to exist.

e Other problems are still occurring on a daily basis for which no patterns have yet been
implemented as a solution.

Despite the problems that can still exist using a CORBA based Service Architecture for enterprise
integration projects, it is still a preferred solution to re-writing all mainframe applications from
scratch. It is certainly less risky and less expensive.

Some of the areas in which further research could enhance even further the approach outlined in
this thesis include

« Developing new patterns and general solutions to well known industry problems

e Enabling CORBA solutions to easily communicate with EJB, MQ Series or .NET solutions
(as the new Web-Services will eventually allow).

* As newer technology and business requirements appear, these should be incorporated into
existing standards in a uniform and timely manner.

» The advent of CORBAFacilities specialising in the Financial Sector could result in more off-
the-shelf components and Services that could be added to an enterprise integration solution
without much overhead

Even though CORBA is now considered one of the more mature distributed computing
approaches in the market, there is further work that cart be done to ensure that the Financial
Institutions using CORBA today to integrate their legacy systems do not need themselves to be
integrated in 10 years time.

151

13.2 Specific Research Possibilities

The previous section details the "'general™ problems that exist in the Financial Industry during the
migration of legacy applications. However, there have also arisen some more specific research
possibilities. These have come about as a result of the implementation's we did in Credit Suisse
and include:

« Refine and investigate clearer and more applicable methods of applying Object-Oriented
standards such as the CORBA specification to non-Object Oriented languages such as PL/I
and COBOL. We found many problems applying such concepts in this project.

e Define further standards-based CORBA Services to avoid the reliance on in house tools for
Systems Management.

¢« Look at other solutions in the industry that would be more lightweight and less complex for
those simpler Services in the bank.

 Even after applying the various performance enhancement techniques, we still found that
using CORBA can add an overhead not present other solutions. Further investigations in this
area are required.

« Despite using a standards-based solution, there are still many difficulties in getting ORB
implementations from different vendors to interoperate. Some further work investigating
ORB Interoperability could alleviate this problem.

e The area in which our team experienced most of its troubles during this project was on the
Fault-Tolerance side. Actually having a real-world solution that implements actual
Master/Slave concepts without problems was something that eluded us for quite some time.
Some further investigations into this area would provide real benefit to the project outlined
here and other similar projects.

It is the opinion of this author that CORBA is still the best solution on the marketplace for those
enterprise Financial Institutions wishing to integrate their mainframe systems. However, any such
project will still have a high cost both in money and time terms. On the plus side, those
Institutions that go down this route will be better placed for future integration solutions and
technologies that will come as they are more likely to be able to integrate with today's modem
technologies.

Appendix A: Web Resources

Computer Associates ACF2

IBM Linux

IBM MQSeries Product Suite

IBM MVS

IBM Resource Access Control Facility
IBM Transaction Processing Facility
IBM Unix System Services

IONA Technologies Products

J2EE Connector Architecture

Java Remote Method Invocation
Microsoft DCOM

OMG CORBA Specifications

SSL v3.0 Specification

W3C XML Specification

Xtradyne Domain Boundary Controller

http://www3.ca.com/Solutions/Product.asp?1D=147
http://www-l.ibm.com/servers/eserver/zseries/os/linux/
http://www-3.ibm.com/software/ts/mqgseries/
http://www-l.ibm.com/servers/s390/0s390/
http://www-1.ibm.com/servers/eserver/zseries/zos/raciyracfhp.html
http://www-4.ibm.com/soitware/ts/tpf/index.html
http://www-1ibm.com/servers/eserver/zseries/zos/unix/
http://www.iona.com

http://java.sun.com/j2ee/connector/
http://java.sun.com/products/jdk/rmi/
http://lwww.microsoft.com/coiii/tech/DCOM.asp
http://www.omg.org/technology/documents/spec catalog.htm
http://wp.netscape.com/eng/ssl3/

http://www.w3.org/ XML/

http:/Mmww .xtradyne.de/products/boundary.htm

http://www-l.ibm.com/servers/eserver/zseries/os/linux/
http://www-3
http://www-l.ibm.com/servers/s390/os390/
http://www-1
http://www-4.ibm.com/soitware/ts/tpf/index.html
http://www.iona.com
http://java.sun.com/j2ee/connector/
http://java.sun.com/products/jdk/rmi/
http://www.microsoft.com/coiii/tech/DCOM.asp
http://www.omg.org/technology/documents/spec
http://wp.netscape.com/eng/ssl3/
http://www.xtradyne.de/products/boundary.htm

Bibliography

[Alexander 1977]
Christopher Alexander. A Pattern Language. Oxford University Press, 1977.

