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ABSTRACT 

A microgrid may contain a large number of distributed generators (DGs) and 

loads. These DGs can be inertial or non-inertial, dispatchable or non- dispatchable. 

The combination of these various types of DGs makes the microgrid control a 

challenging task, especially when the microgrid operates in an autonomous (islanded) 

mode. The response rates of inertial DGs are slower than non-inertial DGs due to their 

inertia, which can cause large transients in the system. A pseudo inertia concept is 

introduced for non-inertial DGs (converter interfaced DG) in order to match their 

response rate with inertial DGs which facilitates stable operation of the microgrid. 

Moreover, some of the non-dispatchable DGs can come online or go offline in 

plug and play fashion. A new algorithm is designed for synchronization of DGs to 

integrate them smoothly with an islanded microgrid which operates in a frequency 

droop. In this algorithm, no explicit frequency measurement is required – it relies only 

on the measurement of instantaneous PCC bus voltage. 

To improve reliability of an islanded microgrid, it must be equipped with some 

distributed storage units that can quickly come online when peak load exceeds the total 

generation of DGs. Battery energy storage systems (BESSs) are considered in this 

thesis, which must operate in a fashion such that only the amount of overload power 

is supplied. When there are several BESSs distributed throughout a microgrid, they 

must supply power according to their present rating (state of charge). An algorithm 

based on the modification of angle droop control is proposed to facilitate this even 

when a microgrid contains rotary generators and operates in frequency droop. 

A distribution static compensator (DSTATCOM) can be used in a microgrid 

for power quality improvement. However the DSTATCOM must operate at the 

microgrid frequency. A modification of the frequency droop control is proposed to 

include an isochronous controller such that the microgrid frequency can be brought 

back to 50 Hz despite any change in load or generation. 

Two microgrids that are in close proximity can be interconnected for mutual 

support during any contingency. To maintain the integrity of the operation of these 

two microgrids, they must be connected by an interlinking back to back converter 
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system. An overall power flow control algorithm is developed for the interconnection 

of two microgrids which operates under different droop control regimes.  

A cluster of microgrids can be interconnected through common ac feeder, 

which is termed in this thesis as a power exchange highway (PEH). In this connection, 

a microgrid can get support during any sudden power shortfall. Each microgrid in such 

a cluster must be connected through an interlinking converter to the power exchange 

highway such that each microgrid can operate independent of all other microgrids. A 

double layered droop control algorithm is proposed for a cluster of microgrids such 

that it can prevent a collapse in any of the microgrids in the cluster due to the lack of 

available generation. 

All the proposed methods are verified through extensive digital computer 

simulation using PSCAD software. 
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CHAPTER 1 

INTRODUCTION 

A microgrid is a small grid consisting of loads and small generators distributed 

along its feeders. Small size, cheaper and efficient new generation technologies 

interconnected to distribution systems form a microgrid. The growing pressure, 

primarily driven by environmental concern, for generating more electricity from 

renewable and improving energy efficiency have promoted applications of the 

distributed energy resources (DERs), which include both distributed generators (DGs) 

and storage, in the energy system [1-3]. A microgrid can be connected to grid or can 

be electrically isolated from the power grid, similar to physical islands [4-5]. 

For islanded mode of operation, control of real and reactive power is essential to 

maintain a stable operation and total load demand plus losses should not exceed the 

combined available power of all DG units [6]. The voltage and frequency should also 

be controlled to remain within specified limits. Table 1.1 lists various advantages of 

microgrid.  

Table 1.1. Advantages of microgrid [7]. 

Value 

Proposition 

Description 

Reduced Cost Reducing the cost of energy and managing price volatility 

Reliability Improving reliability and power quality 

Security Increasing the resiliency and security of the power delivery 

system by promoting the dispersal of power resources 

Green Power Helping to manage the intermittency of renewable and 

promoting the deployment and integration of energy-efficient 

and environmentally friendly technologies 

Power System Assisting in optimizing the power delivery system, including 

the provision of services 

Service 

Differentiation 

Providing different levels of service quality and value to 

customer segments at different price points 

 

Different types of energy sources like variable frequency sources (wind), high 

frequency sources (microturbine) and direct energy conversion sources producing dc 

voltage (PV) can affect the operation of a microgrid differently due to their different 
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characteristics. Thus power management and fast, flexible power flow control 

strategies are requisite for islanded microgrid operation where no infinite source is 

available in the presence of different types small DG units [8]. The real and reactive 

power output of a DG can be independently controlled by changing the voltage angle 

(based on frequency) and the magnitude respectively [9-12]. Therefore, frequency and 

voltage droop controls are the most common methods used to share the real and 

reactive load power in a microgrid. 

DGs in a microgrid can be classified as either inertial or non-inertial. A diesel 

generator and a doubly fed induction generator (DFIG) are inertial sources while other 

sources like solar PV, microturbine, fuel cell and batteries are non-inertial sources. In 

addition, there are inertial loads, like induction motors, and non-inertial passive loads. 

Usually each of the non-inertial sources is connected to the system through a three 

phase converter. Thus they can respond very quickly to changes in real and reactive 

power demands. However the synchronous generator response will be slower due to 

its rotating mass and internal combustion engine. 

A microturbine is emerging as a very promising technology for short term 

distributed power production option, even though they are not necessarily driven by 

renewable fuels. It can be used by industry and major commercial user to reduce cost 

and also can be connected to critical loads like hospitals, data processing centers etc., 

to provide high quality emergency power. Since a microturbine generates high 

frequency ac signal, it must be converted to a 50 Hz signal through power electronic 

converters [13]. 

