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Abstract 

Human Genome Project databases present a confluence of interesting database challenges: 
rapid schema and data evolution, complex data entry and constraint management, and the need 
to integrate multiple data sources and software systems which range over a wide variety of models 
and formats. While these challenges are not necessarily unique to biological databases, their 
combination, intensity and complexity are unusual and make automated solutions imperative. 
We illustrate these problems in the context of the Human Genome Database for Chromosome 
22 (Chr22DB), and describe a new approach to a solution for these problems, by means of a 
deductive language for expressing database transformations and constraints. 

1 Introduction 

Human Genome Project databases present a confluence of interesting database challenges: rapid 
schema and da ta  evolution, complex data  entry and constraint management, and the need t o  
integrate multiple da ta  sources and software systems which range over a wide variety of models 
and formats. These challenges are common t o  laboratory notebook databases in general, within 
the Human Genome Project as well as within the broader realm of biological databases. While 
these challenges are not necessarily unique t o  biological databases, their combination, intensity 
and complexity are unusual and make automated solutions imperative. Furthermore, techniques 
t o  aid in their solution either do not exist or are inadequate in this domain. This paper illustrates 
these problems in the context of the database developed a t  the Philadelphia Genome Center for 

'This research was supported in part by the following grants: NSF IRI9004137, ARO DAAH0493G0, and NIH 
P50-HG-00425. 



Chromosome 22, and describes a first step to solving what we perceive to be the core of these 
problems: a language in which to express data transformations. 

The goal of the Human Genome Project (HGP) is to sequence the 24 distinct chromosomes com- 
prising the human genome. Each chromosome is composed of a long, double-stranded molecule of 
DNA (deoxyribonucleic acid). This double-stranded DNA is made up of complementary pairs of 
four different nucleotides or bases (A, G, C ,  T), arranged like beads on a string. Sequencing DNA 
means discovering the exact sequence of A's, C's, T's, and G's on the string. Although there are 
techniques for directly sequencing short DNA strings (approximately 400 bases), current methods 
are not practical for sequencing the entire genome (3 billion bases) or even a single chromosome 
(60-200 million bases) at  one time. Consequently, while researchers continue to attempt to  develop 
faster sequencing technologies, the HGP has set mapping the chromosomes as a less ambitious 
intermediate goal. Mapping involves the ordering of identifiable DNA fragments as markers along 
the chromosome, and anchoring markers at known positions to serve as landmarks. Genome center 
databases typically serve as laboratory notebooks for mapping efforts. The database discussed in 
this paper, Chr22DB, is the laboratory notebook for the Philadelphia Genome Center for Chromo- 
some 22, located at the University of Pennsylvania and Children's Hospital of Philadelphia. 

One of the major problems faced in HPG databases is rapid schema evolution and the result- 
ing need to  modify existing applications. As in many research efforts, genome centers and other 
organizations doing genome-related research are vying for increasingly limited resources. The ur- 
gent need to  produce data cost-effectively, and its potential application in medical diagnostics and 
therapeutics such as gene therapy, combine to produce a fast-paced, high-pressure environment. 
Consequently, new and better experimental techniques are constantly being developed and the ex- 
perimental data being modeled is constantly changing, forcing evolution of the laboratory notebook 
database schema. Rather than having the luxury of a two to three month design and application 
development phase, the schema evolution and adaptation of existing applications to the evolving 
schema must occur extremely rapidly, since investigators consult the database t o  plan and guide 
ongoing experimentation. Furthermore, since the direction of future experimentation is based on 
existing data, data integrity is crucial. As later sections will illustrate, however, the data is very 
complex, hierarchically organized, and contains an unusually large number of links among tables 
(inclusion dependencies). This gives rise to a number of complex, non-standard constraints that 
need to  be specified and enforced in order for the data to be correct. 

Another major problem is that access to multiple, heterogeneous remote databases and software 
packages is frequently needed to  augment the contents of the laboratory notebook databases and 
to answer queries posed by researchers. These databases include archival databases, such as the 
nucleic acid sequence database, Genbank, the protein sequence data base, PIR [I], the biomedical 
bibliographic data base, Medline, and the human genome map data base, GDB [2]; a growing 
number of laboratory notebook databases; as well as software systems such as BLAST [3], FASTA 
[4], and Staden which perform complex data analysis involving such computational problems as 
pattern-matching search and string comparison. However, at  the present time there is no industry 
standard data model or DBMS for computational biology; these databases therefore include flat 
relational databases (Sybase), object-oriented databases (Object Store, Gemstone) and complex- 
relational databases (e.g., the National Center for Biotechnology Information's use of the ASN.l  
data transmission format as a data storage format [5]), PC- and Macintosh-based databases (4th 
Dimension, inter alia). In addition, individual investigators use simple spreadsheet databases such 



as Microsoft Excel to meet immediate needs. As an example of how laboratory notebooks incor- 
porate data from other sources, in populating Chr22DB (a  Sybase database) we imported as much 
shared data as possible from other electronic sources, including GDB and other archival databases, 
as well as preexisting spreadsheet databases administered by individual investigators. As part of 
our collaborations with other genome centers, we have also imported data from Objectstore to 
Sybase and vice versa. Importing this data presented significant data transformation challenges. 

