1,241 research outputs found

    Multi-agent-based control strategy for centerless energy management in microgrid clusters

    Get PDF
    Interconnecting microgrids with similar geographical environment and related characteristics electrically and communicatively, this constitutes a microgrid cluster, which is a higher-level distributed power structure and an effective way to improve the utilization rate of distributed energy and local absorption level. However, the stable operation of microgrid clusters is determined by the cluster structure and its control strategy, which is also the focus and difficulty of current research. To address this challenge, this paper proposes a ring-based multi-agent microgrid cluster energy management strategy, which realizes the centerless coordinated autonomous operation of microgrid clusters with high stability. In addition, based on the multi-agent control strategy, this paper designs a variety of control strategies that can be switched autonomously for different control objectives of the microgrid cluster to realize smooth grid connection and off-grid of the microgrid cluster. Finally, based on Matlab platform simulation, the experimental results show that the control structure and energy management strategy proposed in this paper can realize the centerless coordination and autonomy of the microgrid cluster on the basis of stable operation, minimize the energy interaction between the cluster and the distribution network, and greatly improve the utilization rate and local absorption level of distributed energy

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    Reliability Improvement of Autonomous Microgrids through Interconnection and Storage

    Get PDF
    This thesis deals with reliability and power quality improvement in autonomous microgrids. The reliability is improved through the interconnection of storage, intertying two neighbouring microgrids and interlinking of microgrids cluster through a common power exchange highway. The power quality is improved by interconnecting distributed static compensator (DSTATCOM) in the microgrid. All the proposed methods are verified through extensive digital computer simulation using PSCAD

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part

    Control Strategies of DC Microgrids Cluster:A Comprehensive Review

    Get PDF
    Multiple microgrids (MGs) close to each other can be interconnected to construct a cluster to enhance reliability and flexibility. This paper presents a comprehensive and comparative review of recent studies on DC MG clusters’ control strategies. Different schemes regarding the two significant control aspects of networked DC MGs, namely DC-link voltage control and power flow control between MGs, are investigated. A discussion about the architecture configuration of DC MG clusters is also provided. All advantages and limitations of various control strategies of recent studies are discussed in this paper. Furthermore, this paper discusses three types of consensus protocol with different time boundaries, including linear, finite, and fixed. Based on the main findings from the reviewed studies, future research recommendations are proposed

    Self-organising multi-agent control for distribution networks with distributed energy resources

    Get PDF
    Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time.Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time

    Dynamic modeling, stability analysis and control of interconnected microgrids:A review

    Get PDF
    This paper reviews concepts of interconnected microgrids (IMGs) as well as compare and classify their modeling, stability analysis, and control methods. To develop benefits of isolated microgrids (MGs) such as reliability improvement and their renewable energy integration, they should be interconnected, share power, support the voltage/frequency of overloaded MGs, etc. Despite maximizing their benefits and decreasing weaknesses of isolated MGs, IMGs require maintaining stability in different operation modes and employing appropriate control methods. Moreover, a basic requirement for stability analysis and controller design is system modeling. Since many articles have addressed these topics on IMGs from different views, a comparison is necessary. Therefore, IMG dynamic modeling methods are classified and their main features and challenges are discussed. Then, stability analysis and control methods of IMGs are reviewed and compared. The provided review is supported by conceptual diagrams, classification tables, off-line and real-time simulations using MATLAB and OPAL-RT simulator for comparison. Furthermore, a data set is provided to study fundamentals as well as research gaps, which are addressed for future works

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    A Distributed Fixed-Time Secondary Controller for DC Microgrid Clusters

    Get PDF
    • …
    corecore