Furthermore, solar PVs and wind turbines (DFIG) need to operate in maximum 

power point tracking mode to extract the maximum available power from these 

sources. These are called non-dispatchable energy sources. Since they are already 

supplying the maximum available power, any deficit in power demand need to be 

supplied by the sources (microturbine, batteries, diesel generator) in which the output 

power can be controlled up to a maximum limit. These are called dispatchable sources. 

The dispatchable DGs need to control the frequency and voltage of the system, while 

supplying the balance amount of the load power as per their ratings in a droop control 

mode [14]. In an islanded microgrid (also called autonomous microgrid), the droop 
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control algorithms facilitate power sharing based only on local measurements without 

using any communication channel. 

The main aims of a microgrid controller are [15]:  

 Voltage and frequency control in both operating modes (grid connected and 

islanded mode) 

 Proper load sharing between DGs 

 Maintaining steady state and transient stability 

1.1. DROOP CONTROL 

The droop control is used for real and reactive power sharing amongst the DGs 

such that each DG supplies power in proportion to its rated value. There are several 

methods discussed in the literature [16-25]. Some of these are discussed below. 

1.1.1. CONVENTIONAL FREQUENCY DROOP CONTROL 

In a conventional frequency droop control method, each DG uses its real power 

output to set the frequency at its point of connection. The conventional frequency 

droop characteristic is given as  

)( PPmff rr                  (1.1) 

where f and fr are the instantaneous and rated frequency of the system respectively and 

Pr and P are the rated and measured real power respectively. The droop coefficient is 

denoted by m. 

The reactive power is shared in proportion to voltage magnitude as 

)( QQnVV rr                  (1.2) 

where V and Vr are the instantaneous and rated voltage respectively. Qr and Q are the 

rated and measured actual reactive power respectively. n is the voltage droop 

coefficient.  

This method is more reliable because of no communication is required in the 

system. However, the droop coefficients should be selected appropriately due to their 

impact on the system stability [26]. The power sharing may be affected in low voltage 

distribution lines which are highly resistive [27]. Furthermore, the conventional 
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method has some drawbacks such as frequency and amplitude deviation and slow 

transient response. 

1.1.2. ANGLE DROOP CONTROL 

In angle droop control strategy, the active power is shared based on voltage 

angle as per [28] 

)( PPm                   (1.3) 

where δ is the rated voltage angle of each DG. The reactive power is shared in the 

same manner as given in (1.2). This method is suitable when all the DGs are converter 

interfaced. The advantage of this method is that proper load sharing can be achieved 

without significant steady-state frequency variation in the system [29]. Moreover, no 

communication is required amongst DGs. However the main drawback of this method 

is that accurate power sharing depends on the output inductance of the DGs. 

1.1.3. INTEGRAL TO DROOP LINE 

This method is the modified form of the conventional droop control strategy. 

When both inertial and non-inertial (NI) DGs are present in the microgrid, the steady 

state power sharing is not a problem. However during transients, the system might 

become unstable since non-inertial DGs, connected through converters, can have a 

significantly faster response than inertial DGs. To improve the dynamic power sharing 

in the presence of both inertial and non-inertial DGs integral droop line concept is 

introduced in [30]. In this method, time constant of the integrator is chosen according 

to the inertial DG dynamics and angle of DGs are calculated from the droop frequency. 

In this case the transient oscillation can be high, since angle is calculated from the 

droop frequency and measured frequency of the system.  

1.1.4. DROOP CONTROL IN LOW VOLTAGE GRIDS 

Conventional droop works well under the assumption that line impedance is 

mainly inductive and inverter output impedance is inductive. However, in low-voltage 

application, the line impedance can be predominantly resistive, where the reactive 

power depends on the phase shift (Q-) and active power depends on the voltage (P-

V) [31-33]. Thus improved droop controllers are proposed to achieve accurate 
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proportional load sharing [34-35]. These strategies are robust against numerical error, 

disturbance, noises, feeder impedance and parameter drift. 

1.2. INTEGRATION OF NON-DISPATCHABLE DG 

The most common way to supply electricity to remote customers is with diesel 

generators [36]. However, power generation based on diesel fuel can be offset by wind 

energy. Wind resource is the most promising energy choice due to its enormous 

availability. The development of new technologies for renewable sources offers 

attractive economic and environmental merits for energy support [37]. In Canada, 

integration of wind energy in distribution network to meet energy requirement in rural 

and remote areas is growing rapidly [38]. In Ramea wind-diesel project, a wind 

generator is integrated with the diesel generators to supply an islanded system [38]. 

Various designing aspects are reported in [39] for diesel generators operating in 

conjunction with wind turbine and energy storage. A design methodology and analysis 

approach for unit sizing of an islanded wind-diesel system is developed in [40]. 

In [41], integration of doubly-fed induction generator (DFIG) based wind 

generator within microgrid is introduced. It focuses on variable droop control for DFIG 

to adjust the output power according to available wind power. The droop coefficients 

value changes according to available wind power. A case study of Rhodes Island 

power system is investigated in [42]. It introduces a frequency controller for permanent 

magnet synchronous generator (PMSG) and DFIG types of wind turbine to regulate 

frequency in an islanded microgrid. In [43], an isochronous controller is discussed for 

load sharing in inverter based distributed generation system. In this, the inverter 

operates at constant set reference frequency regardless of load. The main drawback of 

this method is that continuous measurement of load power is required.  

The frequency regulation in an islanded microgrid using wind system is 

discussed in [44]. In this, the frequency of the microgrid is maintained constant 

irrespective of load variation through wind system. The controller regulates power 

from the wind system according to the load variation in the microgrid. Thus, the wind 

system is used only to maintain the microgrid frequency constant rather than 

harnessing the maximum available renewable power to support the load.  
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The integration of wind and solar power within DC microgrid is investigated 

in [45]. It discusses about an aggregated model of wind and solar to support the 

quantification of the operational real scheduling and reserve for day-ahead. An 

interconnection control strategy is introduced in [46] for grid connected PV and wind. 

