
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1993

Facilitating Transformations in a Human Genome Project Facilitating Transformations in a Human Genome Project

Database Database

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Anthony S. Kosky
University of Pennsylvania

B. Eckman
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Susan B. Davidson, Anthony S. Kosky, and B. Eckman, "Facilitating Transformations in a Human Genome
Project Database", . December 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-94.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/250
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kosmopolis

https://core.ac.uk/display/214168734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/250
mailto:repository@pobox.upenn.edu

Facilitating Transformations in a Human Genome Project Database Facilitating Transformations in a Human Genome Project Database

Abstract Abstract
Human Genome Project databases present a confluence of interesting database challenges: rapid
schema and data evolution, complex data entry and constraint management, and the need to integrate
multiple data sources and software systems which range over a wide variety of models and formats.
While these challenges are not necessarily unique to biological databases, their combination, intensity
and complexity are unusual and make automated solutions imperative. We illustrate these problems in
the context of the Human Genome Database for Chromosome 22 (Chr22DB), and describe a new
approach to a solution for these problems, by means of a deductive language for expressing database
transformations and constraints.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-94.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/250

https://repository.upenn.edu/cis_reports/250

Facilitating Transformat ions
In A Human Genome Project Database

MS-CIS-93-94
LOGIC & COMPUTATION 74

S.B. Davidson
A.S. Kosky
B. Eckman

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

December 1993

Facilitating Transformations
in a Human Genome Project Database *

S. B. Davidson, A. S. Kosky B. Eckman
Dept. of Computer and Information Science Department of Genetics

University of Pennsylvania Dept. of Computer and Information Science
Philadelphia, PA 19104-6389 University of Pennsylvania
Ernail: susan@cis.upenn. edu, Philadelphia, PA 19 104-6145

kosky@saul. cis. upenn.edu Emoil: eckman@cbil.humgen.upenn.edu

Contact author: Susan B. Davidson, Phone (215) 898-3490, Fax (215) 898-0587

December 8, 1993

Abstract

Human Genome Project databases present a confluence of interesting database challenges:
rapid schema and data evolution, complex data entry and constraint management, and the need
to integrate multiple data sources and software systems which range over a wide variety of models
and formats. While these challenges are not necessarily unique to biological databases, their
combination, intensity and complexity are unusual and make automated solutions imperative.
We illustrate these problems in the context of the Human Genome Database for Chromosome
22 (Chr22DB), and describe a new approach to a solution for these problems, by means of a
deductive language for expressing database transformations and constraints.

1 Introduction

Human Genome Project databases present a confluence of interesting database challenges: rapid
schema and da ta evolution, complex data entry and constraint management, and the need t o
integrate multiple da ta sources and software systems which range over a wide variety of models
and formats. These challenges are common t o laboratory notebook databases in general, within
the Human Genome Project as well as within the broader realm of biological databases. While
these challenges are not necessarily unique t o biological databases, their combination, intensity
and complexity are unusual and make automated solutions imperative. Furthermore, techniques
t o aid in their solution either do not exist or are inadequate in this domain. This paper illustrates
these problems in the context of the database developed a t the Philadelphia Genome Center for

'This research was supported in part by the following grants: NSF IRI9004137, ARO DAAH0493G0, and NIH
P50-HG-00425.

Chromosome 22, and describes a first step to solving what we perceive to be the core of these
problems: a language in which to express data transformations.

The goal of the Human Genome Project (HGP) is to sequence the 24 distinct chromosomes com-
prising the human genome. Each chromosome is composed of a long, double-stranded molecule of
DNA (deoxyribonucleic acid). This double-stranded DNA is made up of complementary pairs of
four different nucleotides or bases (A, G, C , T), arranged like beads on a string. Sequencing DNA
means discovering the exact sequence of A's, C's, T's, and G's on the string. Although there are
techniques for directly sequencing short DNA strings (approximately 400 bases), current methods
are not practical for sequencing the entire genome (3 billion bases) or even a single chromosome
(60-200 million bases) at one time. Consequently, while researchers continue to attempt to develop
faster sequencing technologies, the HGP has set mapping the chromosomes as a less ambitious
intermediate goal. Mapping involves the ordering of identifiable DNA fragments as markers along
the chromosome, and anchoring markers at known positions to serve as landmarks. Genome center
databases typically serve as laboratory notebooks for mapping efforts. The database discussed in
this paper, Chr22DB, is the laboratory notebook for the Philadelphia Genome Center for Chromo-
some 22, located at the University of Pennsylvania and Children's Hospital of Philadelphia.

One of the major problems faced in HPG databases is rapid schema evolution and the result-
ing need to modify existing applications. As in many research efforts, genome centers and other
organizations doing genome-related research are vying for increasingly limited resources. The ur-
gent need to produce data cost-effectively, and its potential application in medical diagnostics and
therapeutics such as gene therapy, combine to produce a fast-paced, high-pressure environment.
Consequently, new and better experimental techniques are constantly being developed and the ex-
perimental data being modeled is constantly changing, forcing evolution of the laboratory notebook
database schema. Rather than having the luxury of a two to three month design and application
development phase, the schema evolution and adaptation of existing applications to the evolving
schema must occur extremely rapidly, since investigators consult the database t o plan and guide
ongoing experimentation. Furthermore, since the direction of future experimentation is based on
existing data, data integrity is crucial. As later sections will illustrate, however, the data is very
complex, hierarchically organized, and contains an unusually large number of links among tables
(inclusion dependencies). This gives rise to a number of complex, non-standard constraints that
need to be specified and enforced in order for the data to be correct.