It should be noted that this heterogeneity in schemas and models within the HGP is likely to 
persist. Contrary to standard database dogma, no single conceptual schema is suitable for all ap- 
plications: As data complexity increases, different schemas may capture only partial, and perhaps 
significantly different views of the data as a whole; as analysis tasks increase in complexity beyond 
simple queries, it is often necessary to organize the data to optimize a specific application to  achieve 
acceptable system performance; as the expressive power of the representation language grows and 
the complexity of the data objects increases, the possibilities for describing the same data in a 
variety of equivalent and equally valid ways also grows. Similarly, no single data model is univer- 
sally superior to  all other data models for all applications. Thus, we find numerous independent 
structurings of the same or similar information. The GenBank family is a case in point: there is the 
"standard" flat-file version with numerous trivial syntactic variants, a relational version developed 
at the Los Alamos National Laboratory [6], the ASN.l version developed at NCBI, a relational 
version developed from the ASN.l version by the Philadelphia Center for Chromosome 22 [7], and 
a t  least one knowledge base version, also developed within our group [8], which transforms the data 
from a sequence entry view to  a biological concept view. Each of these has its own advantages 
and disadvantages that include issues of representation and query language expressiveness, and 
portability, among others. 

Two recent papers underscore the problems that we have been alluding to, and indicate that they 
are pervasive to  HPG databases: 

A recent report of a Department of Energy Informatics "summit" [9] listed a number of simple 
queries that were impossible to answer with the current data sources, not because of the 
unavailability of the data, but because the sources are distributed among various databases, 
programs and structured files, and there is no effective technique for combining these sources. 

Goodman [lo] in an appraisal of his attempt to create a genome information system listed 
two major issues that he faced: (a) the lack of an adequate query language for the DBMS he 
was using; and (b) the fact that the underlying schema was constantly evolving. 

An obvious conclusion is that most of these problems would be at  least partly solved with a suffi- 
ciently expressive query language. However, we believe that there is an important prior problem: 
that of transforming data into some form that is understandable by users, a query language, or an 
applications program. A fixed query language will not solve the problem of integrating data sources 
unless we can also be sure that when a new data source becomes available, we can transform it 
into a structure acceptable t o  existing queries or applications. The problem of schema or data 
evolution calls for flexible tools for rapidly re-mapping databases - again so that they can be used 
as input to existing applications. Thus the first issue that we must face is a principled approach to 
data transformations: Transformations between schemas in a single data model (as with schema 



evolution), between different data models (as with data entry screens, and as in the Genbank family 
of databases), or across multiple data models (as in the integration of data from multiple sources). 

The purpose of this paper is to  describe our approach to specifying data transformations, and 
illustrate it using a sample problem of data transformations that has arisen in Chr22DB. The 
approach we describe is declarative, a variant of existing proposals [ll, 121. While declarative 
query languages (datalog and its extensions) have not yet gained universal acceptance as query 
languages, we believe they are the right approach to data transformations.' The reason for this is 
that while a data transformation can be thought of as a query, it is one in which the computational 
forms used are very simple and whose output is rather large and structurally complex - a whole 
database rather than a single relation. Furthermore, it is highly desirable to  have the query in a 
form that is easy to  analyze and to reason about in light of rapid evolution: it is easier to rewrite 
and manipulate a declarative program than it is to modify embedded SQL or C code. 

The remainder of this paper is organized as follows: Section 2 illustrates a part of Chr22DB and 
a data transformation problem that has been encountered. Section 3 describes our transforma- 
tion language and shows how it is used to  capture the sample problem. We conclude by arguing 
how current techniques fail to  address the problems we have encountered, and discussing future 
research. 

2 A Sample Data Transformation in Chr22DB 

The data in the archival and laboratory notebook databases for the HPG is sufficiently complex 
that even researchers in molecular biology have trouble understanding terms and structures in 
schemas they are not already familiar with. For those who know little to  nothing about molecular 
biology, they are almost completely unintelligible. To understand the sample data transformation 
problem encountered in Chr22DB, we must therefore start off by explaining a bit about what is 
being modeled and what some of the terms used mean. 

2.1 A Databaser's View of the Biological Background 

As mentioned in the introduction, the HGP's intermediate goal is mapping: ordering markers 
(fragments of DNA) along the chromosome and locating them at known positions. A variety of 
techniques are used to anchor markers to specific locations on the chromosome. For the sake of 
simplicity, we will consider only one, physical mapping using cloned probes and Sequence Tag Sites 
(STS's). 