In this case grid frequency is considered constant and sources are integrated at same 

frequency. However the frequency in an islanded microgrid, which operates in 

frequency droop control, can deviate within the droop limit according to load 

requirement.  

1.3. RELIABILITY 

An islanded microgrid only relies on the local resources to ensure the power 

balance between generation and load. Reliability of the local load in the microgrid can 

be improved by smoothly switching between grid connected and islanded mode [47]. 

The reliability in an islanded microgrid with renewable energy sources [48-49] and the 

reliability of microgrid in a grid connected mode or an islanded mode with intermittent 

DGs is evaluated in [50-51]. Islanded microgrid stability relies on the local frequency 

and voltage control strategies, controllable DGs, battery storage units and local load 

[52]. The deployment of the storage units may offer additional resources to an islanded 

microgrid operating under emergency conditions [53]. 

In islanded mode, Electrical Energy Storage (ESS) can facilitate the seamless 

transition of power to the customer in case of generation shortage.  Various EESs are 

available for power system operations. Stationary EESs are referred as Distributed 

Storage Units (DSUs). These can be used either at the time of high emergency power 

demand or to smooth out intermittent power generation [54]. 

When customer load demand is high and the generating sources are operating 

at their maximum capacity, DSUs can be utilized to avoid the use of a more expensive 

option like spinning reserve. Furthermore, DSUs can provide a level of uninterrupted 

power to the customers [55]. It also permits distributed generator (DG) units to run at 

a constant and stable output despite load fluctuations. Thus, it enhances the overall 

performance of an autonomous microgrid [56]. 

There are numerous forms of DSUs, such as, fuel cells, battery energy storage 

units, solar fuel, capacitors, super capacitors, superconducting magnetic energy 
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storages, thermal energy storage system and compressed air energy storage system. 

Several types of batteries are available currently. For example, Nickel Metal Hydride 

(Ni-MH), Nickel-Cadmium (Ni-Cad) or Lithium-Ion batteries have high power 

density and can be used as DSUs [57]. 

In microgrid, DGs can be either dispatchable or non-dispatchable. To fulfill the 

load demand, selection of the size of dispatchable DGs should be in accordance to the 

peak load demand in islanded microgrids because the non-dispatchable DGs are 

dependent on weather conditions. However, the peak load can keep on increasing. The 

dispatchable DGs can share the power according to their rating in presence of non-

dispatchable DGs under the assumption that peak load demand is less than the total 

rating of all the dispatchable DGs. To cater to an ever increasing load demand, resizing 

of existing DGs or installation of another DG may not be a favourable option. A better 

strategy is to have some battery energy storage systems (BESSs) to aid the autonomous 

microgrid operation [58]. These BESSs need not be operational all the time, but should 

come online quickly when peak load exceeds the total generation of the DGs [59]. In 

an islanded microgrid, how BESS performs energy balance during quick fluctuation 

in load demand is explained in [60]. However, main focus of this paper is on 

configuration of the modular power converter for BESS. In [61], optimized economic 

operation by load transfer is discussed for grid connected microgrid with BESS to 

reduce the microgrid operating cost. The centralized control is discussed for 

optimizing operation of microgrid which consists of various distributed generators, 

storage devices and controllable loads [62]. A coordinated control is introduced for the 

micro-resources with solar PV and battery storage to support the voltage and frequency 

in an islanded microgrid in [63]. 

1.4. INTERCONNECTION OF MICROGRIDS 

An islanded microgrid can be established as an effective solution of the power 

supply in remote areas. The variety of microgrids is analyzed in [55]. There are remote 

areas where the cost of bringing power lines is prohibitive. An isolated (islanded) 

microgrid in these areas is a more attractive option. However, as mentioned before, 

storage units must be readily available for such microgrids to prevent system collapse. 

Despite the presence of storage, the load shedding may still be required in remote area 
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microgrids [64]. The different load shedding techniques are discussed in literature to 

maintain the system frequency within limit [2, 65]. 

When two microgrids are available in close proximity, they can be connected 

together. It is preferable to interconnect them through a back to back (BTB) converter 

such that each can nominally operate independent of the other. However during an 

emergency overloading in one microgrid (MG), the other can provide support with its 

surplus available power [66]. In [67], a hierarchical structural control strategy has been 

proposed which consist of primary, secondary and tertiary control with economically 

optimal operation. The advanced control and power management in multi microgrids 

with coordinated control of distribution system and centralized control of microgrids 

have been investigated in [68, 69]. A multi-microgrid system composed of several low 

voltage microgrids, interconnected through medium voltage feeders, is presented in 

[69]. In this system, a hierarchical control structure is developed in which the 

frequency and voltage of LV microgrids are controlled using a coordinated control 

scheme.  

In [19], a microgrid is connected with a utility through a back to back converter 

to facilitate bidirectional power flow. It has been shown, how the microgrid can 

exchange a pre-specified amount of power with the utility while operating in a droop 

control. As mentioned in [70], the cost of power electronic components is decreasing 

between 1-5% every year. Also the power electronic converters volume and weights 

are reducing progressively. Also with the progress in Silicon-Carbide (SiC) 

technology, the size of passive filtering components will reduce in the near future, and 

so will the converter losses. In [71, 72], a two microgrid interconnection in grid 

connected and islanded mode is introduced where each microgrid operates at a 

different frequency. If the frequencies are same then these microgrids can be intertied 

by a breaker or a static switch using appropriate synchronisation technique. However, 

having different values of the microgrid frequencies are more flexible. Therefore, for 

intertying these microgrids insertion of back to back converter is required to isolate 

the microgrids [73]. During the connection of these two microgrids, an interlinking 

droop scheme is proposed, based on which the real and reactive power are 

autonomously controlled. However, the operation and control for two microgrids 

which operate in different control modes are not investigated in the literatures.  
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A hybrid grid consisting of AC and DC microgrids connected through 

bidirectional converters, is discussed in [74]. In this paper, coordination control 

algorithms are used to control the smooth power transfer between ac to dc system. 