Another major problem is that access to multiple, heterogeneous remote databases and software
packages is frequently needed to augment the contents of the laboratory notebook databases and
to answer queries posed by researchers. These databases include archival databases, such as the
nucleic acid sequence database, Genbank, the protein sequence data base, PIR [I], the biomedical
bibliographic data base, Medline, and the human genome map data base, GDB [2]; a growing
number of laboratory notebook databases; as well as software systems such as BLAST [3], FASTA
[4], and Staden which perform complex data analysis involving such computational problems as
pattern-matching search and string comparison. However, at the present time there is no industry
standard data model or DBMS for computational biology; these databases therefore include flat
relational databases (Sybase), object-oriented databases (Object Store, Gemstone) and complex-
relational databases (e.g., the National Center for Biotechnology Information's use of the ASN.l
data transmission format as a data storage format [5]), PC- and Macintosh-based databases (4th
Dimension, inter alia). In addition, individual investigators use simple spreadsheet databases such

as Microsoft Excel to meet immediate needs. As an example of how laboratory notebooks incor-
porate data from other sources, in populating Chr22DB (a Sybase database) we imported as much
shared data as possible from other electronic sources, including GDB and other archival databases,
as well as preexisting spreadsheet databases administered by individual investigators. As part of
our collaborations with other genome centers, we have also imported data from Objectstore to
Sybase and vice versa. Importing this data presented significant data transformation challenges.

It should be noted that this heterogeneity in schemas and models within the HGP is likely to
persist. Contrary to standard database dogma, no single conceptual schema is suitable for all ap-
plications: As data complexity increases, different schemas may capture only partial, and perhaps
significantly different views of the data as a whole; as analysis tasks increase in complexity beyond
simple queries, it is often necessary to organize the data to optimize a specific application to achieve
acceptable system performance; as the expressive power of the representation language grows and
the complexity of the data objects increases, the possibilities for describing the same data in a
variety of equivalent and equally valid ways also grows. Similarly, no single data model is univer-
sally superior to all other data models for all applications. Thus, we find numerous independent
structurings of the same or similar information. The GenBank family is a case in point: there is the
"standard" flat-file version with numerous trivial syntactic variants, a relational version developed
at the Los Alamos National Laboratory [6], the ASN.l version developed at NCBI, a relational
version developed from the ASN.l version by the Philadelphia Center for Chromosome 22 [7], and
a t least one knowledge base version, also developed within our group [8], which transforms the data
from a sequence entry view to a biological concept view. Each of these has its own advantages
and disadvantages that include issues of representation and query language expressiveness, and
portability, among others.

Two recent papers underscore the problems that we have been alluding to, and indicate that they
are pervasive to HPG databases:

A recent report of a Department of Energy Informatics "summit" [9] listed a number of simple
queries that were impossible to answer with the current data sources, not because of the
unavailability of the data, but because the sources are distributed among various databases,
programs and structured files, and there is no effective technique for combining these sources.

Goodman [lo] in an appraisal of his attempt to create a genome information system listed
two major issues that he faced: (a) the lack of an adequate query language for the DBMS he
was using; and (b) the fact that the underlying schema was constantly evolving.

An obvious conclusion is that most of these problems would be at least partly solved with a suffi-
ciently expressive query language. However, we believe that there is an important prior problem:
that of transforming data into some form that is understandable by users, a query language, or an
applications program. A fixed query language will not solve the problem of integrating data sources
unless we can also be sure that when a new data source becomes available, we can transform it
into a structure acceptable t o existing queries or applications. The problem of schema or data
evolution calls for flexible tools for rapidly re-mapping databases - again so that they can be used
as input to existing applications. Thus the first issue that we must face is a principled approach to
data transformations: Transformations between schemas in a single data model (as with schema

evolution), between different data models (as with data entry screens, and as in the Genbank family
of databases), or across multiple data models (as in the integration of data from multiple sources).

The purpose of this paper is to describe our approach to specifying data transformations, and
illustrate it using a sample problem of data transformations that has arisen in Chr22DB. The
approach we describe is declarative, a variant of existing proposals [ll, 121. While declarative
query languages (datalog and its extensions) have not yet gained universal acceptance as query
languages, we believe they are the right approach to data transformations.' The reason for this is
that while a data transformation can be thought of as a query, it is one in which the computational
forms used are very simple and whose output is rather large and structurally complex - a whole
database rather than a single relation. Furthermore, it is highly desirable to have the query in a
form that is easy to analyze and to reason about in light of rapid evolution: it is easier to rewrite
and manipulate a declarative program than it is to modify embedded SQL or C code.

The remainder of this paper is organized as follows: Section 2 illustrates a part of Chr22DB and
a data transformation problem that has been encountered. Section 3 describes our transforma-
tion language and shows how it is used to capture the sample problem. We conclude by arguing
how current techniques fail to address the problems we have encountered, and discussing future
research.

2 A Sample Data Transformation in Chr22DB

The data in the archival and laboratory notebook databases for the HPG is sufficiently complex
that even researchers in molecular biology have trouble understanding terms and structures in
schemas they are not already familiar with. For those who know little to nothing about molecular
biology, they are almost completely unintelligible. To understand the sample data transformation
problem encountered in Chr22DB, we must therefore start off by explaining a bit about what is
being modeled and what some of the terms used mean.

2.1 A Databaser's View of the Biological Background

As mentioned in the introduction, the HGP's intermediate goal is mapping: ordering markers
(fragments of DNA) along the chromosome and locating them at known positions. A variety of
techniques are used to anchor markers to specific locations on the chromosome. For the sake of
simplicity, we will consider only one, physical mapping using cloned probes and Sequence Tag Sites
(STS's).