To begin, the chromosome of interest is cut randomly into overlapping pieces of experimentally 
manipulable size (50,000-1 million bases). These pieces are then reassembled into a linear ordering 
representing their order in the original DNA string. To discover the relative ordering of fragments, 
it is crucial to  be able to ascertain when the sequence of two pieces of DNA overlaps, that is, when 
the pieces come from neighboring sites in the original string. One technique for detecting sequence 
overlap between two pieces of DNA is to demonstrate that their sequence contains the sequence of 
a third, much shorter fragment, called a probe. The linear ordering on the pieces yields a linear 

'It is interesting to  note that Goodman also arrived at the same conclusion in [lo]. 
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ordering on the probes whose sequence is contained in them, and vice versa. The ordered set of 
probes become the desired map landmarks. The landmarks and ordered fragments may then used 
to sequence areas of special interest such as regions thought to be related to inheritable disease. For 
example, we can divide a fragment of interest into pieces of sequenceable length, sequence them, 
and reassemble the fragment; or choose a landmark near the region of interest and sequence from 
it into the desired region. 

Physical mapping and its relationship to DNA sequence is illustrated in Figure 1. At the top of 
this figure, a chromosome is depicted with the banding patterns visible under a microscope, which 
themselves function as landmarks at the coarsest level of granularity. Vertical lines denote markers 
(probes). Horizontal lines denote larger, overlapping DNA fragments whose sequence contains 
marker sequence. Below, the sequence of a tiny substring of DNA is shown. 

Figure 1: Physical Mapping of a Chromosome 

Two types of probes used in physical mapping are represented in Chr22DB: 1) Cloned probes 
and 2) Sequence Tag Sites (STS's). Cloned probes are actual physical reagents stored in freezers, 
and STS's are information stored in a database. In what follows, we briefly describe some of the 
information maintained about probes by Chr22DB. 

Cloned Probes. In cloning, a fragment or interval of human DNA is inserted into carrier or 
vector DNA in bacterial or yeast cells. When the host cells are cultured, many exact replicas of 
the human DNA are produced, to be used in future experiments. Important data items about a 
clone are: the size in kilobases of the inserted DNA; the type of vector used; the insertion sites in 
the vector, specified by the enzymes used to cut the vector before inserting the human DNA; the 
clone's name, including the laboratory which named it; the clone's chromosomal location (given in 
bands, e.g., "22q11.2", which are based on the banding patterns visible under a microscope); and 
a cross-reference to  the Genome Data Base (GDB), the archival database of the Human Genome 
Mapping Project, located a t  Johns Hopkins University. 



Sequence Tag Sites (STS's). An STS is an interval of DNA defined by a primer pair: a pair of 
sequenced nucleic acid intervals used as primers to start a chemical reaction called amplification by 
the polymerase chain reaction ( P C R  amplification). The entire reaction comprises several stages, 
each proceeding at a different temperature. An amplification reaction will not occur unless the 
primer sequences are found, properly spaced, within the test sequence; therefore, a successful 
reaction demonstrates sequence containment . Import ant data items about an STS are: its name, 
including the laboratory which named it; the name, sequence, and melting temperature of each of 
the primers; the expected size range of the amplified product; the temperature and time required 
for each stage of the process (PCR conditions); a cross-reference to GDB; the name of the cloned 
probe from which the primers were derived; and the chromosomal location of the site. 

2.2 A Sample Database Transformation 

The data in Chr22DB comes from a variety of sources: archival databases such as GDB, preexisting 
spreadsheet databases, object-oriented laboratory notebook databases from other centers, as well 
as directly from experiments being carried out at  the center. Importing these sources of information 
involve data transformations, and has to date been done largely by hand. In order to simplify the 
exposition but illustrate some complexity of structural transformation, we will focus on the direct 
data entry performed. While this does not seem particularly glamorous, it should be noted that data 
entry is a special case of data transformations, and for our purposes perhaps the best illustration. 
It is also one of the transformations which initially motivated our work: When Chr22DB was 
started, the schema evolved extremely rapidly, experimental data was produced at an alarming 
rate, and there was a backlog of data to  be entered. Rewriting the data entry applications was 
enormously time consuming since application generator tools could not handle the complexity of 
the data involved, and the modification had to be done by hand. 

In data entry applications, the data are captured on a screen form that provides a specialized view 
of the underlying database. The view and the database may differ widely in structure, and the 
application must map between these two schemas. An example of a form used to enter STS lab 
notebook data is shown in Figure 2. It consists of a complex relation (STS) with three sub-relations 
(Primers, PCR-conditions, Locat ion): 

STS(STSname, l ab ,  GDBlocus, used-here, t e c h l a b ,  PCR-productsizelow , 
PCR-productsizehigh, polymorphic, probe-type, comments, Primers, 
PCR-condit i ons ,  Locat ion) 

Primers(name, sequence, melting temp, pmethod, datepicked, strand) 
PCR-condit ions(machine, init-temp, in i t - t  ime , denat-t emp, . . , 

f inal-t  ime , buffer ) 
Location(chromosome. s tar tpos i t i on ,  endposition, u n i t s ,  v e r i f i e d ,  l oca t ion ,  

notebook , comments) 

Since each screen enters a single STS, there will be one row in the STS relation, two rows in the 
Primers relation denoting the primer pair, and multiple rows in the PCR-conditions and Location 
relations. 