Single phase microgrids interconnection using single phase back to back converter is 

investigated in [75, 76]. To improve the performance of the multi-microgrids, 

hierarchical coordination and multi-objective optimal power flow algorithms are 

discussed in [77-79]. 

1.5. SMART DISTRIBUTION GRID 

Recently the power industry is going through a substantial transformation 

based on the incorporation of assorted technological innovations [80]. Electricity 

delivery network is currently modernized using latest digital/information technologies 

to allow pervasive control and monitoring [81]. It is expected that in future, the smart 

grid will emerge as a system of organically integrated smart microgrids with pervasive 

visibility, command and control functions distributed across all levels. The topology 

of the emerging grid will therefore resemble a hybrid solution [82]. 

Interconnection of the microgrids has attracted the attention of the researchers 

in last few years. The interconnection of a number of microgrids can make a 

distribution system more reliable and efficient. The concept of power exchange in 

between inter-utilities is introduced in [83]. It discusses about decentralized and 

coordinated operation of power grid. The power exchange in between inter-utilities is 

coordinated using heuristic criteria. An optimal power flow technique is used in [84] 

to calculate the amount of power available for exchange between interconnected 

utilities. In [85], the clustering concept of distribution units is introduced. It discusses 

about the multi-level hierarchical control strategy for DGs with cluster concept of the 

power system. In [86], a decentralized optimal control algorithm is discussed for 

coordinated multi-microgrids.  

1.6. OBJECTIVES OF THE THESIS AND SPECIFIC CONTRIBUTION 

Based on the literature review presented in previous sections, some research 

gaps are identified. These gaps mainly pertain to the operation of microgrids under a 

mix of generation, the system reliability and power quality. Based on these, the thesis 

objectives are set, which are presented in the next sub-section. 
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1.6.1. OBJECTIVE OF THE THESIS 

 Stable operation of an islanded microgrid in the presence of inertial and non-

inertial, dispatchable and non-dispatchable (plug and play) DGs. 

 Development of control strategy for smooth transition of battery energy storage 

system (BESS) to prevent the overloading in a microgrid. 

 Enhancing the power quality in a hybrid microgrid which contains harmonic 

loads using custom power devices.  

 Interconnection scheme of two microgrids, operating in different droop regimes 

for mutual support during contingency. 

 Interconnection of microgrids cluster through a common ac system. 

1.6.2. SPECIFIC CONTRIBUTION OF THE THESIS 

Based on the above objectives, the specific contributions of this thesis are 

1. An improved control strategy is developed for a hybrid microgrid under 

study where any communication between converters is not required. The 

response rates of inertial DGs are slower than non-inertial DGs due to their 

inertia, which can cause large transients in the system. Therefore, a pseudo 

inertia concept is introduced for non-inertial DGs to match their response 

rate with inertial DGs. 

2. In hybrid microgrid, DGs (dispatchable DGs) may operate in a plug and 

play fashion. A new algorithm is designed for synchronization of DGs to 

integrate them smoothly in a microgrid. In this algorithm, no explicit 

frequency measurement is required – it relies only on the measurement of 

instantaneous PCC bus voltage. 

3. A modification of the frequency droop control is proposed to include an 

isochronous controller such that the microgrid frequency can be brought 

back to 50 Hz despite any change in load or generation. This has been 

utilized for both integration of wind generator and for power quality 

improvement using a distribution static compensator (DSTATCOM). 

4. An autonomous microgrid must be equipped with some distributed storage 

units that can quickly come online when peak load exceeds the total 

generation of DGs. A new control strategy is developed for smooth 

transition of battery energy storage system (BESS) in which it only supplies 
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the excess amount of power to support the microgrid during contingency. 

When there are several BESSs distributed throughout a microgrid, they 

must supply power according to their present rating (SOC). An algorithm 

based on the modification of angle droop control is proposed for this 

purpose. 

5. Two microgrids that are in close proximity can be interconnected through 

back to back converter for mutual support during any contingency. An 

overall power flow control algorithm is developed for the interconnection 

of two microgrids that are operating under different droop control regimes. 

6. A form of smart distribution grid can be visualized as a cluster of 

microgrids that can be joined together by a common ac feeder, which has 

been termed as a power exchange highway (PEH) [82]. A double layered 

droop control algorithm is proposed for a cluster of microgrids such that it 

can prevent a collapse in any of the microgrids in the cluster due to the lack 

of available generation. 

1.7. THESIS ORGANIZATION 

The thesis is organized in eight chapters. The organizations of the rest of the 

chapters are given below. 

In Chapter 2, stable operation of a hybrid microgrid, which can consist of 

inertial and non-inertial DGs, is discussed. The combination of these various sources 

makes the microgrid control a challenging task in an autonomous (islanded) mode. 

Since the time response of the non-inertial DG is faster than the inertial DG, it can 

create a large transient excursion in the system. Therefore, a pseudo inertia concept is 

introduced in this chapter to make non-inertial DG response rate similar to the inertial 

DG. Also a modification of the angle droop of [70] is proposed to make this insensitive 

to the output inductances of the DGs. 

Some strategies for connection/disconnection of non-dispatchable DGs in an 

islanded microgrid, operating in a frequency droop control, are proposed in Chapter 

3. The DGs must be connected to the microgrid at the same frequency of the microgrid, 

therefore a simple algorithm of synchronization based on symmetrical component 

theory is proposed. In this algorithm, only instantaneous bus voltage measurement is 

required and no frequency measurement is needed. 
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Alternatively, a microgrid can be forced to operate at 50 Hz even when it is 

operated under a frequency droop control. A modification of the frequency droop 

control proposed in this chapter that includes an isochronous controller. Both the 

synchronization and isochronous control algorithms are demonstrated for both wind 

and PV integration. 