To begin, the chromosome of interest is cut randomly into overlapping pieces of experimentally
manipulable size (50,000-1 million bases). These pieces are then reassembled into a linear ordering
representing their order in the original DNA string. To discover the relative ordering of fragments,
it is crucial to be able to ascertain when the sequence of two pieces of DNA overlaps, that is, when
the pieces come from neighboring sites in the original string. One technique for detecting sequence
overlap between two pieces of DNA is to demonstrate that their sequence contains the sequence of
a third, much shorter fragment, called a probe. The linear ordering on the pieces yields a linear

'It is interesting to note that Goodman also arrived at the same conclusion in [lo].

4

ordering on the probes whose sequence is contained in them, and vice versa. The ordered set of
probes become the desired map landmarks. The landmarks and ordered fragments may then used
to sequence areas of special interest such as regions thought to be related to inheritable disease. For
example, we can divide a fragment of interest into pieces of sequenceable length, sequence them,
and reassemble the fragment; or choose a landmark near the region of interest and sequence from
it into the desired region.

Physical mapping and its relationship to DNA sequence is illustrated in Figure 1. At the top of
this figure, a chromosome is depicted with the banding patterns visible under a microscope, which
themselves function as landmarks at the coarsest level of granularity. Vertical lines denote markers
(probes). Horizontal lines denote larger, overlapping DNA fragments whose sequence contains
marker sequence. Below, the sequence of a tiny substring of DNA is shown.

Figure 1: Physical Mapping of a Chromosome

Two types of probes used in physical mapping are represented in Chr22DB: 1) Cloned probes
and 2) Sequence Tag Sites (STS's). Cloned probes are actual physical reagents stored in freezers,
and STS's are information stored in a database. In what follows, we briefly describe some of the
information maintained about probes by Chr22DB.

Cloned Probes. In cloning, a fragment or interval of human DNA is inserted into carrier or
vector DNA in bacterial or yeast cells. When the host cells are cultured, many exact replicas of
the human DNA are produced, to be used in future experiments. Important data items about a
clone are: the size in kilobases of the inserted DNA; the type of vector used; the insertion sites in
the vector, specified by the enzymes used to cut the vector before inserting the human DNA; the
clone's name, including the laboratory which named it; the clone's chromosomal location (given in
bands, e.g., "22q11.2", which are based on the banding patterns visible under a microscope); and
a cross-reference to the Genome Data Base (GDB), the archival database of the Human Genome
Mapping Project, located a t Johns Hopkins University.

Sequence Tag Sites (STS's). An STS is an interval of DNA defined by a primer pair: a pair of
sequenced nucleic acid intervals used as primers to start a chemical reaction called amplification by
the polymerase chain reaction (P C R amplification). The entire reaction comprises several stages,
each proceeding at a different temperature. An amplification reaction will not occur unless the
primer sequences are found, properly spaced, within the test sequence; therefore, a successful
reaction demonstrates sequence containment . Import ant data items about an STS are: its name,
including the laboratory which named it; the name, sequence, and melting temperature of each of
the primers; the expected size range of the amplified product; the temperature and time required
for each stage of the process (PCR conditions); a cross-reference to GDB; the name of the cloned
probe from which the primers were derived; and the chromosomal location of the site.

2.2 A Sample Database Transformation

The data in Chr22DB comes from a variety of sources: archival databases such as GDB, preexisting
spreadsheet databases, object-oriented laboratory notebook databases from other centers, as well
as directly from experiments being carried out at the center. Importing these sources of information
involve data transformations, and has to date been done largely by hand. In order to simplify the
exposition but illustrate some complexity of structural transformation, we will focus on the direct
data entry performed. While this does not seem particularly glamorous, it should be noted that data
entry is a special case of data transformations, and for our purposes perhaps the best illustration.
It is also one of the transformations which initially motivated our work: When Chr22DB was
started, the schema evolved extremely rapidly, experimental data was produced at an alarming
rate, and there was a backlog of data to be entered. Rewriting the data entry applications was
enormously time consuming since application generator tools could not handle the complexity of
the data involved, and the modification had to be done by hand.

In data entry applications, the data are captured on a screen form that provides a specialized view
of the underlying database. The view and the database may differ widely in structure, and the
application must map between these two schemas. An example of a form used to enter STS lab
notebook data is shown in Figure 2. It consists of a complex relation (STS) with three sub-relations
(Primers, PCR-conditions, Locat ion):

STS(STSname, l ab , GDBlocus, used-here, t e c h l a b , PCR-productsizelow ,
PCR-productsizehigh, polymorphic, probe-type, comments, Primers,
PCR-condit i ons , Locat ion)

Primers(name, sequence, melting temp, pmethod, datepicked, strand)
PCR-condit ions(machine, init-temp, in i t - t ime , denat-t emp, . . ,

f inal-t ime , buffer)
Location(chromosome. s tar tpos i t i on , endposition, u n i t s , v e r i f i e d , l oca t ion ,

notebook , comments)

Since each screen enters a single STS, there will be one row in the STS relation, two rows in the
Primers relation denoting the primer pair, and multiple rows in the PCR-conditions and Location
relations.

To enter the information in the data-entry screen, it must be transformed to the underlying (re-
lational) Chr22DB database. A conceptual (EER) schema of the relevant portion of Chr22DB is

shown in Figure 3; this is merely introduced to convey the linkages between relations rather than
to give a precise semantics of the schema. In this EER schema, Has arcs are many-to-one in the
direction of the arrows; the prefix Mand- on an arc label designates that the relationship is manda-
tory; and ISA* denotes a generalization relationship in which the primary key of the specialization
entity-set differs from the primary key of the generic entity-set.' The relevant relational tables and
attributes for this schema are given below. Uppercase attribute names denote primary keys.

lab (CODE)
names(MATERIAL1D. LAB-CODE, NAME, publicname)
material(ID, material-type)
interval(ID, interval-type)
na-interval(ID, material id , probe-type, is-polym, . . .)
maploc(NA1NTERVAL1DB CHROMOSOME, STARTPOS, ENDPOS, un i t s ,

verifmethod, expt locat ion, notebook, comments)
sequence(ID, na-intervalid, seq-string . . .)
primer (I D , pname , picked-f romna-intervalid, melt ing-temp,

pickaethod, date-picked, strand)
STS(ID, prl-primer-id, pr2-primer-id, PCR-prodsizelo,

PCR-prodsizehi, usedhere, t e c h l a b , comments)
PCR-condit ions (STSID , AMPLJACHINE , ANNEAL-TEMP , initdenat-temp,

ini tdenat-t ime , denat -t emp , denat-t ime , . . .)