To enter the information in the data-entry screen, it must be transformed to the underlying (re- 
lational) Chr22DB database. A conceptual (EER) schema of the relevant portion of Chr22DB is 



shown in Figure 3; this is merely introduced to convey the linkages between relations rather than 
to give a precise semantics of the schema. In this EER schema, Has arcs are many-to-one in the 
direction of the arrows; the prefix Mand- on an arc label designates that the relationship is manda- 
tory; and ISA* denotes a generalization relationship in which the primary key of the specialization 
entity-set differs from the primary key of the generic entity-set.' The relevant relational tables and 
attributes for this schema are given below. Uppercase attribute names denote primary keys. 

lab (CODE) 
names(MATERIAL1D. LAB-CODE, NAME, publicname) 
material(ID, material-type) 
interval(ID, interval-type) 
na-interval(ID, material id ,  probe-type, is-polym, . . . ) 
maploc(NA1NTERVAL1DB CHROMOSOME, STARTPOS, ENDPOS, un i t s ,  

verifmethod, expt locat ion,  notebook, comments) 
sequence(ID, na-intervalid,  seq-string . . . ) 
primer ( I D ,  pname , picked-f romna-intervalid, melt ing-temp, 

pickaethod, date-picked, strand) 
STS(ID, prl-primer-id, pr2-primer-id, PCR-prodsizelo, 

PCR-prodsizehi, usedhere, t e c h l a b ,  comments) 
PCR-condit ions (STSID , AMPLJACHINE , ANNEAL-TEMP , initdenat-temp, 

ini tdenat-t  ime , denat -t emp , denat-t ime , . . . ) 

In this database transformation a complex relation with nested subrelations is flattened into a 
standard relational schema with value-based pointers linking related tables. The atomic attributes 
of the top-level screen relation are distributed over 6 relational tables in the target schema: names, 
lab ,  mater ia l ,  i n t e r v a l ,  na- interval ,  and STS. The Primers subrelation is decomposed into 5 
target tables: na-int e rva l ,  i n t e rva l ,  mater ial ,  primer, sequence. The two name fields in the 
entry screen (STSname and GDB-locus) are mapped to two separate rows in the target names table, 
which are linked by the internal identifier of the object being inserted. 

In order to  accomplish the data transformations, appropriate insert statements must be generated. 
The normalized target schema relies on internal system-generated integer identifiers to accomplish 
the links among related tables. These identifiers must be generated (primary keys of mater ia l ,  
i n t e r v a l ,  and lab tables) or retrieved (foreign keys in all other tables, e.g., primer ids in the STS 
table) when the data are transformed. 

To maintain data integrity, the transformed data must conform to the integrity constraints of the 
target database. Preeminent are key and inclusion dependency constraints, but more complex 
constraints may also hold. For example, each material must have at least one GDB name (i.e., 
names .lab-code = "GDB") and at least one non-GDB name (i.e, names .lab-code # "GDB"). 

3 A Language for Database Transformations and Constraints 

Although there are many choices of languages in which to express data transformations, we believe 
that a deductive approach is best. There are several reasons for this, most of which were mentioned 

'The schemas in this paper were all drawn using ERDRAW [13]. 



in the introduction: the language should be declarative, so that transformations are easy t o  modify 
and reason about; the language should allow expression of structural complexity, since this is more 
important than expression of computational complexity; a deductive language requires only a small 
number of inference rules to build a complete proof system on which implementations can be based; 
and finally, the language should unify transformations and integrity constraints since there is a 
significant level of interaction between the two. Not only do constraints play a part in determining 
transformations between databases, but a transformation may imply certain constraints on the 
source and target database. 

Our language is therefore based on Horn-clause logic and has a simple formal semantics, allowing 
for formal reasoning about database transformations, constraints and the interactions between the 
two. Not only can transformations be expressed in this language, but unambiguous and nonrecur- 
sive transformation programs can be implemented using code generators for a variety of database 
programming languages and having constraints checked at run time. The proposed code generators 
will work in two stages: First rules are converted to a normal form, each rule specifying how a 
complete entry for the target database is generated from the source database. The normalised 
rules are then converted into code for the appropriate DBMS. This approach means that logical 
inferences are performed only once at the rule level, rather than many times at the data level. 
Further it is straightforward to re-use the core of the program, allowing easy addaption of the code 
generator for a variety of database systems. 

In presenting the language, we start by explaining the underlying data model, then giving the 
syntax of the language with several examples of constraints and transformation clauses that have 
been generated for the data entry screen application described in the previous section. Finally, we 
describe what normal forms are, and how they will be used to implement transformation programs. 