[Alexander 1979]
Christopher Alexander. The Timeless Way o fBuilding. Oxford University Press, 1979

[Alireza, et al. 2000]

A. Alireza, U. Lang, M. Padelis, R. Schreiner, M. Schumacher. The Challenges of CORBA
Security. Proceedings of the Workshop Sicherheit in Mediendaten. Gesellschaft fur Informatik
(G1) 2001.

[Ballintijn, et al. 2000]

G. Ballintijn, M. van Steen, A.S. Tanenbaum. Scalable Naming in Global Middleware.
Proceeding of the 13th Int'l Conf. on Parallel and Distributed Computing Systems (PDCS-2000),
Las Vegas, August 8-10, 2000, ICSA 2000.

[Beck Cunningham 1987]

Kent Beck, Ward Cunningham. Using Pattern Languagesfor Object-Oriented Programs.
OOPSLA-87 workshop on the Specification and Design for Object-Oriented Programming. ACM
Press 1987.

[Becla, Gaponenko 2001]

J. Becla, I. Gaponenko. Optimising Parallel Access to the BaBar Database System Using CORBA
Servers. CHEP’01 (Computing in High Energy and Nuclear Physics), Beijing, China, 2001.
CHEP 2001.

[Bennett 1995]
K.H.Bennett. Legacy Systems: Coping With Success. IEEE Software, January 1995, Vol. 12,No.l.

[Bennett, Kannenberg 1996]

Cedric Bennett and Margo Kannenberg. Student Transactions via the Web.

Presented at the 1996 CAUSE annual conference "Broadening Our Horizons : Information,
Services, Technology'. CAUSE 1996.

[Beznosov, Deng, Blakely 1999]

Konstantin Beznosov, Yi Deng, Bob Blakely. A Resource Access Decision Service for CORBA-
based Distributed Systems. 15th Annual Computer Security Applications Conference December
1999, Phoenix, Arizona, IEEE CS 1999.

[Brodie Stonebraker 1995]
Michael L.Brodie, Michael Stonebraker. Migrating Legacy Systems: Gateways, Interfaces and the
Incremental Approach. Morgan Kaufmann Series in Data Management Systems, 1995.

[Carzaniga et al. 1999]

Antonio Carzaniga, David S. Rosenbiura, Alexander L.Wolf. Challenges for Distributed Event
Services : Scalability vs. Expressiveness. From the Proceedings of the ICSE '99 Workshop on
Engineering Distributed Objects (EDO '99), Los Angeles, CA, May 17-18, 1999, IEEE CS 1999.

[Chan 1998]

Charles Quoc Cuong Chan. Tolerating Latency in Software Distributed Shared Memory Systems
through non-binding prefetching. Thesis, Degree of Master of Science, Graduate Department of
Computer Science, University of Toronto 1998.

[Chang 2000]

Chi-Chao Chang. Safe and Efficient Cluster communication in Java using explicit memory
management. Degree of Doctor of Philosophy Thesis, Graduate School, Cornell University
January 2000.

[Chen et al. 2000]
Li Chen, Rossi G. Marinina. Banking Merger 2000. Masters Thesis, Industrial and Financial
Economics, Gothenburg University 2000.

[Chung et al. 1998]

P. Chung, Y Huang, S. Yaknik, D. Liang and J. Shih. DOORS : Providing fault tolerance to
CORBA objects. Poster session at IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware '98) The Lake District, England, Springer 1998.

[Claesson 2001]
Per Claesson. Integrating CORBA functionality within an existing COM architecture.
Master thesis in Computing Science, Chalmers Tekniska Hogskola, Gothenburg 2001.

[Clerc 1999]
Vincent Clerc. UNICIBLE Presentation, IONA World Conference 1999. Available from

http://www.iona.com.