In this database transformation a complex relation with nested subrelations is flattened into a
standard relational schema with value-based pointers linking related tables. The atomic attributes
of the top-level screen relation are distributed over 6 relational tables in the target schema: names,
lab , mater ia l , i n t e r v a l , na- interval , and STS. The Primers subrelation is decomposed into 5
target tables: na-int e rva l , i n t e rva l , mater ial , primer, sequence. The two name fields in the
entry screen (STSname and GDB-locus) are mapped to two separate rows in the target names table,
which are linked by the internal identifier of the object being inserted.

In order to accomplish the data transformations, appropriate insert statements must be generated.
The normalized target schema relies on internal system-generated integer identifiers to accomplish
the links among related tables. These identifiers must be generated (primary keys of mater ia l ,
i n t e r v a l , and lab tables) or retrieved (foreign keys in all other tables, e.g., primer ids in the STS
table) when the data are transformed.

To maintain data integrity, the transformed data must conform to the integrity constraints of the
target database. Preeminent are key and inclusion dependency constraints, but more complex
constraints may also hold. For example, each material must have at least one GDB name (i.e.,
names .lab-code = "GDB") and at least one non-GDB name (i.e, names .lab-code # "GDB").

3 A Language for Database Transformations and Constraints

Although there are many choices of languages in which to express data transformations, we believe
that a deductive approach is best. There are several reasons for this, most of which were mentioned

'The schemas in this paper were all drawn using ERDRAW [13].

in the introduction: the language should be declarative, so that transformations are easy t o modify
and reason about; the language should allow expression of structural complexity, since this is more
important than expression of computational complexity; a deductive language requires only a small
number of inference rules to build a complete proof system on which implementations can be based;
and finally, the language should unify transformations and integrity constraints since there is a
significant level of interaction between the two. Not only do constraints play a part in determining
transformations between databases, but a transformation may imply certain constraints on the
source and target database.

Our language is therefore based on Horn-clause logic and has a simple formal semantics, allowing
for formal reasoning about database transformations, constraints and the interactions between the
two. Not only can transformations be expressed in this language, but unambiguous and nonrecur-
sive transformation programs can be implemented using code generators for a variety of database
programming languages and having constraints checked at run time. The proposed code generators
will work in two stages: First rules are converted to a normal form, each rule specifying how a
complete entry for the target database is generated from the source database. The normalised
rules are then converted into code for the appropriate DBMS. This approach means that logical
inferences are performed only once at the rule level, rather than many times at the data level.
Further it is straightforward to re-use the core of the program, allowing easy addaption of the code
generator for a variety of database systems.

In presenting the language, we start by explaining the underlying data model, then giving the
syntax of the language with several examples of constraints and transformation clauses that have
been generated for the data entry screen application described in the previous section. Finally, we
describe what normal forms are, and how they will be used to implement transformation programs.

3.1 Data Model

Since one of our objectives was to design a language which allowed us to describe and implement
transformations between as wide a range of data models as possible, the language is based around a
nested relational data model. The model is similar to that of [14], and allows nested relations, set-
valued attributes and object identity. This is a natural extension of the relational data model, but
also allows us to represent the complex data structures found in the various semantic and object-
oriented data models that are currently gaining popularity. The model also allows the attributes of
records to be either required or optional (not-null or null), a feature that is common in many data
models, and which allows us indirectly to represent variants.

We use Skolem functions to generate object identities as in [12]. Skolem functions can be applied
t o a group of values in order to create an entirely new value, which can then be used as an object
identifier, or as a way of referencing a row in some particular relation from other relations. Our
semantics makes no assumptions about what range of values these Skolem functions should have
other than that they be distinct, though they can easily be implemented using integers or some
other base type. The type system for the language ensures that the values generated by two distinct
Skolem functions can not be confused.

Many established data models incorporate various kinds of constraints as primitives: relational
data models may support keys or other functional dependencies, certain existence decencies and

inclusion constraints, while object oriented databases may support some concept of inheritance
and object identity. While such constraints are often important and useful, there remain many
important dependencies which occur in biological and other databases but do not fall into any
of these categories. Indeed choosing such specific subclasses of dependencies and treating them
separately seems a rather ad hoe approach. We do not make any such class of constraints primitive
in our data model. Instead our language provides a means to express a very general family of
constraints, including but not limited to those mentioned above.

3.2 The Language

Our deductive language allows independent access to the the individual components of a relation
or tuple, and variables can be bound to simple values, tuples in a relation or entire relations
(sets of tuples). Individual clauses describe one conceptual part of a transformation, rather than
describing the construction of an entire tuple in a relation, thus making transformation programs
easy to understand and maintain. In this respect it differs from established logic-based database
query languages, such as Datalog and ILOG, in which relation names are used as predicates, and
variables are bound to base values only; a practice which becomes awkward when relations with
many attributes are being considered. To some extent this language could be considered to be
an extension of ILOG ([12]) to nested relations, or as a restriction of IQL ([Ill). However such
comparisons are difficult since the nature of the implementations and intended purposes of these
languages are very different.