3.1 Data Model 

Since one of our objectives was to design a language which allowed us to  describe and implement 
transformations between as wide a range of data models as possible, the language is based around a 
nested relational data model. The model is similar to that of [14], and allows nested relations, set- 
valued attributes and object identity. This is a natural extension of the relational data model, but 
also allows us to  represent the complex data structures found in the various semantic and object- 
oriented data models that are currently gaining popularity. The model also allows the attributes of 
records to  be either required or optional (not-null or null), a feature that is common in many data 
models, and which allows us indirectly to represent variants. 

We use Skolem functions to generate object identities as in [12]. Skolem functions can be applied 
t o  a group of values in order to create an entirely new value, which can then be used as an object 
identifier, or as a way of referencing a row in some particular relation from other relations. Our 
semantics makes no assumptions about what range of values these Skolem functions should have 
other than that they be distinct, though they can easily be implemented using integers or some 
other base type. The type system for the language ensures that the values generated by two distinct 
Skolem functions can not be confused. 

Many established data models incorporate various kinds of constraints as primitives: relational 
data models may support keys or other functional dependencies, certain existence decencies and 



inclusion constraints, while object oriented databases may support some concept of inheritance 
and object identity. While such constraints are often important and useful, there remain many 
important dependencies which occur in biological and other databases but do not fall into any 
of these categories. Indeed choosing such specific subclasses of dependencies and treating them 
separately seems a rather ad hoe approach. We do not make any such class of constraints primitive 
in our data model. Instead our language provides a means to express a very general family of 
constraints, including but not limited to those mentioned above. 

3.2 The Language 

Our deductive language allows independent access to the the individual components of a relation 
or tuple, and variables can be bound to simple values, tuples in a relation or entire relations 
(sets of tuples). Individual clauses describe one conceptual part of a transformation, rather than 
describing the construction of an entire tuple in a relation, thus making transformation programs 
easy to understand and maintain. In this respect it differs from established logic-based database 
query languages, such as Datalog and ILOG, in which relation names are used as predicates, and 
variables are bound to base values only; a practice which becomes awkward when relations with 
many attributes are being considered. To some extent this language could be considered to be 
an extension of ILOG ([12]) to nested relations, or as a restriction of IQL ([Ill). However such 
comparisons are difficult since the nature of the implementations and intended purposes of these 
languages are very different. 

Types in our language are taken to  be regular trees with nodes marked either by () (tuple types), 
{} (set types), or some base type such as int, string and so on. {)-nodes must have exactly one 
outgoing edge, while ()-nodes must have one or more outgoing edges, each marked with an attribute 
label taken from a set A, and also marked as either required or optional. Nodes marked by a base 
type have no outgoing edges. 

A type tree with a {}-node at the root represents a set type, while one with a ()-node at the root 
represents a tuple type. A relation is considered to be a set of tuples: a relation type has a {}-node 
at the root with outgoing edge going to a ()-node. So a relation with attributes A1,. . . , ak, of types 
tl, . . . , tk respectively, would have the form: 

In a pa t  relation type the outgoing edges from the ()-node go to base type nodes. 

9 



As well as individual relations, we consider databases as a whole to have types. A database type 
will have a ()-node at the root with outgoing edges labeled by all the names of the relations or 
classes in the database and going to the types of those relations. For example a database type for 
the database whose schema is shown in Figure 3, with relations such as STS, primer, sequence 
and na- in te rva l ,  will be a tuple type with attributes STS, primer and so on, each of which would 
go to an appropriate relation type. 

Our language is strongly typed, in that, given types for the source and target databases of a 
transformation, a unique type can be inferred for each term in a transformation program. 

Terms a n d  Atomic Formulae 

The main syntactic elements of our language are terms, ranged over by P, Q, . . ., and atoms, ranged 
over by 4, +, . . .. Terms represent values in a database, while atoms are the basic building blocks 
of formulae. An atom represents one simple statement about some values. They are defined by the 
following abstract syntax: 

P ::= Src - source database 
I Tgt - target database 
I C  - constant 
I x - variable 
a - attribute 
1 P.a - projection 
I f (PI, .  . . , P,,) - Skolem function 
I P , . . . , ) - compound term 

and 
ip ..- ..- P-Q - equality 

I P#Q - inequality 
I PiQ - set-inclusion 
( P ~ Q  I P ~ Q  - arithmetic predicates 
I Undef(a) - undefined optional attribute 
1 False - contradiction 

Here the Src and Tgt represent the source and target databases in a transformation, which are 
regarded as tuples of relations. Constants are always of base type, while variables can be bound to 
sets and tuples as well as to values of base type. 

If P is a term representing a tuple, then P.a is the value of the a attribute of the tuple (if it is 
defined). 