[Coplien et al 1996]
James Coplien, Michael Adams, Robert Gamoke, Robert Gammer, Fred Keeve, Keith
Nicodemus. Fault-Tolerant Telecommunications System Patterns. In Vlissides, J.M., J.O.
Coplien, and N.L. Kerth. (eds.) Pattern Languages of Program Design 2. Addison-Wesley,
Reading, Mass. 1996.

[Coyle 2000]
Frank P. Coyle. Legacy Integration - Changing Perspectives. IEEE Software Magazine

March/April 2000.

[Cukier et al. 1998]

M. Cukier, J. Ren, C. Sabnis et al. AQUA : An Adaptive Architecture that Provides, Dependable
Distributed Objects. Proceedings of the 17th Symposium on Reliable Distributed Systems
(SRDS-17) West Lafayette, IN 1998, IEEE CS 1998.

155

http://www.iona.com

[Curtis 1997]

David Curtis. Java, RMI and CORBA. A white paper prepared by David Curtis, Director of
Platform Technology Object Management Group.

Available from http://www.omg.org/library/wpjava.html.

[Davis Gamble 2001]

L.Davis and R.Gamble. Conflict Patterns : Towards Identifying Suitable Middleware, Int'l
Conference on Information Reuse and Integration, Las Vegas, NV, 2001. IEEE CS Publishing
20001

[DSRG 1999]

Distributed Systems Research Group, Charles University, Prague

CORBA Comparison Project. Technical Report, 1999.

Available from http://nenya.ms.mff.cuni.cz/projects/corbac/Report_0899.pdf

[Erlikh, Goldbaum 2001]
Len Erlikh and Lisa Goldbaum. EAl's Missing Link: Legacy Integration. EAI Journal, April 2001.

[Ezhilchelvan et al. 2001]

Paul Ezhilchelvan, Mohammad-Reza R.Khayyambashi, Doug Palmer, Graham Morgan.
Measuring the Cost ofScalability and Reliabilityfor Internet-based, server-centred applications.
Sixth 35 International Workshop on Object-oriented Real-time Dependable Systems
(WORDSOI), Rome, Jan. 2001, IEEE CS Publishing 2001.

[Falkner 2000]

Katrina Elizabeth Falkner. The provision of relocation transparency through a formalised
naming system in a distributed mobile object system. Doctor of Philosophy Thesis, Department of
Computer Science, University of Adelaide. 2000.

[Felber 1998]
P. Felber. The CORBA Object Group Service : A Service Approach to Object Groups in CORBA.
Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 1998.

[Felber et al. 1996]

P. Felber, B. Garbinato, R. Guerraoui. The Design ofa CORBA Group Communication Service.
Proceedings of the 15th Symposium on Reliable Distributed Systems, Canada 1996, IEEE
Publishing 1996.

[Ferguson 2002]

Roger W. Ferguson JR.

Speech to the Federal Reserve Board by Vice Chairman Roger W. Ferguson JR

March 2002. Available from http://www.federalreserve.gov/boarddocs/speeches/2002/default.htm

[Foote Yoder 1997]

Brian Foote and Joseph Yoder. Big Sail of Mud.

Fourth Conference on Patterns Languages of Programs (PLoP "97/EuroPLoP '97)
Monticello, Hlinois, September 1997, Addison-Wesley 1997.

156

http://www.omg.org/library/wpjava.html
http://nenya.ms.mff.cuni.cz/projects/corbac/Report_0899.pdf
http://www.federalreserve.gov/boarddocs/speeches/2002/default.htm

[Froidevaux et al. 1999]

Werner Froidevaux, Stephan Murer, Martin Prater. The Mainframe as a High-Available, Highly
Scalable CORBA Platform. Published at the International Workshop on Reliable Middleware
Systems, October 19, 1999 In Conjunction with the 18th IEEE International Symposium on
Reliable Distributed Systems, IEEE CS Publishing 1999.

[Frolich, Gal, Franz 2002]

Frohlich, Gal, Franz. On Reconciling Objects, Components, and Efficiency in Programming
Languages. Technical Report No. 02-12 Department of Information and Computer Science
University of California, Irvine, USA March 2002.

[Gamma 1995]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns : Elements of
Reusable Object Oriented Software. Addison-Wesley 1995.

[Glynn 1996]
Davies Glynn. A history of money from ancient times to the present day. University of Wales
Press 1996.