Types in our language are taken to be regular trees with nodes marked either by () (tuple types),
{} (set types), or some base type such as int, string and so on. {)-nodes must have exactly one
outgoing edge, while ()-nodes must have one or more outgoing edges, each marked with an attribute
label taken from a set A, and also marked as either required or optional. Nodes marked by a base
type have no outgoing edges.

A type tree with a {}-node at the root represents a set type, while one with a ()-node at the root
represents a tuple type. A relation is considered to be a set of tuples: a relation type has a {}-node
at the root with outgoing edge going to a ()-node. So a relation with attributes A1,. . . , ak, of types
tl, . . . , tk respectively, would have the form:

In a pa t relation type the outgoing edges from the ()-node go to base type nodes.

9

As well as individual relations, we consider databases as a whole to have types. A database type
will have a ()-node at the root with outgoing edges labeled by all the names of the relations or
classes in the database and going to the types of those relations. For example a database type for
the database whose schema is shown in Figure 3, with relations such as STS, primer, sequence
and na- in te rva l , will be a tuple type with attributes STS, primer and so on, each of which would
go to an appropriate relation type.

Our language is strongly typed, in that, given types for the source and target databases of a
transformation, a unique type can be inferred for each term in a transformation program.

Terms a n d Atomic Formulae

The main syntactic elements of our language are terms, ranged over by P, Q, . . ., and atoms, ranged
over by 4, +, Terms represent values in a database, while atoms are the basic building blocks
of formulae. An atom represents one simple statement about some values. They are defined by the
following abstract syntax:

P ::= Src - source database
I Tgt - target database
I C - constant
I x - variable
a - attribute
1 P.a - projection
I f (PI, . . . , P,,) - Skolem function
I P , . . . ,) - compound term

and
ip ..- ..- P-Q - equality

I P#Q - inequality
I PiQ - set-inclusion
(P ~ Q I P ~ Q - arithmetic predicates
I Undef(a) - undefined optional attribute
1 False - contradiction

Here the Src and Tgt represent the source and target databases in a transformation, which are
regarded as tuples of relations. Constants are always of base type, while variables can be bound to
sets and tuples as well as to values of base type.

If P is a term representing a tuple, then P.a is the value of the a attribute of the tuple (if it is
defined).

A compound term of the form P(&, . . . , 4,) has the same value as the term P. However it carries
with it the atoms . . ,4, which are to be interpreted relative to P : so any attribute term,
a, occurring in one of 41,. . ., #, (but not in any smaller compound term) is evaluated as P.a.
An attribute term, a, must occur within some compound term. The use of compound terms and
attribute terms can be regarded as a notational shorthand, but are necessary in order to group
together atoms describing a single tuple, and to make the syntax comprehensible.

Atoms are built using the binary predicates = (equality), # (inequality) and E (set inclusion),
and also the Undef predicates which check for the definedness of an optional attribute of a tuple.
Also there is a nullary predicate False which represents an error situation, and which is used in
checking the validity of a transformation. In an implementation occurrences of False would have
some message attached to them to indicate the source of an error.

For example an atom X E STS would mean that X is tuple in the relation STS. We could use a
compound term to put further restrictions on X:

X (i d = I, prl-primer-id = Pl, pr2-primer-id = P2) E Tgt.STS

means that X is a tuple in the target relation STS with i d attribute I, prl-primer-id attribute
P1 and pr2-primer-id attribute P2.

Clauses

A clause has the form
$ 41,...,4n

The atom $ is called the head of the clause, while &, . . . , 4z form the body of the clause.

Not all syntactically correct clauses are meaningful. A clause is said to be well-formed for source
database type T,,, and target database type Ttgt if it is well-typed with respect to T,,, and Ttgt,
meaning that all the types of terms occurring in the clause make sense when we take the term Src
to have the type T,,, and Tgt to have the type Ttgt, and it is range-restricted. The concept of range-
restriction is taken from Datalog ([15]), and means that each variable in the clause is restricted to
range over some finite set of values. The formal definitions of these restrictions, together with a
more detailed presentation of the semantics of the language, can be found in [16]. All the clauses
considered in this paper will be well-formed for the relevant types.

Suppose a clause $ t 41, . . . , & is well-formed for types T,,, and Ttgt. The meaning of the clause
is that if, for some instantiation of the variables in the body, 41,. . . ,4, are true, then there is an
instantiation of the remaining variables in the head of the clause such that $ is also true. Clearly
the truth of a clause is dependent on the values of the source and target databases for which it is
being evaluated. A pair of database values p and v, of types T,,, and Ttgt respectively, are said to
satisfy a clause if it is true when we take the term Src to denote the value p and Tgt to denote v.

For example the clause

X = Y t X (i d = I) E Tgt.STS, Y (i d = I) E Tgt.STS

says that, for any two tuples X and Y in the relation STS, if X and Y have the same value, I,
on their i d attributes then they are equal. In other words the attribute i d is a key for STS. This
clause is an example of a constraint: a clause which concerns only one database rather than the
connection between a pair of databases.

The terms in a clause can be classified as source terms which denote values in the source database,
and target terms which denote values in the target database. A target constraint is then a clause
containing only target terms, while a source constraint contains only source terms. Constraints

on the target database are tested after a transformation is carried out, and, if the constraints
are violated, the transformation is rolled back and an appropriate error is reported to the user.
Constraints on the source database are not interesting for the purpose of transformations, since the
source database must already have been populated.