A compound term of the form P(&, . . . , 4,) has the same value as the term P. However it carries 
with it the atoms . . ,4, which are to be interpreted relative to P :  so any attribute term, 
a,  occurring in one of 41,. . ., #, (but not in any smaller compound term) is evaluated as P.a. 
An attribute term, a,  must occur within some compound term. The use of compound terms and 
attribute terms can be regarded as a notational shorthand, but are necessary in order to group 
together atoms describing a single tuple, and to make the syntax comprehensible. 



Atoms are built using the binary predicates = (equality), # (inequality) and E (set inclusion), 
and also the Undef predicates which check for the definedness of an optional attribute of a tuple. 
Also there is a nullary predicate False which represents an error situation, and which is used in 
checking the validity of a transformation. In an implementation occurrences of False would have 
some message attached to them to indicate the source of an error. 

For example an atom X E STS would mean that X is tuple in the relation STS. We could use a 
compound term to put further restrictions on X: 

X ( i d  = I, prl-primer-id = Pl, pr2-primer-id = P2) E Tgt.STS 

means that X is a tuple in the target relation STS with i d  attribute I, prl-primer-id attribute 
P1 and pr2-primer-id attribute P2. 

Clauses 

A clause has the form 
$ 41,...,4n 

The atom $ is called the head of the clause, while &, . . . , 4z form the body of the clause. 

Not all syntactically correct clauses are meaningful. A clause is said to be well-formed for source 
database type T,,, and target database type Ttgt if it is well-typed with respect to T,,, and Ttgt, 
meaning that all the types of terms occurring in the clause make sense when we take the term Src 
to  have the type T,,, and Tgt to have the type Ttgt, and it is range-restricted. The concept of range- 
restriction is taken from Datalog ([15]), and means that each variable in the clause is restricted to 
range over some finite set of values. The formal definitions of these restrictions, together with a 
more detailed presentation of the semantics of the language, can be found in [16]. All the clauses 
considered in this paper will be well-formed for the relevant types. 

Suppose a clause $ t 41, . . . , &  is well-formed for types T,,, and Ttgt. The meaning of the clause 
is that if, for some instantiation of the variables in the body, 41,. . . ,4, are true, then there is an 
instantiation of the remaining variables in the head of the clause such that $ is also true. Clearly 
the truth of a clause is dependent on the values of the source and target databases for which it is 
being evaluated. A pair of database values p and v, of types T,,, and Ttgt respectively, are said to 
satisfy a clause if it is true when we take the term Src to denote the value p and Tgt to  denote v. 

For example the clause 

X = Y t X ( i d  = I )  E Tgt.STS, Y ( i d  = I )  E Tgt.STS 

says that, for any two tuples X and Y in the relation STS, if X and Y have the same value, I, 
on their i d  attributes then they are equal. In other words the attribute i d  is a key for STS. This 
clause is an example of a constraint: a clause which concerns only one database rather than the 
connection between a pair of databases. 

The terms in a clause can be classified as source terms which denote values in the source database, 
and target terms which denote values in the target database. A target constraint is then a clause 
containing only target terms, while a source constraint contains only source terms. Constraints 



on the target database are tested after a transformation is carried out, and, if the constraints 
are violated, the transformation is rolled back and an appropriate error is reported to  the user. 
Constraints on the source database are not interesting for the purpose of transformations, since the 
source database must already have been populated. 

We will now look at some more examples of constraints for the database shown in Figure 3. Firstly 
an inclusion dependency, that for every primer i d  in the STS table there is a corresponding entry 
in the primer table: 

Next that each material has exactly one GDB name: 

X = Y + X(materia1-id = M, lab-code = "GDB") E Tgt.names, 

Y(mater ia l3d  = M, lab-code = "GDB") E Tgt.names 

And, finally, that a public name cannot be a GDB name: 

False + (publicname = "Yes7', lab-code = "GDB") E Tgt.names 

Note that the last two of these constraints could not be expressed using the traditional functional 
and existence dependencies for the relational model. 

In determining a transformation between two databases, we are interested in a special class of 
clauses called transformation clauses. A transformation clause is one which contains only target 
terms in its head, and which does not contain any Undef atoms for target terms. Note that a clause 
can be both a transformation clause and a target constraint. Indeed target constraints will often 
play an important part in determining a transformation. 

For example, the following is a transformation clause generating part of the STS relation of the 
schema shown in Figure 3 from the data entry screen shown in Figure 2: 

( i d  = fSTS(PI1 ,  PI2) ,  
prl-primer-id = PI1, 
pr2-primer-id = P12, 
i d  = f-STS(PI1, PI2) ,  
PCR-prodsize-lo = SL, 
PCR-prod-sizehi = SH) E Tgt.STS 
t ((pname = PN1)  E primer_group, 

(pname = PN2)  E primer_group, 
PCR-prod-size-lo = SL, 
PCR-prod-size-hi = S H )  E Src.STS-screen, 

(pname = P N  1, i d  = PI1 )  E Tgt.primer 
(pname = PN2,  i d  = P12) E Tgt.primer 
PI1 5 P I 2  