[Gokhale, Schmidt 1998]

Aniruddha S. Gokhale and Douglas C. Schmidt. Measuring and Optimising CORBA Latency and
Scalability Over High-speed Networks. Appeared in a special issue of IEE Transaction on
Computers, Vol. 47, No 4. April 1998.

[Gokhale, Schmidt 1997]

Aniruddha S. Gokhale and Douglas C.Schmidt. Evaluating CORBA Latency and Scalability Over
High-Speed ATM Networks. Appeared in the Proceedings of ICDCS'97 (May 97 Baltimore
Maryland), IEEE CS Publishing 1997.

[Goldberg, Robson 1989]
Goldberg and Robson. Smalltalk-80 : The Language and its Implementation. Addison-Wesley,
Reading, MA, USA.

[Grahn, Holgersson 2002]

Hakan Grahn and Marcus Holgersson. An approachfor performance measurements in distributed
CORBA applications. 20th IASTED International Conference on Applied Informatics, symposium
on Parallel and Distributed Computing and Networks, pages 326-337, Innsbruck, Austria, ACTA
Press 2002.

[Gueheneuc Juissen 2001]

Yann-Gael Gueheneuc and Narendra Juissen. Using explanations for design patterns
identification. 1JCAl 2001 Workshop on Modelling and Solving problems with constraints,
Morgan-Kaufmann 2001.

[Hagen 2000]

Claus Hagen. Credit Suisse I T Architecture. Presentation at ETH Ziirich
Available at: http://www.inf.ethz.ch/personal/iks/Other/PDDBS/pdf/Hagen-PDDBS.pdf

157

http://www.inf.ethz.ch/personal/iks/Other/PDDBS/pdf/Hagen-PDDBS.pdf

[Harding 2001]
Elizabeth U. Harding. Programmer Shortage Threatens Mainframe Future. Software Magazine
April 2001.

[Henning 1999]
Michi Henning. Binding, Migration, and Scalability in CORBA.
Communications of the ACM Journal, volume 41, number 10, Oct 1998.

[Henning, Vinoski 1999]
Michi Henning, Steve Vinoski. Advanced CORBA Programming with C++. Addison Wesley,
February 1999.

[Hermansson, Akerlund 1997]
Therese Hermansson, Malin Akerlund. EJB - A Deployment Evaluation. Masters Thesis,
University of Umea, Sweden, 1997.

[Hoon et al. 2001]

Gan Keng Hoon, Chan Huah Yong and Fazilah Haron. Load Balancing for Web-based Grid
Application. Asia Pacific Advanced Network Consortium (APAN) Meeting 2001, Asia-Pacific
Advanced Network 2001.

[Horswill 2000]
John Horswill and the member of the CICS Development Team at IBM Hursley. Designing and
Programming CICS Applications. O'Reilly 2000.

[Jacobsen et al. 1997]

E. Jacobsen, B Kristensen, P Nowack. Patterns in the Analysis, Design and Implementations of
Frameworks. In Proceedings of the Twenty-First Annual International Computer Software and
Application Conference, (COMPSAC’97), Washington D.C., USA, 1997, IEEE CS Publishing
1997.

[Jiang 1998]
Qingli Jiangb. Integration of Real-time Object-Oriented Database and Real-time CORBA into
Legacy Software. Thesis, Degree of Master of Science, Computer Science, University of Rhode
Island. 1998.

[Johnson 1989]
Robert H. Johnson MVS Concepts and Facilities
Intertext Publications/McGraw-Hill Book Company 1989,

[Jordan 1996]

Jerry L. Jordan. The Functions and Future ofRetail Banking.

Economic Commentary by Jerry L. Jordan, President and Chief Executive Officer, Federal
Reserve Bank Cleveland, 1996. Available from http://www.clev.ftb.org/ccca/jjl00196.htm.

[Juric et al. 1999]

Matjaz B Juric, lvan Rozman, Marjan Hericko, Tomaz Domajnko. Integrating Legacy Systems in
Distributed Object Architecture. Proceedings of International Conference on Enterprise
Information Systems, March 1999 Portugal, Kluwer Academic Publishers, 1999.