We will now look at some more examples of constraints for the database shown in Figure 3. Firstly
an inclusion dependency, that for every primer i d in the STS table there is a corresponding entry
in the primer table:

Next that each material has exactly one GDB name:

X = Y + X(materia1-id = M, lab-code = "GDB") E Tgt.names,

Y(mater ia l3d = M, lab-code = "GDB") E Tgt.names

And, finally, that a public name cannot be a GDB name:

False + (publicname = "Yes7', lab-code = "GDB") E Tgt.names

Note that the last two of these constraints could not be expressed using the traditional functional
and existence dependencies for the relational model.

In determining a transformation between two databases, we are interested in a special class of
clauses called transformation clauses. A transformation clause is one which contains only target
terms in its head, and which does not contain any Undef atoms for target terms. Note that a clause
can be both a transformation clause and a target constraint. Indeed target constraints will often
play an important part in determining a transformation.

For example, the following is a transformation clause generating part of the STS relation of the
schema shown in Figure 3 from the data entry screen shown in Figure 2:

(i d = fSTS(PI1 , PI2) ,
prl-primer-id = PI1,
pr2-primer-id = P12,
i d = f-STS(PI1, PI2) ,
PCR-prodsize-lo = SL,
PCR-prod-sizehi = SH) E Tgt.STS
t ((pname = PN1) E primer_group,

(pname = PN2) E primer_group,
PCR-prod-size-lo = SL,
PCR-prod-size-hi = S H) E Src.STS-screen,

(pname = P N 1, i d = PI1) E Tgt.primer
(pname = PN2, i d = P12) E Tgt.primer
PI1 5 P I 2

Notice that the Skolem function f-STS is used to generate ids for the STS relation. Also notice that
the body of this clause makes use of the target database relation primer in order to look up the

primer-id's. The tuples for this relation are in turn generated by another clause:

(i d = f -primer(PN),
pname = PN,
melt ing-temp = MT,
pickrmethod = PM,
date-picked = DP,
s t r and = ST) E Tgt.primer
t ((pname = P N ,

melting-temp = MT,
pmethod = PM,
date-picked = DP,
s t r and = ST) E primers) E Src.STSscreen

We will see in Section 3.3 that it is necessary to unfold clauses like this, in order to get a clause
that refers only to source relations in its body and only to target relations in its head. Clauses of
this form can be processed in one-pass without referring to the target database.

Transformation Programs

A transformation program, from database type TsTc to database type Ttgt, consists of a set A of
transformation clauses that are well formed for T,,, and Ttgt.

If A is a transformation program from T,,, to Ttgt, and p is a database value of type T,,, and v
is a database value of type Ttgt, then v is said to be a A-transformation of p iff, for each clause
C E A, p and v satisfy C.

A transformation program A from T,,, to Ttgt is said to be complete iff, for any database value
p of type T,,,, if there exists a A-transformation of p then there is a unique smallest such trans-
formation. The smallest A-transformation is important because it represents the data generated
by the transformation program A from the source database: in general a transformation program
will imply that certain data should be in the target database but does not exclude other additional
data from being in the database as well. If a transformation program is complete then there is no
ambiguity about what this smallest transformation is. It is these unique smallest transformations
that we wish to compute.

We are particularly interested in transformations that can be done in "one pass": that is transfor-
mations that can be carried out by reading the source database and inserting values into the target
database, as opposed to recursive transformations in which data which is inserted in to the target
database is then used to create more data for the target database. This means that we restrict
our attention t o non-recursive transformation programs. However the problem of testing whether
a transformation program is recursive in our nested relational model is a little more delicate than
the problem for the flat relational model and Datalog. Details can be found in [16].

3.3 Normal Forms

We now limit our attention to the special case of database transformations where the target database
is flat relational, as is the case with our data enty application. In this case, we first convert a
transformation program into a normal form, which can in turn easily be converted into a program
in some (non-recursive) query language.

Suppose our target database contains a relation R. A transformation clause is said to be in normal
fomz if it has the form

where

1. a l , . . . , ak are the required attributes of the relation R, and bl, . . . , bl are a subset of the
optional attributes of the relation R,

2. the atoms 61,. . . ,+, contain only source terms and constants, and

3. the terms PI,. . . , Pk, 91,. . . , Ql are built using only variables, constant symbols and function
symbols (so no attribute labels).

A transformation program is said to be in normal form if all its clauses are in normal form.

We have an algorithm [16] which given a non-recursive transformation program for a flat relational
target database type, if the program is complete will return an equivalent program in normal form,
and if the program is not complete will fail, reporting an error. This algorithm forms the central
part of our code generators for transformation programs. If the source database type is also flat
relational then clauses in normal form can be directly translated into a join-and-project expression
in relational calculus or a "select-from-where" expression in SQL. If the source database is not
flat-relational then normal form clauses can be converted into CPL ([17, 181) or some other suitable
query language.

The normal-form clauses are built by combining and unfolding clauses of a transformation, in order
to form clauses which provide a complete description of a tuple in the target database in terms
of the elements of the source database. Because our transformation programs are not recursive it
follows that this process will terminate. If it is possible to build only a partial description of a tuple
for some relation, then it follows that the transformation program is not complete.

For example a normal-form clause for the STS table in the transformation from the STS data-entry

screen (Figure 2) to Ch22DB (Figure 3) formed from the clauses in section 3.2 would be:

(i d = f -STS(PIl, PI2) ,
prl-primer-id = PI1,
pr2-primer-id = PI2 ,
PCR-prod-sizelo = SL,
PCR-prod-sizehi = SH,
used-here = UH,
tech-lab = TL) E Tgt.STS

t ((pname = PN1) E primers,
(pname = PN2) E primers,
u sedhe re = UH, t e c h l a b = TL,
PCR-prodsize-lo = SL,
PCR-prod-sizehi = S H) E Src.STS-screen,

PI1 = f -primer(PNl),
P I 2 = f_primer(PN2),
PI1 < P I 2

Notice that this clause gives a complete description of a tuple in the STS relation, and does not
call on any of the target relations in the body of the clause. In particular the calls to the primer
relation which were in the body of the clause in section 3.2 have been replaced by applications of
the Skolem function f -primer.

