20,719 research outputs found

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    Get PDF
    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies

    Systems and certification issues for civil transport aircraft flow control systems

    Get PDF
    This article is placed here with permission from the Royal Aeronautical Society - Copyright @ 2009 Royal Aeronautical SocietyThe use of flow control (FC) technology on civil transport aircraft is seen as a potential means of providing a step change in aerodynamic performance in the 2020 time frame. There has been extensive research into the flow physics associated with FC. This paper focuses on developing an understanding of the costs and design drivers associated with the systems needed and certification. The research method adopted is based on three research strands: 1. Study of the historical development of other disruptive technologies for civil transport aircraft, 2. Analysis of the impact of legal and commercial requirements, and 3. Technological foresight based on technology trends for aircraft currently under development. Fly by wire and composite materials are identified as two historical examples of successful implementation of disruptive new technology. Both took decades to develop, and were initially developed for military markets. The most widely studied technology similar to FC is identified as laminar flow control. Despite more than six decades of research and arguably successful operational demonstration in the 1990s this has not been successfully transitioned to commercial products. Significant future challenges are identified in cost effective provision of the additional systems required for environmental protection and in service monitoring of FC systems particularly where multiple distributed actuators are envisaged. FC generated noise is also seen as a significant challenge. Additional complexity introduced by FC systems must also be balanced by the commercial imperative of dispatch reliability, which may impose more stringent constraints than legal (certification) requirements. It is proposed that a key driver for future successful application of FC is the likely availability of significant electrical power generation on 787 aircraft forwards. This increases the competitiveness of electrically driven FC systems compared with those using engine bleed air. At the current rate of progress it is unlikely FC will make a contribution to the next generation of single-aisle aircraft due to enter service in 2015. In the longer term, there needs to be significant movement across a broad range of systems technologies before the aerodynamic benefits of FC can be exploited.This work is supported by the EU FP6 AVERT (AerodynamicValidation of Emissions Reducing Technologies) project

    Space Transportation Materials and Structures Technology Workshop

    Get PDF
    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems

    A plm implementation for aerospace systems engineering-conceptual rotorcraft design

    Get PDF
    The thesis will discuss the Systems Engineering phase of an original Conceptual Design Engineering Methodology for Aerospace Engineering-Vehicle Synthesis. This iterative phase is shown to benefit from digitization of Integrated Product&Process Design (IPPD) activities, through the application of Product Lifecycle Management (PLM) technologies. Requirements analysis through the use of Quality Function Deployment (QFD) and 7 MaP tools is explored as an illustration. A "Requirements Data Manager" (RDM) is used to show the ability to reduce the time and cost to design for both new and legacy/derivative designs. Here the COTS tool Teamcenter Systems Engineering (TCSE) is used as the RDM. The utility of the new methodology is explored through consideration of a legacy RFP based vehicle design proposal and associated aerospace engineering. The 2001 American Helicopter Society (AHS) 18th Student Design Competition RFP is considered as a starting point for the Systems Engineering phase. A Conceptual Design Engineering activity was conducted in 2000/2001 by Graduate students (including the author) in Rotorcraft Engineering at the Daniel Guggenheim School of Aerospace Engineering at the Georgia Institute of Technology, Atlanta GA. This resulted in the "Kingfisher" vehicle design, an advanced search and rescue rotorcraft capable of performing the "Perfect Storm" mission, from the movie of the same name. The associated requirements, architectures, and work breakdown structure data sets for the Kingfisher are used to relate the capabilities of the proposed Integrated Digital Environment (IDE). The IDE is discussed as a repository for legacy knowledge capture, management, and design template creation. A primary thesis theme is to promote the automation of the up-front conceptual definition of complex systems, specifically aerospace vehicles, while anticipating downstream preliminary and full spectrum lifecycle design activities. The thesis forms a basis for additional discussions of PLM tool integration across the engineering, manufacturing, MRO and EOL lifecycle phases to support business management processes.M.S.Committee Chair: Schrage, Daniel P.; Committee Member: Costello, Mark; Committee Member: Wilhite, Alan, W

    An EPIIC Vision to Evolve Project Integration, Innovation, and Collaboration with Broad Impact for How NASA Executes Complex Projects

    Get PDF
    Evolving Project Integration, Innovation, and Collaboration (EPIIC) is a vision defined to transform the way projects manage information to support real-time decisions, capture best practices and lessons learned, perform assessments, and manage risk across a portfolio of projects. The foundational project management needs for data and information will be revolutionized through innovations on how we manage and access that data, implement configuration control, and certify compliance. The embedded intelligence of new interactive data interfaces integrate technical and programmatic data such that near real time analytics can be accomplished to more efficiently and accurately complete systems engineering and project management tasks. The system-wide data analytics that are integrated into customized data interfaces allows the growing team of engineers and managers required to develop and implement major NASA missions the ability to access authoritative source(s) of system information while greatly reducing the labor required to complete system assessments. This would allow, for example, much of what is accomplished in a scheduled design review to take place as needed, between any team members, at any time. An intelligent data interface that rigorously integrates systems engineering and project management information in near real time can provide substantially greater insight for systems engineers, project managers, and the large diverse teams required to complete a complex project. System engineers, programmatic personnel (those who focus on cost, schedule, and risk), the technical engineering disciplines, and project management can realize immediate benefit from the shared vision described herein. Implementation of the vision also enables significant improvements in the performance of the engineered system being developed

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Technology review of flight crucial flight controls

    Get PDF
    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany

    Advanced Manned Launch System (AMLS) study

    Get PDF
    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed
    • …
    corecore