Chapter 4 proposes the control strategies for the BESS to prevent the 

overloading in an autonomous microgrid. Since non-dispatchable DGs may not be in 

the system all the time, the dispatchable DGs should cater to the peak load demand. 

However since the peak load keeps on growing, this also cannot always be assured. 

Therefore, an islanded microgrid must be equipped with storage units that can quickly 

come online during any contingency. 

Three different BESS interconnection strategies are proposed in this chapter. 

In the first one, a BESS comes online when an overload is detected and supplies its 

maximum available power. In the second one, the BESSs start operating in the same 

frequency droop as the rest of the DGs in the microgrid. However, a BESS is expensive 

and its life time can be shortened by several charge/discharge cycles. Therefore such 

a unit must come online only when required and must supply only the amount of power 

that cannot be supplied by DGs in the autonomous microgrid. This is achieved through 

the modified angle droop control discussed in Chapter 2, which is the third strategy 

presented in this chapter. 

In Chapter 5, two different strategies are proposed to operate a DSTATCOM 

at the same frequency of the microgrid to mitigate harmonics produced by a polluting 

load. If a microgrid contains a diesel generator, the harmonic current flow through the 

armature of the synchronous generator will distort the armature reaction and lead to 

electromagnetic torque pulsation. This will reduce the life time of the generator and 

may even cause generator failure. To prevent this a DSTATCOM is connected at the 

PCC of the load bus at which the harmonic load is connected. 

Two DSTATCOM operating strategies are proposed in this chapter – one is 

recovering the microgrid frequency to 50 Hz through the isochronous controller 

proposed in Chapter 3. The other strategy uses a simple frequency estimation 

technique and generates the reference for DSTATCOM using this synthesized 
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frequency. The effect of frequency mismatch on the dc capacitor voltage of the 

DSTATCOM is also analyzed. 

The interconnection of two microgrids that are in close proximity through a 

back to back converter is discussed in Chapter 6. An overall power flow control 

algorithm is developed for the interconnection of two microgrids that are operating 

under different droop control regimes. The interconnection of microgrids which 

operate in different droop control modes is a challenging task. A step by step algorithm 

is developed for overload power calculation, surplus power calculation, based on 

which the power flow control scheme for the interlinking converters is developed. 

Chapter 7 proposes a new topology of the interconnection of a number of 

microgrids. The microgrids are interconnected through a common ac bus which is 

termed as power exchange highway (PEH). The microgrids are connected to the PEH 

through back to back converters which are termed as power exchange converters 

because their main purpose is to control the power flow between the PEH and the 

microgrid. A double layered droop control is proposed in which all the microgrids 

operate in the inner layer frequency droop control. The outer layer consists of a 

dynamic droop control that regulates the power flow through the PEH. The microgrids 

can support to other microgrid depending on their available surplus power. Therefore, 

the dynamic droop control gains are calculated from their respective available surplus 

power. The selection of the droop gains have an important role for this power flow 

control scheme. 

The general conclusion and scope for the future works are given in Chapter 8. 

Appendix A discusses the converter structures and control methods and Appendix B 

discusses the frequency estimation technique used in this thesis. 
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CHAPTER 2 

POWER SHARING CONTROL IN HYBRID MICROGRID 

Dynamic responses of inertial and non-inertial DGs in a microgrid are 

different. The inertial DGs show a slower response, while non-inertial (NI) DGs can 

respond very quickly. This mismatch of response rate in different types of DGs creates 

transient oscillations in an autonomous microgrid where no strong source is present to 

control the system frequency and voltage. In this chapter, we shall analyze the behavior 

of an autonomous hybrid microgrid that contains both inertial and non-inertial DGs. 

In this thesis, the term hybrid microgrid will be used for those systems which have 

both inertial and non-inertial DGs. These DGs can also be either dispatchable or non-

dispatchable. 

A new control algorithm for a converter interfaced DG is proposed which 

facilitates smooth operation in hybrid microgrid. In order to achieve this, the converter 

response speed is matched to be of the same order as that of an inertial DG. To 

investigate the system response with the dynamics of the DG units, the sources and all 

power electronics converters are modelled in detail. Furthermore, effective control 

strategies for power sharing in a microgrid according to available DGs are also 

discussed. 

2.1. SYSTEM STRUCTURE 

For simplicity, the microgrid structure under consideration is comprised of two 

DGs, one of them is inertial DG (Diesel Generator) and other one is converter 

interfaced DG (Microturbine), as shown in Fig. 2.1. The DGs supply a balanced load 

and share it in proportion to their respective ratings. The converter interfaced DG1 

(MT) is operated in voltage control mode, which is connected to a permanent magnet 

synchronous generator (PMSG). The PMSG rotates at high speed 96,000 rpm and 

hence generates voltage at 1600 Hz. Therefore, the output of the PMSG is converted 

into dc and then converted into fixed frequency ac output through the voltage source 

converters [87]. The converter interfaced DG can also be a UPS. DG2 is an inertial 

diesel generator, driven by an IC engine [88]. The real and reactive powers supplied  
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Fig. 2.1. Microgrid structure under consideration. 

by DGi are denoted by Pi and Qi respectively. The real and reactive power demands of 

load are denoted by PL and QL. Detailed model of the DGs are discussed below. 

2.2. DIESEL GENERATOR  

The diesel generator set consists of a 4-stroke internal combustion (IC) engine 

coupled to a synchronous generator. The schematic diagram of the generator set is 

shown in Fig. 2.2. The IC engine is integrated with a governor for controlling the 

output speed of the engine shaft by adjusting the amount of fuel supplied to the engine. 