158

http://www.clev.ftb.org/ccca/jjl00196.htm

[Kahkipuro 1999]
Pekka Kahkipuro. Performance Modelling Frameworkfor CORBA Based Distributed Systems.
From Proceeding of UML 1999, Berlin, 1999, Springer-Verlag 1999.

[Keshav, Gamble 1998]
Keshave, Gamble. Towards a Taxonomy ofArchitecture Integration Strategies.
3rd International Software Architecture Workshop, November 1998, ACM 1998.

[Khandker et al. 1995]

A.M. Khandker, P. Honeymam, and T.J. Teorey. Performance of DCE RPC. 2nd International
Workshop on Services in Distributed and Networked Environments June 05 - 08, 1995 Whistler,
British Columbia, IEEE CS Publishing 1995.

[Kim Bieman 2000]

Hyeon Soo Kim, James M. Bieman. Migrating Legacy Software Systems to CORBA based
Distributed Environments through an Automatic Wrapper Generation Technique. Proc. Joint
meeting of the 4th World Multiconference on Systemics, Cybernetics and Informatics (SC1'2000)
and the 6th International Conference on Information Systems Analysis and Synthesis
(ISAS'2000), ffIS 2000.

[Koch, Murer 1999]

Thomas Koch, Stephan Murer. Service Architecture Integrates Mainframes in a CORBA
Environment. Published at the third IEEE conf. On "Enterprised Distributed Object Computing™
Sep. 27-30, 1999, IEEE CS Publishing 1999.

[Kolodziej 1987]
J.Kolodziej. COBOL Shapes Up. Computerworld Magazine, Vol 21, (Jan 7, 1987), p. 13-14.

[Korhonen 2001]

Jouni Korhonen. Fault Tolerant CORBA. Research Seminar on Real Time and High Availability
University of Helsinki, Department of Computer Science November 2001

Available from httpV/www.cs.helsinki.fi/u/kraatika/Courses/semO la/korhonen.pdf

[Kudrass et al. 1996]

Thomas Kudrass, Marco Lehmbach, Alejandro Buchmann. Tool-Based Re-Engineering of a
Legacy MIS: An Experience Report. Proceedings of the 8th Intl. Conference, CAISE '96,
Heraklion, Crete (Greece), May 1996, Springer-Verlag LNCS 1080 1996.

[Kugel 2001]
Herb Kugel. History of Computing: The IBM 650.
Dr. Dobb's Computer Magazine Available at http://www.ddj.com/.

[LaLiberte Bravennan 1999]

Daniel LaLiberte, Alan Braverman.

A Protocol for scalable group and public annotations. Proceedings of the 3rd International
WWW conference Volume 27, Number 6, ACM Press 1999.

[Landis Maffeis 1997]

S. Landis, S. Maffeis. Building Reliable Distributed Systems with CORBA. Theory and Practice of
Object Systems Journal Vol. 3, no 1. 1997.

159

http://www.cs.helsinki.fi/u/kraatika/Courses/semO
http://www.ddj.com/

[Lang 1997]
Ulrich Lang. CORBA Security : Security Aspects of the Common Object Request Broker
Architecture. MSc in Information Security, Royal Holloway, University of London. 1996/1997.

[Lauder, Kent 2000]
Anthony Lauder and Stuart Kent. Legacy Systems Anti-Patterns and a Pattern-Oriented
Migration Response. In: Henderson P, Systems Engineering for Business Process Change,
Springer Verlag, 2000.

[Lawrence 1996]
Andrew Lawrence. IBM System User International Survey. Computer Business Review, p. 1-4.
March 1996.

[Lea 1993]
Doug Lea Christopher Alexander: An Introductionfor Object-Oriented Designers
An article available from http://gee.cs.oswego.edu/dl/ca/ca/ca.html.

[Levine, Gill, Schmidt 2000]
David L.Levine, Christopher D. Gill, and Douglas C. Schmidt. A Complementary Pattern for
Controlling Object Creation and Destruction. C++ Report, SIGS, Vol. 12, No. 1, January, 2000.

[Levine Schmidt 2000]

Dr. David Levine, Douglas C. Schmidt.

Introduction to Patterns and Frameworks. Tutorial from the Department of Computer Science,
Washington University, St. Louis Available from
http://www.cs.wustl.edu/~schmidt/PDF/patteras-intro4.pdf.