Notice that the Skolem function f-STS is used to generate ids for the STS relation. Also notice that 
the body of this clause makes use of the target database relation primer in order to look up the 



primer-id's. The tuples for this relation are in turn generated by another clause: 

( i d  = f -primer(PN), 
pname = PN, 
melt ing-temp = MT, 
pickrmethod = PM, 
date-picked = DP, 
s t r and  = ST)  E Tgt.primer 
t ((pname = P N ,  

melting-temp = MT, 
pmethod = PM, 
date-picked = DP, 
s t r and  = ST)  E primers) E Src.STSscreen 

We will see in Section 3.3 that it is necessary to unfold clauses like this, in order to get a clause 
that refers only to  source relations in its body and only to target relations in its head. Clauses of 
this form can be processed in one-pass without referring to the target database. 

Transformation Programs 

A transformation program, from database type TsTc to database type Ttgt, consists of a set A of 
transformation clauses that are well formed for T,,, and Ttgt. 

If A is a transformation program from T,,, to Ttgt, and p is a database value of type T,,, and v 
is a database value of type Ttgt, then v is said to be a A-transformation of p iff, for each clause 
C E A, p and v satisfy C. 

A transformation program A from T,,, to Ttgt is said to be complete iff, for any database value 
p of type T,,,, if there exists a A-transformation of p then there is a unique smallest such trans- 
formation. The smallest A-transformation is important because it represents the data generated 
by the transformation program A from the source database: in general a transformation program 
will imply that certain data should be in the target database but does not exclude other additional 
data from being in the database as well. If a transformation program is complete then there is no 
ambiguity about what this smallest transformation is. It is these unique smallest transformations 
that we wish to  compute. 

We are particularly interested in transformations that can be done in "one pass": that is transfor- 
mations that can be carried out by reading the source database and inserting values into the target 
database, as opposed to recursive transformations in which data which is inserted in to the target 
database is then used to create more data for the target database. This means that we restrict 
our attention t o  non-recursive transformation programs. However the problem of testing whether 
a transformation program is recursive in our nested relational model is a little more delicate than 
the problem for the flat relational model and Datalog. Details can be found in [16]. 



3.3 Normal Forms 

We now limit our attention to the special case of database transformations where the target database 
is flat relational, as is the case with our data enty application. In this case, we first convert a 
transformation program into a normal form, which can in turn easily be converted into a program 
in some (non-recursive) query language. 

Suppose our target database contains a relation R. A transformation clause is said to be in normal 
fomz if it has the form 

where 

1. a l , .  . . , ak are the required attributes of the relation R, and bl,  . . . , bl are a subset of the 
optional attributes of the relation R, 

2. the atoms 61,. . . ,+, contain only source terms and constants, and 

3. the terms PI,. . . , Pk, 91,. . . , Ql are built using only variables, constant symbols and function 
symbols (so no attribute labels). 

A transformation program is said to be in normal form if all its clauses are in normal form. 

We have an algorithm [16] which given a non-recursive transformation program for a flat relational 
target database type, if the program is complete will return an equivalent program in normal form, 
and if the program is not complete will fail, reporting an error. This algorithm forms the central 
part of our code generators for transformation programs. If the source database type is also flat 
relational then clauses in normal form can be directly translated into a join-and-project expression 
in relational calculus or a "select-from-where" expression in SQL. If the source database is not 
flat-relational then normal form clauses can be converted into CPL ([17, 181) or some other suitable 
query language. 

The normal-form clauses are built by combining and unfolding clauses of a transformation, in order 
to form clauses which provide a complete description of a tuple in the target database in terms 
of the elements of the source database. Because our transformation programs are not recursive it 
follows that this process will terminate. If it is possible to build only a partial description of a tuple 
for some relation, then it follows that the transformation program is not complete. 

For example a normal-form clause for the STS table in the transformation from the STS data-entry 



screen (Figure 2) to Ch22DB (Figure 3) formed from the clauses in section 3.2 would be: 

( i d  = f -STS(PIl, PI2) ,  
prl-primer-id = PI1, 
pr2-primer-id = PI2 ,  
PCR-prod-sizelo = SL, 
PCR-prod-sizehi = SH, 
used-here = UH, 
tech-lab = TL) E Tgt.STS 

t ((pname = PN1)  E primers, 
(pname = PN2)  E primers, 
u sedhe re  = UH, t e c h l a b  = TL, 
PCR-prodsize-lo = SL, 
PCR-prod-sizehi = S H )  E Src.STS-screen, 

PI1 = f -primer(PNl),  
P I 2  = f_primer(PN2), 
PI1 < P I 2  

Notice that this clause gives a complete description of a tuple in the STS relation, and does not 
call on any of the target relations in the body of the clause. In particular the calls to the primer 
relation which were in the body of the clause in section 3.2 have been replaced by applications of 
the Skolem function f -primer. 