There is a dead time associated with the change of fuel supply to change in output 

torque of the IC engine due to its inertia. The governor is controlled by using a PID 

controller to maintain a reference set speed. The synchronous generator is incorporated 

with an excitation system, which is combination of an exciter and a automatic voltage 

regulator (AVR). The voltage regulator controls the field supply of the generator to 

maintain the required terminal voltage. The automatic voltage regulator contains a 

stabilizing feedback loop. The each component of the generator set is described below. 

PID-Controller AVR

Field

Excitation

Fuel 

Control

+ - 

Engine

g

VT

V
+

 +

Generator

 

Fig. 2.2. Schematic diagram of diesel generator set. 
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2.2.1. SYNCHRONOUS GENERATOR 

The synchronous generator (SG) converts mechanical energy supplied by the 

prime mover to electrical energy [89]. It is the most popular form of energy generator. 

The mechanical rotational speed (g) of the generator is proportional to its electrical 

speed (e) as 

p

e
g

n


                   (2.1) 

where, np is the number of pole pair in the SG.  

The PSCAD model of the synchronous generator is used for the diesel 

generator modelling [90]. The model along with dynamic calculation [91], calculates 

the torque using dynamic equation as  

)(
1

mem

rl

m BTT
Jdt

d
                  (2.2) 

where, Jrl, B are the combined inertia and viscous friction of load and rotor 

respectively, Te is the electromagnetic torque, Tm is the mechanical input torque for the 

generator. The dynamic parameters of 500 kVA rated generator is listed in  

Table. 2.1. The parameters of SG are normalised as described in [91]. The rated power 

and the voltage of SG are considered as the base values for the calculation of per unit 

values. 

2.2.2. EXCITER 

The excitation system controls the output voltage of the generator [92]. 

Depending on the excitation power source, distinctive type of excitation system can 

be identified as follows [93]: 

a) Type DC excitation systems: In this type of excitation system, DC 

generator with a commutator is utilized. 

b) Type AC excitation systems: In this type of excitation system, alternator 

with either stationary or rotating rectifiers is utilized. 

Type ST excitation systems: In this type of excitation system, power is supplied 

through transformer with rectifier. 
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Table. 2.1. Diesel generator set data. 

System data Value 

Rated voltage 11 kV 

Rated current 0.02624 kA 

Rated frequency 50 Hz 

Rated speed 1500 rpm 

Reactance Value (pu) 

Xd: Unsaturated d axis synchronous reactance 0.116 

X'd: Unsaturated d axis transient synchronous reactance 7.4 103 

X''d: Unsaturated d axis subtransient synchronous 2.94 103 

Xq: Unsaturated q axis synchronous reactance 6.37 103 

X''q: Unsaturated q axis subtransient synchronous reactance 5.24 103 

X2: Negative-sequence reactance 0.044 

X0: Zero-sequence reactance 2.45 103 

Time constants Value (ms) 

t’’do: d axis subtransient open circuit time constant 25 

t’’qo: q axis subtransient open circuit time constant 4 

t’d0: d axis transient open circuit time constant 368 

ta: Armature time constant 25 
 

For considered diesel generator set, the exciter system is chosen type AC. The 

transfer function model of Type AC2A is presented in Fig. 2.3., which is a high initial 

response field controlled alternator-rectifier excitation system. This type of excitation 

system is available in PSCAD library. The typical parameters of the system are given 

in Table. 2.2. 
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Fig. 2.3. Type AC2A- transfer function model [94]. 
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Table. 2.2. Excitation system model parameters. 

Parameters Values 

Voltage regulator gain KA 400 (pu) 

Voltage regulator time constants TA, TB, TC  0.01, 0, 0 (s) 

Second stage regulator gain KB 25 (pu) 

Exciter field current feedback gain KH 1 (pu) 

Max & Min regulator output limits VRMAX ,VRMIN 105, -95 (pu)  

Exciter time constant TE 0.60 (s) 

Exciter constant related to field KE 1 (pu) 

Demagnitizing factor KD 0.35 (pu) 

Excitation control system stabilizer gain KF 0.03 (pu) 

Rectifier loading factor proportional to commutation 

reactance KC 

0.28 (pu) 

Rate feedback time constant TF 1 (s) 

 

2.2.3. GOVERNOR 

The essential device which controls the speed or output power of the engine or 

the turbine is called a governor. The governor regulates the speed of the IC engine by 

changing the fuel rates. The governor is controlled by a PID controller to maintain a 

reference set speed. The PID controller is responsible for the control of the system 

frequency [94]. The considered PID controller for diesel generator set is presented in 

Fig. 2.4, where input is speed error (between the actual speed of the generator (g) and 

the desired speed ()). The output of the controller is the fuel rate (FL) of the IC engine. 

The parameters of the controller are listed in Table. 2.3. The Internal Combustion (IC) 

engine model is available in PSCAD library. It takes fuel rate and generator speed as 

the inputs and supplies mechanical torque as an output. The parameters of the IC 

engine are given in Table. 2.4. 
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Fig. 2.4. PID speed controller. 

Table. 2.3. PID controller parameters. 

Parameters Values 

Kp 5000 

KI 1000 

KD 200 

Table. 2.4. Internal Combustion Engine parameters. 