3.4 Transformation Tools

To automate the transformation process, we are planning to implement transformations using
code-generators which convert transformation programs into programs in a variety of database
programming languages. Our initial efforts will be to write code-generators for SYBASE and CPL
([17]). However the core of the tools will be the convert-to-normal-form algorithm, and further
interfaces to generate code from normal-forms into a variety of other languages can be constructed
easily at a later stage. SYBASE applications are the most immediate requirement for Chr22DB,
while CPL seems like an ideal target language due to its ability to handle complex datatypes, and
to connect t o a wide variety of heterogeneous database systems.

Initially we see transformation programs coming from a combination of user input and meta-data
stored in a database. For example, SYBASE uses meta-relations to store type information and
key constraints for the relations in a database, while schema-design tools, such as ER-draw and
SDT ([13]), record a variety of constraints on a schema that may not be reflected by the underlying
DBMS. By accessing this information directly, we avoid the requirement for the user to enter it all by
hand. Ultimately we would like to build graphical schema-manipulation tools which automatically
generate the relevant constraints and transformation clauses for a schema evolution.

4 Conclusions

Human Genome Project databases present many difficult database management problems. The
complexity of the data structures involved together with the frequency of schema evolutions and
the large number of incompatible heterogeneous databases with which data must be exchanged mean
that existing solutions - including those for schema evolution and integrated access to heterogeneous
databases - are inadequate.

For example, although much has been written on the subject of schema evolution (see [19]), existing
works concentrate on the problem of manipulating database schemas, and in some cases on the co-
existence of instances for old and new schemas, rather than on the corresponding transformations
of the underlying data. However, maintaining distinct instances for each incarnation of a rapidly
evolving database schema is not a practical solution, and it is essential to have all the previously
entered data available for the current schema. Clearly re-entering all the data from scratch is not
a viable option, and so it is necessary to transform data from the old to the new schema.

Some of these issues have also been addressed in [20], although in the context of database inte-
gration and for a more limited data model. Our proposed language allows us to specify database
transformations in a clear and formal manner, allowing for formal analysis and reasoning, and then
implement the transformation for a variety of database systems by means of a code generator.
In addition our language allows for the specification of constraints that arise from the complex
data structures necessary for representing Human Genome data, which are not representable using
established constraint languages.

Related work also includes that of schema merging in heterogeneous databases (see [21, 22, 23,
24, 251). Central to all of these approaches is the need to have some user manipulation of the
underlying schemas to indicate how the underlying databases are related to the merged schema.
To our knowledge, there has been no principled, systematic approach proposed to do this other
than our proposed constraint language. Note that our approach can be used to define a merged
schema: each of the underlying schemas is a source schema, and the merged schema is the target
schema.

There are many areas of future research, some of which we have already indicated, such as the
completion of normal form algorithms for target databases which are not flat relational; the imple-
mentation of code generators from normal form transformation programs to languages of interest
(initially SYBASE, then a language for collection types called CPL); and the eventual development
of a window driven interface for specifying transformation programs.

Another issue is that of composing transformations: while some transformations will be applied
only once, many transformation programs will be applied repeatedly. The most frequent of these
is probably data-entry transformation programs; others involve transformation programs which
import data from other archival databases, such as GDB, which are run routinely in order to reflect
the continuous updates of the archival databases. We do not want to rewrite these transformation
programs every time there is a minor schema evolution on the Chromosome 22 database, hence the
need to compose the transformations.

To see why this is a composition of transformations, recall that a schema evolution is reflected by
an underlying database transformation, taking data for the first schema and transforming it into

data for the second, updated schema. Since our data-entry transformation programs generate data
for the first schema, we like to be able to apply the schema-update transformation in order to get
data for the current schema. Alternatively, we would like a way to automatically incorporate the
schema changes into our existing transformation programs in order to come up with transformation
programs which target the new schema.

Unfortunately simple composition will not always be possible. A transformation will often imply
constraints on its source database which are not incorporated in the source database schema. While
these constraints must be satisfied in order for the transformation to go through, we can not be
sure that new data generated for the source database will continue to satisfy these constraints.
The problem is then one of determining what constraints are implied on a source database by a
transformation, and then checking that these constraints will continue to be satisfied by new data
generated for that source database. This interaction of transformations and constraints is one we
believe to be very important, and any tools that could help automate the process will be useful.

We have currently completely specified the data entry transformation, and have partially specified
a transformation from another archival genomic database, GDB, to Chr22DB.3 Our experience is
that the approach is extremely useful, since the relationships between structures in the source and
target is clearly indicated in the clauses of the program. Knowing first-hand how laborious it was
to transform SYBASE code for data entry as Chr22DB evolved, this is an extremely important
practical gain. It is also interesting to observe that while declarative (deductive) query languages
have not gained universal acceptance as query languages, this is one arena in which we believe they
will play a central role.

Acknowledgements: We are indebted to Peter Buneman, Chris Overton and David Searles for
their help and advise in developing and presenting these ideas. The really cool postcript diagram
in Figure 1 is also due to David Searles.

References

[I] W. Barker, D. George, L. Hunt, and J. Garavelli, "The PIR Protein Sequence Database,"
Nucleic Acids Res, vol. 19, pp. 2231-2236, 1991.

[2] P. Pearson, "The genome data base (GDB)- a human genome mapping repository," Nucleic
Acids Res, vol. 19, no. 2237-2239, 1991.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment
search tool," Journal of Molecular Biology, vol. 215, pp. 403-410, 1990.