[Little 1999]

M.C.Little, S.K. Shrivastava

Implementing high availability CORBA applications with Java.

Appeared in the proceedings of the 1999 IEEE Workshop on Internet Applications, July 26 - 27,
1999. San Jose, California, IEEE CS Publishing 1999.

[Luomala 2000]
Vea Luomala. CORBA Based Object Transaction Monitors. Thesis, Master of Science in
Engineering, Department of Information Technology, Helsinki University of Technology 2000.

[Maffeis, Schmidt 1997]

Silvano Maffeis, Douglas C. Schmidt. Constructing Reliable Distributed Communication Systems
with CORBA. Appeared in the feature topic issue on Distributed Object Computing in the IEEE
Communications Magazine, Vol. 14, No.2, February 1997.

[Marchetti, Mecella, Baldoni 2000]

Carlo Marchetti, Massimo Mecella, Roberto Baldoni. Architectural Issues on Fault Tolerant
CORBA Proceedings of the SSGRR 2000 Computer & Business Conference, L'Aquila, Italy,
2000, Scuola Superiore 2000.

160

http://gee.cs.oswego.edu/dl/ca/ca/ca.html
http://www.cs.wustl.edu/~schmidt/PDF/patteras-intro4.pdf

[Marchetti, Mecella, Virgillito, Baldoni 2000]

C. Marchetti, M. Mecella, A. Virgillito, R. Baldoni. An Interoperable Replication Logic for
CORBA Systems. Proceeding of the 2nd International Symposium on Distributed Objects and
Applications (DOA 2000) Antwerp, Belgium 2000, Springer-Verlag 2000.

[Marchetti, Virgillito, Mecella, Baldoni 2001]

Carlo Marchetti, Antonio Virgillito, Massimo Mecella, Roberto Baldoni. Integrating Autonomous
Enterprise Systems through Dependable CORBA Objects. Published at the Proceedings of the 5th
International Symposium on Autonomous Decentralised Systems (ISADS 2001), Richardson,
Texas 2001, IEEE CS Publishing 2001.

[McCauley 1999]

Chris McCauley. Under the covers and ILM, A CORBA System in Action. A presentation by Chris
McCauley, Senior Architect, Irish Life Investment Managers, IONA World Europe Conference
1999. Available from http://www.iona.com/.

[McDonough 1999]

Mr William J. Me Donough. Changing nature ofbanking, risk and capital regulation.

29th Annual Banking Symposium, Bank and Financial Analysts Association New York City
1999, Federal Reserve System 1999.

[Modi 2000]
Tarak Modi. Using Space-Based Programming for Loosely Coupled Distributed Systems. Java
Developer's Journal, October 2000.

[Morris, Isaksson 2002]
Rob Morris and Pete Isaksson. Legacy within the Enterprise: Imagine the Possibilities.
EAI Journal, March 2002.

[Moser et al. 1999]

L.E. Moser, P.M. Melliar-Smith, P. Narasimhna, L.A. Tewksbury, V.Kalogeraki. The Eternal
System : An Architecture for Enterprise Applications. Proceedings of the 3rd International
Enterprise Distributed Object Computing Conference 1999, Mannheim Germany, IEEE CS
Publishing 1999.

[Mowbray, Malveau 1997]
Mowbray, Malveau. CORBA Design Patterns. Wiley& Sons 1997.

[Muhgee, Surendran, Schmidt 1999]

Sumedh Mungee, Nagarajan Surendran, Douglas C. Schmidt. The Design and Performance ofa
CORBA Audio/Video Streaming Service. Appeared in the HICSS-32 International Conference on
System Sciences, minitrack on Multimedia DBMS and the WWW, Hawaii, January 1999, IEEE
CS 1999.

[Murer 1999]

Stefan Murer. Why Does Credit Suisse invest in Orbix on MVS. 1t)NA Wdrld Europe Conference
1999 Presentation. Available from http://www.iona.com/.

161

http://www.iona.com/
http://www.iona.com/

[Narasimhan et al. 1997]

P. Narasimhan, L.E. Moser, P.M. Melliar-Smith. The Interception Approach to Reliable
Distributed CORBA Objects. Published at the Proceedings of the Third USENIX Conference on
Object-Oriented Technologies and Systems Portland, Oregon, June 1997, USENIX Association
1997.

