14,647 research outputs found

    Recovering Grammar Relationships for the Java Language Specification

    Get PDF
    Grammar convergence is a method that helps discovering relationships between different grammars of the same language or different language versions. The key element of the method is the operational, transformation-based representation of those relationships. Given input grammars for convergence, they are transformed until they are structurally equal. The transformations are composed from primitive operators; properties of these operators and the composed chains provide quantitative and qualitative insight into the relationships between the grammars at hand. We describe a refined method for grammar convergence, and we use it in a major study, where we recover the relationships between all the grammars that occur in the different versions of the Java Language Specification (JLS). The relationships are represented as grammar transformation chains that capture all accidental or intended differences between the JLS grammars. This method is mechanized and driven by nominal and structural differences between pairs of grammars that are subject to asymmetric, binary convergence steps. We present the underlying operator suite for grammar transformation in detail, and we illustrate the suite with many examples of transformations on the JLS grammars. We also describe the extraction effort, which was needed to make the JLS grammars amenable to automated processing. We include substantial metadata about the convergence process for the JLS so that the effort becomes reproducible and transparent

    Technical Report: CSVM Ecosystem

    Full text link
    The CSVM format is derived from CSV format and allows the storage of tabular like data with a limited but extensible amount of metadata. This approach could help computer scientists because all information needed to uses subsequently the data is included in the CSVM file and is particularly well suited for handling RAW data in a lot of scientific fields and to be used as a canonical format. The use of CSVM has shown that it greatly facilitates: the data management independently of using databases; the data exchange; the integration of RAW data in dataflows or calculation pipes; the search for best practices in RAW data management. The efficiency of this format is closely related to its plasticity: a generic frame is given for all kind of data and the CSVM parsers don't make any interpretation of data types. This task is done by the application layer, so it is possible to use same format and same parser codes for a lot of purposes. In this document some implementation of CSVM format for ten years and in different laboratories are presented. Some programming examples are also shown: a Python toolkit for using the format, manipulating and querying is available. A first specification of this format (CSVM-1) is now defined, as well as some derivatives such as CSVM dictionaries used for data interchange. CSVM is an Open Format and could be used as a support for Open Data and long term conservation of RAW or unpublished data.Comment: 31 pages including 2p of Anne

    Change Management in Large-Scale Enterprise Information Systems

    Full text link
    Abstract. The information infrastructure in today’s businesses consists of many interoperating autonomous systems. Changes to a single system can therefore have an unexpected impact on other, dependent systems. In our Caro approach we try to cope with this problem by observing each system participating in the infrastructure and analyzing the impact of any change that occurs. The analysis process is driven by declaratively defined rules and works with a generic and ex-tensible graph model to represent the relevant metadata that is subject to changes. This makes Caro applicable to heterogeneous scenarios and customizable to spe-cial needs.

    Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.

    Get PDF
    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies

    Biochemical network matching and composition

    Get PDF
    This paper looks at biochemical network matching and compositio

    Facilitating Transformations in a Human Genome Project Database

    Get PDF
    Human Genome Project databases present a confluence of interesting database challenges: rapid schema and data evolution, complex data entry and constraint management, and the need to integrate multiple data sources and software systems which range over a wide variety of models and formats. While these challenges are not necessarily unique to biological databases, their combination, intensity and complexity are unusual and make automated solutions imperative. We illustrate these problems in the context of the Human Genome Database for Chromosome 22 (Chr22DB), and describe a new approach to a solution for these problems, by means of a deductive language for expressing database transformations and constraints
    • …
    corecore