29,897 research outputs found

    Proceedings, MSVSCC 2015

    Get PDF
    The Virginia Modeling, Analysis and Simulation Center (VMASC) of Old Dominion University hosted the 2015 Modeling, Simulation, & Visualization Student capstone Conference on April 16th. The Capstone Conference features students in Modeling and Simulation, undergraduates and graduate degree programs, and fields from many colleges and/or universities. Students present their research to an audience of fellow students, faculty, judges, and other distinguished guests. For the students, these presentations afford them the opportunity to impart their innovative research to members of the M&S community from academic, industry, and government backgrounds. Also participating in the conference are faculty and judges who have volunteered their time to impart direct support to their students’ research, facilitate the various conference tracks, serve as judges for each of the tracks, and provide overall assistance to this conference. 2015 marks the ninth year of the VMASC Capstone Conference for Modeling, Simulation and Visualization. This year our conference attracted a number of fine student written papers and presentations, resulting in a total of 51 research works that were presented. This year’s conference had record attendance thanks to the support from the various different departments at Old Dominion University, other local Universities, and the United States Military Academy, at West Point. We greatly appreciated all of the work and energy that has gone into this year’s conference, it truly was a highly collaborative effort that has resulted in a very successful symposium for the M&S community and all of those involved. Below you will find a brief summary of the best papers and best presentations with some simple statistics of the overall conference contribution. Followed by that is a table of contents that breaks down by conference track category with a copy of each included body of work. Thank you again for your time and your contribution as this conference is designed to continuously evolve and adapt to better suit the authors and M&S supporters. Dr.Yuzhong Shen Graduate Program Director, MSVE Capstone Conference Chair John ShullGraduate Student, MSVE Capstone Conference Student Chai

    A GENERIC APPROACH TO CUBESAT ELECTRICAL POWER SYSTEM SIMULATION

    Get PDF
    The electrical power system (EPS) is an essential part of a satellite. It distributes, stores and generates the electric power for autonomous operation of the satellite in space. Through standardizations in the CubeSat community a common structure of EPS is established. The thesis explains both the functioning and the requirements of electrical power systems. Furthermore, two EPS are presented that are currently commercially available and have been use d in other CubeSats. The Naval Postgraduate School (NPS) is currently developing a lU Cubesat (NPS-SCAT) and the EPS board used has insufficient specifications for accurate operation. To avoid problems in the advanced stage of development, the EPS has to be simulated. This research lays the foundation for an EPS computer model based on PSpice simulation softwar. At the outset the design of a solar pan el and Lithium-Ion battery model was possible. In particular, the models are modifiable at any time so that technical changes can be incorporated as needed.Das elektrische Energiesystem (EPS) ist ein wesentliches Bauteil eines Satelliten. Es verteilt, speichert und erzeugt elektrische Energie den autonomen Betrieb des Satelliten im Weltraum. Durch die Standardiesierung in der CubeSatGemeinschaft hat das EPS einen typischen Aufbau. Die Arbeit erklart sowohl die Arbeistweise als auch die Anforderungen an das Energiesystem. Desweitern werden zwei kommerziell erhaltliche Systeme prasentiert, die schon für CubeSat Missionen eingesetzt wurden. Die Naval Postgraduate School (NPS) entwickelt momentan einen lU Cuebsat (NPS-SCAT) und das verbaute EPS Platine hat aber eine zu geringe Lei stung. Das solch ein Problem nicht in ein so fortgeschrittenen Stadium auftritt, ist es sinnvoll das EPS vorher zu simulieren. Die Ergebnisse dies er Arbei t legen die Grundlage für ein EPS Computermodell basierend auf einer Psice Simulationssoftware. Solarmodul und den Zurn Beg inn war es Lithium-Ionen-Akku ZU moglich das modellieren. Insbesondere wird wert darauf gelegt die Modelle jederzeit anpassen zu können, Insbesondere wird wert darauf gelegt die Modelle jederzeit anpassen zu können, um auf technologische Anderungen reagieren zu können.Helmut Schmidt University University of the Federal Armed Forces Hamburg Holstenhofweg 85, 22043 Hamburg g, German y2nd Lieutenant, German Air Force (Luftwaffe)Approved for public release; distribution is unlimited

    Cyber-Physical Systems: A Model-Based Approach

    Get PDF
    In this concise yet comprehensive Open Access textbook, future inventors are introduced to the key concepts of Cyber-Physical Systems (CPS). Using modeling as a way to develop deeper understanding of the computational and physical components of these systems, one can express new designs in a way that facilitates their simulation, visualization, and analysis. Concepts are introduced in a cross-disciplinary way. Leveraging hybrid (continuous/discrete) systems as a unifying framework and Acumen as a modeling environment, the book bridges the conceptual gap in modeling skills needed for physical systems on the one hand and computational systems on the other. In doing so, the book gives the reader the modeling and design skills they need to build smart, IT-enabled products. Starting with a look at various examples and characteristics of Cyber-Physical Systems, the book progresses to explain how the area brings together several previously distinct ones such as Embedded Systems, Control Theory, and Mechatronics. Featuring a simulation-based project that focuses on a robotics problem (how to design a robot that can play ping-pong) as a useful example of a CPS domain, Cyber-Physical Systems: A Model-Based Approach demonstrates the intimate coupling between cyber and physical components, and how designing robots reveals several non-trivial control problems, significant embedded and real-time computation requirements, and a need to consider issues of communication and preconceptions

    Proceedings, MSVSCC 2011

    Get PDF
    Proceedings of the 5th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2011 at VMASC in Suffolk, Virginia. 186 pp

    Proceedings, MSVSCC 2012

    Get PDF
    Proceedings of the 6th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2012 at VMASC in Suffolk, Virginia

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere

    Cyber-Physical Systems: A Model-Based Approach

    Get PDF
    In this concise yet comprehensive Open Access textbook, future inventors are introduced to the key concepts of Cyber-Physical Systems (CPS). Using modeling as a way to develop deeper understanding of the computational and physical components of these systems, one can express new designs in a way that facilitates their simulation, visualization, and analysis. Concepts are introduced in a cross-disciplinary way. Leveraging hybrid (continuous/discrete) systems as a unifying framework and Acumen as a modeling environment, the book bridges the conceptual gap in modeling skills needed for physical systems on the one hand and computational systems on the other. In doing so, the book gives the reader the modeling and design skills they need to build smart, IT-enabled products. Starting with a look at various examples and characteristics of Cyber-Physical Systems, the book progresses to explain how the area brings together several previously distinct ones such as Embedded Systems, Control Theory, and Mechatronics. Featuring a simulation-based project that focuses on a robotics problem (how to design a robot that can play ping-pong) as a useful example of a CPS domain, Cyber-Physical Systems: A Model-Based Approach demonstrates the intimate coupling between cyber and physical components, and how designing robots reveals several non-trivial control problems, significant embedded and real-time computation requirements, and a need to consider issues of communication and preconceptions

    A Vision of Collaborative Verification-Driven Engineering of Hybrid Systems

    Get PDF
    Abstract. Hybrid systems with both discrete and continuous dynamics are an important model for real-world physical systems. The key challenge is how to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires significant human guidance, since hybrid systems verification tools solve undecidable problems. It is thus not uncommon for verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) modeling hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks.

    Proceedings, MSVSCC 2014

    Get PDF
    Proceedings of the 8th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 17, 2014 at VMASC in Suffolk, Virginia
    • …
    corecore