Parameters Values 

Engine rating 500 kW 

Machine rating 500 MVA 

Engine rated speed 1500 rev/min 

Number of engine cylinders 12 

Number of engine cycles 4 

 

2.3. MICROTURBINE (MT) 

The schematic diagram of the MT system is shown in Fig. 2.5. It consists of a 

gas turbine that produces rotating mechanical power Pm through the fuel mass flow 

rate 𝑚̇𝑎, which is then converted into an electrical power Peg by a permanent magnet 

synchronous generator (PMSG) [95-99]. The thermodynamic model of the turbine 

[100] is shown in Fig. 2.6. The typical parameters are given in Table. 2.5. The mass 

flow rate, input of the turbine is regulated through a PI controller to maintain the 

desired speed of the generator. The MT usually has one pole pair and rotates at a very 

high speed. The speed is chosen as 96000 rpm. This means that the PMSG generates 

power at 1600 Hz. A rectifier-converter stage is used to convert this high frequency 

power into an electrical power at 50 Hz. VSC-1 controls the power flow from the 

PMSG and operates at the same frequency of the PMSG. VSC-2 holds the voltage 

across the dc link capacitor constant.  
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Fig. 2.5. Schematic diagram of microturbine. 
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Fig. 2.6. Microturbine thermodynamic model [97]. 

Table. 2.5. Microturbine model parameters. 

Parameters Values 

kafr Intel air to fuel ratio 93.1 

 𝐶̅Pair Intel air average specific heat capacity 1157 [J/Kg °C] 

 𝐶̅Pexh Exhaust gas average specific heat capacity 1321 [J/Kg °C] 

Ta Intel air ambient temperature 28.7 [°C] 

Tc Compressor outlet temperature 180.9 [°C] 

Tcc Combustion chamber outlet temperature  893.9 [°C] 

Tt Turbine outlet temperature  634.9 [°C] 

c Compressor time constant 1.3 [ms] 

cc Combustion chamber time constant  1.4 [ms] 

t Turbine time constant  0.3 [ms] 

 

2.4. VOLTAGE SOURCE CONVERTER (VSC) 

In this thesis, two different types of VSCs are used, along with their switching 

control strategies. These are presented in Appendix A. Depending on the applications, 

a VSC can have either an LC filter or an LCL (T) filter, as shown in Fig. 2.7. The 
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filters are denoted by Lf, Cf and L, while the resistance Rf represents the converter and 

transformer (if any) losses. The switching control law takes the advantage of the 

voltages and/or currents across the filters. 

Cf
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Vdc
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VSC
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Vdc

L
DC 

Bus
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Fig. 2.7. VSC with different filter structures. 

2.5. DROOP CONTROL 

Proper control of a microgrid is prerequisite for stable and economically 

efficient operation, in both grid connected and islanded modes [18]. The same control 

strategy cannot be used in both modes. For grid connected operation, the system 

frequency and voltage of the microgrid are mainly controlled by the grid. However, in 

the absence of grid, DGs in the microgrid need to be controlled such that the frequency 

and voltage in the islanded microgrid are maintained within standard limits. Therefore, 

droop control is employed for this purpose. This type of control method avoids the 

need of any communication interface between DGs. The main purpose of ignoring the 

communication for primary control is to avoid the single point of failure and to 

increase the reliability of the microgrid [34, 101]. Various droop control methods have 

been discussed in [24] to control an autonomous microgrid.  

Frequency and voltage droop are the most common way of controlling DGs to 

achieve frequency/voltage control and load power sharing in an islanded microgrid. 

The angle droop control strategy can also be applied for a microgrid which consists of 

only converter interfaced DGs [28]. In this chapter, it has been assumed that total 

power demand in the microgrid can be supplied by the DGs connected to it. This 

assumption will be relaxed from Chapter 4. 

2.5.1. ANGLE DROOP 

When a microgrid consists of only converter interfaced DGs, the angle droop 

control strategy can be applied to control the accurate power sharing amongst DGs. 
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Let us assume that there are only two DGs supplying a load as shown in Fig. 2.8. 

Comparing this figure with Fig. 2.7 (b), we have L1 as the output inductor of the LCL 

filter. The voltage Vg g is synthesized across the filter capacitor Cf. In this case, the 

real and reactive power sharing amongst DGs can be controlled by changing the 

voltage magnitude and its angle as 

 
 iiaigrigi

iiaigigi

QQnVV

PPm








               (2.3) 

where Vgr
 and δg

 are the rated voltage magnitude and angle of each DG and P, Q are 

the rated value of real and reactive power respectively. Vg and δg are the actual 

measured value of voltage magnitude and its angle, when the DG supplies reactive 

power of Q and real power of P. The angle and voltage droop coefficients are ma and 

na respectively. 

The requirement for an angle droop is that all DGs must operate with respect 

to a single reference angle. If an autonomous microgrid contains only converter 

interfaced DGs, the reference angle can be set arbitrarily. This is because the actual 

power flow depends on the relative angle difference and not the actual values of the 

angles. Since there is no strong source in the system, the bus angle can be easily set by 

the DGs. 
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Fig. 2.8. Microgrid structure with converter interfaced DGs only. 

In an angle droop control, it has been shown in [19] that the output inductance 

of the DGs plays a crucial role in power sharing, which is given by 

111

222

2

1

aL

aL

mXX

mXX

P

P




                 (2.4) 
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where X1=ωL1 /(Vg1V), X2 = ωL2 / (Vg2V), XL1 = ωLf1/(Vg1V) and XL2 = ωLf2 /(Vg2V). 

The droop coefficients are chosen in such a way that 

222111 LaLa XXm and XXm   

Therefore from (2.4) 




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2
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1

2

2

1

P

P

m

m

P

P

a

a                 (2.5) 

The error in power sharing can be further reduced by taking the output inductance of 

the DGs inversely proportional to the power ratings of the DGs. 