[Natarajan et al. 2000]

Balachandran Natarajan, Aniruddha Gokhale, Shalini Yajnik, Douglas C.Schmidt. Applying
Patterns to Improve the Performance of Fault Tolerant CORBA. Submitted to the 7th
International Conference on High Performance Computing, Bangalore India, Dec 2000,
ACM/IEEE 2000.

[O'Ryan et al. 1999]
Carlos O'Ryan, David L.Levine, Douglas C.Schmidt, J. Russell Noseworthy. Applying a Scalable
CORBA Events Service to Large-scale Distributed Interactive Simulations. Proc. IEEE 5th
Workshop on Object-Oriented Real-Time Dependable Systems, Los Alamitos, Calif., Nov. 1999,
IEEE CS Press 1999.

[ORBOS 1998]
Proposal to the ORBOS Platform Task Force for Benchmarking CORBA Scalability.
Available from http://www.omg.org/docs/bench/98-10-01.doc.

[Othman et al. 2001]
Ossama Othman, Carlos O'Ryan, Douglas C.Schmidt. The Design of an Adaptive CORBA Load
Balancing Service. IEEE Distributed Systems Online 2(4): (2001)

[Pan 2000]

Jiantao Pan. Robustness Testing and Hardening of CORBA ORB Implementations.

MS Thesis, Electrical and Computer Engineering Department, Carnegie Mellon University
Pittsburgh, Pennsylvania, USA, 2000.

[Parikh, Girish 1987]
Parikh, Girish. Making the Immortal Language Work. Business Software Review, Vol 6, Iss 4,
(April 1987), p. 33-36.

[Pyarali et al. 2000]

Ifan Pyarali, Carlos O'Ryan, Douglas C. Schmidt. Patterns for Efficient, Predictable, Scalable,
and Flexible Dispatching Components. 7th Pattern Languages of Programs Conference (PLoP
'00) in Allerton Park, Illinois, August 2000. Addison-Wesley 2000.

[Quinotet al. 2001]

Thomas Quinot, Fabrice Kordon, Laurent Pautet. Architecture for a reusable object-oriented
polymorphic middleware. In Proceedings of PDPTA'2001, Las Vegas, Nevada, Etats-Unis, June
2001, CSREA Press 2001.

[Rackl 2000]

Gunther Rackl. Monitoring and Managing Heterogeneous Middleware. PhD Thesis, Technical
University Munich 2000.

162

http://www.omg.org/docs/bench/98-10-01.doc

[Reddy 2002]
Ram Reddy. The Future of Enterprise Applications, Pieces of a whole. Intelligent Enterprise
Magazine (March 2002).

[Sang et al. 1999]

Janche Sang, Chan Kim, lIsaac Lopez. Developing CORBA-Based Distributed Scientific
Applications from Legacy Fortran Programs. Information and Software Technology, Vol. 44,
Issue 3, 175-184, 2002.

[Scallan 2000]
Todd Scallan. Monitoring and Diagnostics of CORBA Systems : Demystifying the CORBA
communication bus to enable 'distributed debugging' Java Developers Journal June 2000.

[Schmidt 1999]

Doug Schmidt. Strategised Locking, Thread-safe Interface, and Scoped Locking : Patterns and
Idioms for Simplifying Multithreaded C++ Components. C++ Report, Volume 11, September
1999.

[Schmidt Stephenson 1995]

Douglas C. Schmidt, Paul Stephenson. Experience Using Design Patterns to Evolve
Communication Software Across Diverse OS Platforms ECOOP '95 conference, August 1995,
Springer-Verlag 1995.

[Schmidt et al. 1997]

Douglas C.Schmidt, Aniruddha Gokhale, Timothy H. Harrison, and Guru Parulkar. A High-
performance Endsystem Architecture for Real-time CORBA. Appeared in the feature topic issue
on Distributed Object Computing in the IEEE Communications Magazine, Vol. 14, No 2,
February 1997.

[Schultz 2001]
Andreas Schultz. Multi threading in a CORBA ORB. Diplomarberit, "Otto-von-Giiricke"
University, Magdeburg 2001.