3.4 Transformation Tools 

To automate the transformation process, we are planning to implement transformations using 
code-generators which convert transformation programs into programs in a variety of database 
programming languages. Our initial efforts will be to write code-generators for SYBASE and CPL 
([17]). However the core of the tools will be the convert-to-normal-form algorithm, and further 
interfaces to  generate code from normal-forms into a variety of other languages can be constructed 
easily at  a later stage. SYBASE applications are the most immediate requirement for Chr22DB, 
while CPL seems like an ideal target language due to its ability to  handle complex datatypes, and 
to connect t o  a wide variety of heterogeneous database systems. 

Initially we see transformation programs coming from a combination of user input and meta-data 
stored in a database. For example, SYBASE uses meta-relations to store type information and 
key constraints for the relations in a database, while schema-design tools, such as ER-draw and 
SDT ([13]), record a variety of constraints on a schema that may not be reflected by the underlying 
DBMS. By accessing this information directly, we avoid the requirement for the user to enter it all by 
hand. Ultimately we would like to build graphical schema-manipulation tools which automatically 
generate the relevant constraints and transformation clauses for a schema evolution. 



4 Conclusions 

Human Genome Project databases present many difficult database management problems. The 
complexity of the data structures involved together with the frequency of schema evolutions and 
the large number of incompatible heterogeneous databases with which data must be exchanged mean 
that existing solutions - including those for schema evolution and integrated access to heterogeneous 
databases - are inadequate. 

For example, although much has been written on the subject of schema evolution (see [19]), existing 
works concentrate on the problem of manipulating database schemas, and in some cases on the co- 
existence of instances for old and new schemas, rather than on the corresponding transformations 
of the underlying data. However, maintaining distinct instances for each incarnation of a rapidly 
evolving database schema is not a practical solution, and it is essential to have all the previously 
entered data available for the current schema. Clearly re-entering all the data from scratch is not 
a viable option, and so it is necessary to transform data from the old to the new schema. 

Some of these issues have also been addressed in [20], although in the context of database inte- 
gration and for a more limited data model. Our proposed language allows us to specify database 
transformations in a clear and formal manner, allowing for formal analysis and reasoning, and then 
implement the transformation for a variety of database systems by means of a code generator. 
In addition our language allows for the specification of constraints that arise from the complex 
data structures necessary for representing Human Genome data, which are not representable using 
established constraint languages. 

Related work also includes that of schema merging in heterogeneous databases (see [21, 22, 23, 
24, 251). Central to all of these approaches is the need to have some user manipulation of the 
underlying schemas to indicate how the underlying databases are related to the merged schema. 
To our knowledge, there has been no principled, systematic approach proposed to do this other 
than our proposed constraint language. Note that our approach can be used to define a merged 
schema: each of the underlying schemas is a source schema, and the merged schema is the target 
schema. 

There are many areas of future research, some of which we have already indicated, such as the 
completion of normal form algorithms for target databases which are not flat relational; the imple- 
mentation of code generators from normal form transformation programs to  languages of interest 
(initially SYBASE, then a language for collection types called CPL); and the eventual development 
of a window driven interface for specifying transformation programs. 

Another issue is that of composing transformations: while some transformations will be applied 
only once, many transformation programs will be applied repeatedly. The most frequent of these 
is probably data-entry transformation programs; others involve transformation programs which 
import data from other archival databases, such as GDB, which are run routinely in order to reflect 
the continuous updates of the archival databases. We do not want to rewrite these transformation 
programs every time there is a minor schema evolution on the Chromosome 22 database, hence the 
need to compose the transformations. 

To see why this is a composition of transformations, recall that a schema evolution is reflected by 
an underlying database transformation, taking data for the first schema and transforming it into 



data for the second, updated schema. Since our data-entry transformation programs generate data 
for the first schema, we like to be able to apply the schema-update transformation in order to get 
data for the current schema. Alternatively, we would like a way to automatically incorporate the 
schema changes into our existing transformation programs in order to come up with transformation 
programs which target the new schema. 

Unfortunately simple composition will not always be possible. A transformation will often imply 
constraints on its source database which are not incorporated in the source database schema. While 
these constraints must be satisfied in order for the transformation to go through, we can not be 
sure that new data generated for the source database will continue to  satisfy these constraints. 
The problem is then one of determining what constraints are implied on a source database by a 
transformation, and then checking that these constraints will continue to  be satisfied by new data 
generated for that source database. This interaction of transformations and constraints is one we 
believe to  be very important, and any tools that could help automate the process will be useful. 

We have currently completely specified the data entry transformation, and have partially specified 
a transformation from another archival genomic database, GDB, to Chr22DB.3 Our experience is 
that the approach is extremely useful, since the relationships between structures in the source and 
target is clearly indicated in the clauses of the program. Knowing first-hand how laborious it was 
to  transform SYBASE code for data entry as Chr22DB evolved, this is an extremely important 
practical gain. It is also interesting to observe that while declarative (deductive) query languages 
have not gained universal acceptance as query languages, this is one arena in which we believe they 
will play a central role. 
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