[4] W. R. Pearson, "Rapid and Sensitive Sequence Comparison with FASTP and FASTA," Proc.
Natl. Acad. Sci. U.S.A., vol. 85, pp. 2444-2448, 1990.

[5] NCBI Staff, "ENTREZ: Sequences Users's Guide," Tech. Rep. Release 1.0, National Center
For Biotechnology Information, National Library of Medicine, Bethesda, MD, 1992.

3For reasons of complexity and space, this example was not included in the paper.

[6] M. J. Cinkosky, J. Fickett, D. Nelson, and T . G. Marr, "The Restructuring of GenBank," Oct
1987.

[7] K. Hart, D. B. Searls, and G. C. Overton, "SORTEZ: A relational translation of NCBI's
ASN.l database." Submitted for publication to CABIOS 12/16/92., 1993.

[8] G . C. Overton, J. Aaronson, J. Haas, and J. Adams, "QGB: A system for querying sequence
database fields and features," Computational Biology, 1994. Accepted for publication.

[9] "Meeting Report - DOE Informatics Summit." Unpublished report available via ftp, April
1993.

[lo] N. Goodman, S. Rozen, and L. Stein, "Requirements for a deductive query language in
the mapbase genome-mapping database," in Proc. Workshop on Programming with Logic
Databases, Vancouver, BC, October 1993.

[ll] S. Abiteboul and P. Kanellakis, L'Object identity as a query language primitive," in Proceedings
of ACM SIGMOD Conference on Management of Data, (Portland, Oregon), pp. 159-173,1989.

[12] R. Hull and M. Yoshikawa, "ILOG: Declarative creation and manipulation of object identi-
fiers," in Proceedings of International Conference on Very Large Data Bases, pp. 455-468,
1990.

[13] E. Szeto and V. M. Markowitz, "Erdraw 4.0: A graphical editor for extended entity-relationship
schemas. reference manual," Tech. Rep. LBL-PUB-3084, Lawrence Berkeley Laboritory,
Berkeley, California, 1993.

[14] S. Abiteboul and C. Beeri, "On the power of languages for the manipulation of complex
objects," in Proceedings of International Workshop on Theory and Applications of Nested
Relations and Complex Objects, (Darmstadt), 1988. Also available as INRIA technical report
846.

[15] J. D. Ullman, Principles of Database and Knowledgebase Systems 11: The New Technologies.
Rockvill, MD 20850: Computer Science Press, 1989.

[16] A. S. Kosky, "A language for database transformations and constrains." Manuscript available
from author a t koskyQsau1. c i s .upem. edu, 1993.

[17] L. Wong, "Querying nested collections: A dissertation proposal." Manuscript available from
limsoonQsaul . c i s .upem. edu, August 1993.

[18] V. Breazu-Tannen, P. Buneman, and L. Wong, "Naturally embedded query languages," in
LNCS 64 6: Proceedings of 4th International Conference on Data base Theory, Berlin, Ger-
many, October, 1992 (J . Biskup and R. Hull, eds.), pp. 140-154, Springer-Verlag, October
1992. Available as UPenn Technical Report MS-CIS-92-47.

[19] J. F. Roddick, "Schema evolution in database systems - an annotated bibliography," SIG-
MOD Record, vol. 21, pp. 35-40, December 1992.

[20] S. Widjojo, D. S. Wile, and R. Hull, "Worldbase: A new approach to sharing distributed
information," tech. rep., USC/Information Sciences Institute, February 1990.

[21] A. Motro, "Superviews: Virtual integration of multiple databases," IEEE Tmnsactions on
Software Engineering, vol. SE-13, pp. 785-798, July 1987.

[22] A. Sheth, J. Larson, J. Cornellio, and S. Navethe, "A tool for integrating conceptual schemas
and user views," in Proceedings of 4th International Conference on Data Engineering, pp. 176-
183, 1988.

[23] S. Navathe, R. Elmasri, and J. Larson, "Integrating user views in database design," IEEE
Computer, vol. 19, pp. 50-62, January 1986.

[24] C. Batini, M. Lenzerini, and S. Navathe, "A comparative analysis of methodolgies for database
schema integration," ACM Computing Surveys, vol. 18, pp. 323-364, December 1986.

[25] A. Sheth and J. Larson, "Federated database systems for managing distributed heterogeneous
and autonomous databases," ACM Computing Surveys, vol. 22, pp. 183-236, September 1990.

I jun 28 lgg3

CHROMOSOME 22 GENOME CENTER ST5 DATA I
I I STS name R32 BUDARF i I
I I lab

GDB locus 0225259 DNA Segment, single copy probe R32

I I Used here Y Tech Lab BUDARF I I
PCR product size Ibp) 141 141 Polymorphic N Probe type ANONYM3US

low high
Comments

x

Name Sequence (5' to 3')
CACCATCTGCTGGTGCAG
GGGGATTGATAGAATTAAGCCC

Melting temp method Date picked Strand
56 LANDER 11/03/92 RV
55 LANDER 12/15/92 fW

PCR CONDITIONS

PCR Initial.. Denature. Anneal... Extend ... Final.. . .
Machine temp time temp time temp time temp time Cycles temp time Buffer
PCR-9600 95 120 94 15 55 15 72 82 30 72 420 1.5 MqCl2

I I Chr Start position End position Units Verified Location Notebook Comments
22 Qll. 1 Qll.2 BANDS SO BLOT BUDARF

I

Figure 2: STS Data Entry Screen

Figure 3: Schema of Target Database for STS's.

CHROMOSOMAL LOCATION I

	Facilitating Transformations in a Human Genome Project Database
	Recommended Citation

	Facilitating Transformations in a Human Genome Project Database
	Abstract
	Comments

	tmp.1184251319.pdf.Cl7Hp