[Shen et al. 2000]

E-Kai Shen, Shikharesh Majumdar, Istabrak Abdul-Fatah. High Performance Adaptive
Middlewarefor CORBA-Based Systems. Nineteenth Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC 2000), Portland, Oregon, 16-19 July 2000,
Springer-Verlag 2000.

[Silva et al. 2000]

Roberto Silva Filho, Jacques Wainer, Edmundo R.M. Madeira. CORBA Based Architectures for
Large Scale Workflow. Masters thesis Institute of Computing - UNICAMP - State University of
Campinas, Brazil, 2000.

[Slama et al. 1999]
Slama, Garbis, Russell. Enterprise CORBA, Prentice-Hall 1999.

[Smith, Williams 1998]
Connie U. Smith, Lloyd G. Williams. Performance Engineering Models of CORBA-based
Distributed-Object Systems. Int. CMG Conference 1998, Computer Measurement Group 1998.

163

[Stroulia et al. 2000]
E. Stroulia, M.EI-Ramly. P.lglinski, P. Sorenson. User Interface Reverse Engineering in support
ofMigration to the Web. Automated Software Engineering 10(3): 271-301; Jul 2003.

[Stroustrup 1991]
B. Stroustrup and M. Ellis. The Annotated C++ Reference Manual. Addison-Wesley 1991.

[Stroustrup 1992]
B. Stroustrup. The C++ Programming Language. Addison-Wesley 1992.

[Summers 2000]

Bruce J. Summers. Remarks of Bruce J.Summers : Director Federal Reserve Information
Technology, Bank of Japan. Conference on the Development of Information Technology and
Central Banking, Tokyo Japan, October 2000.

[Szymaszek et al. 1998]

Jakub Szymasek, Andrzej Uszok, Krzysztof Zielinksi. Building a Scalable and Efficient
Component Oriented System using CORBA - Active Badge System Case Study. Distributed
Systems Engineering Journal 5(4): 203-213 (1998)

[TN3270 2001]
Internet Engineering Task Force : Telnet TN3270 Enhancements Special Working Group
Available from http://www.ietf.org/html.charters/tn3270e-charter.html

[Turner Brill 2001]
W. Pitt Turner and Kenneth G. Brill. Industry Standard Tier Classifications Define Site
Infrastructure Performance. Uptime Institute. 2001. Available from http://www.uptime.com

[Vinoski 1998]
Steve Vinoski. New Features for CORBA 3.0. Communications of the ACM Vol. 41, No. 10
October 1998.

[Vinoski 2000]

Steve Vinoski. Scalability issues in CORBA-Based Systems. Tutorial presented at 7th
International Workshop on Interactive Distributed Multimedia Systems and Telecommunication
Services. October 17-20,2000 Enschede, The Netherlands, Springer Verlag 2000.

[Volter 2000]

Markus Volter. Server-Side Components - A Pattern Language. EuroPLoP 2000 Conference
(Fifth European Conference on Pattern Languages of Programs), 5-9 July 2000, Irsee, Germany,
Addison-Wesley 2000.

[Wang, Schmidt, Levine 2000]
Nanbor Wang, Douglas C. Schmidt, David Levine. Optimising the CORBA Component Modelfor

High-Performance and Real-time Applications. In *"Work-in-Progress’ session at the Middleware
2000 Conference, ACM April 2000.

164

http://www.ietf.org/html.charters/tn3270e-charter.html
http://www.uptime.com

[Weik 1961]
Martin H. Weik. The ENIAC Story. The Journal of the American Ordnance Association (Jan/Feb

1961).

[Wolff, Schmid, V61ter 2001]

Eberhard Wolff, Alexander Schmid, Markus Voélter. Building EJB Applications - A Collection of
Patterns. Presented at the PloP 2001 Conference (8th Conference on Pattern Languages of
Programs), September 11-15, 2001, Allerton Park, Monlicello, Illinois, USA, Addison-Wesley
2001

[Yoder, Baraclow 1997]

Joesph Yoder, Jeffrey Baraclow. Architectural Patternsfor Enabling Application Security.
Presented at the PloP Workshop (Pattern Languages of Programs) 1997. September 3-5, 1997,
Allerton Park, Monticello, Illinois, USA, Addison-Wesley 1997.

165