For example, Let us consider the system of Fig. 2.8, where the converter 

interfaced DGs are connected to a 200 kW load. DG-1 and DG-2 are rated with 200 

kW and 100 kW respectively. The system data are given in Table. 2.6. These DGs 

operate in angle droop control to share the power according to their ratings. In Fig. 2.9, 

effects of the DGs output inductance on the power sharing is shown. In Fig. 2.9 (a), 

the output inductances are considered in the reciprocal ratio of the DGs rating, 

therefore, the power sharing is in the ratio of their ratings. However, in Fig. 2.9 (b), 

same output inductances are considered for both DGs and it can be seen that power 

sharing ratio is not equal to 2:1. Hence, it implies that for accurate power sharing 

amongst DGs, the output inductance of the DGs selection should be inversely 

proportional to their rating. 

 

Table. 2.6. Parameters of DGs connected in the microgrid (Fig. 2.8). 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DG Rated Power DG-1: 200 kW, DG-2: 100 kW 

Output Inductor L1 = L2 = 10 mH 

Droop Coefficient (Angle–Voltage) 

ma1 2.0     rad/MW 

ma2 1.0     rad/MW 

na1 1.0      kV/MVAr 

na2 0.5      kV/MVAr 
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Fig. 2.9. The output inductance effect on power sharing using angle droop control. 

Therefore, there are two drawbacks of this scheme. One is that the output 

inductance of each DG has to be higher than the line impedance. The other is that the 

inductance must be in reciprocal proportion to the power rating of the DG. In order to 

overcome these drawbacks, a modified droop control is discussed below. 

2.5.2 MODIFIED ANGLE DROOP CONTROL 

The main purpose of the modified droop control is to overcome the effect of 

the output inductance of the DGs on power sharing control. As it is mentioned before 

angle droop control depends on the output inductance of DGs. Therefore, in modified 

droop control the angle droop is given with respect to the bus voltages as 

 iiaiii PPm  **                (2.6) 

 iiaiii QQnVV  **                (2.7) 

DC load flow is used as a non-iterative solution to calculate power flow in ac 

systems. In this, nonlinear ac system model is simplified to a linear form through the 

following assumptions: 

 Line resistances are assumed to be negligible compared to line reactances. 

 Bus voltage angle differences are assumed to be small. 

 Magnitudes of bus voltages are set as equal to have a flat voltage profile. 

Applying DC load flow with all these necessary assumptions [19] we get, 
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Let us choose the following 

*
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              (2.10) 
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1                  (2.11) 

Combining (2.6, 2.10 & 2.11), we get 

221121 PmPm aa               (2.12) 

Also from (2.8) we get 

221121 PXPX LL              (2.13) 

Combining (2.12-2.13), we get 
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Since, 

2211 LaLa Xm and Xm   
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a                (2.15) 

Equation (2.15) implies that the droop gains should be in reciprocal to the DG 

power ratings. In that case, the powers will also be shared in reciprocal to the droop 

gains, i.e., in accordance with the DG ratings. 

Once the angles are calculated from the angle droop and the voltage magnitude 

is calculated from the voltage droop, the voltage references for the DG output 

converters need to be calculated. For this, the real and reactive power flow from DG-

1 to bus-1 will be considered. In per phase basis, these are given by 
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From these two expressions, the angle of the DG-1 converter output voltage is 

calculated as 
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Once g1 is obtained, the voltage magnitude is calculated from (2.16) as 
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In a similar way Vg2 and g2 can also be calculated. Once, these quantities are calculated 

then instantaneous three phase reference voltage is obtained as 
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            (2.19) 

The use of (2.16 - 2.19) eliminates the need of precise determination of 

converter output inductances for power sharing. Equation (2.15) remains valid as long 

as the line impedance is much smaller than the angle droop gain, which is true when 

the microgrid spans a small geographical area. 

Let us consider now these DGs are operating in modified angle droop to share 

power according to their ratings. The output inductances of the DGs are considered 

equal (i.e. L1=L2=10 mH). It can be seen in Fig. 2.10 that power sharing amongst DGs 

is in the ratio of 2:1. When the system is operating in the steady state, the load suddenly 

reduces to 150 kW. The power shared by the two DGs and the power consumed by the 

load are shown in Fig. 2.10. It can be seen that during the entire process, DG-1 supplies 

twice the amount of power supplied by DG-2. 
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Fig. 2.10. Real power sharing in MG using modified angle droop control. 

 

2.5.3. FREQUENCY DROOP  

In a conventional frequency droop control method, each DG uses its real power 

output to set the frequency at its point of connection [92]. The conventional frequency 

droop characteristic, given in (2.20), is shown in Fig. 2.11. 

)5.0( PPm f                (2.20) 

where  and * are the instantaneous and rated frequency of the system 

respectively and P* and P are the rated and measured actual real power respectively. 

The droop coefficient is denoted by mf. The frequency variation  =   * is zero 

when a DG supplies half of its rated power. The frequency is higher than 50 Hz when 

the load power is less than half rated power and is lower than 50 Hz when the load 

power higher than half rated power. Note that the droop gain mf is chosen so as to 

maintain the frequency deviation (fd) within ± 0.3 Hz from the base frequency of 50 

Hz. In an islanded microgrid containing synchronous generators, it is desirable to limit 

the frequency variation to within ± 0.5 Hz [92, 102]. We have added a more stringent 

restriction of ± 0.3 Hz for these studies. 

The value of the droop coefficient can be calculated from (2.20) using the 

frequency deviation limit of the system and power rating of the DG. The value of the 

droop coefficient is reciprocal of the rating of the DG. Therefore, each DG may have 

unique value of the droop coefficient (mf) for its droop line. The proper selection of 

droop coefficients for each DG allows sharing the total load power requirement among 

the DGs proportionally to their rated power. 
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Fig. 2.11. Frequency droop characteristic. 

Consider the frequency droop of (2.20). From this we get 

fm
PP

*

5.0
 

               (2.21) 

Assume that the minimum frequency is m rad/s (which is equivalent to 49.7 Hz). At 

this frequency, the DG must supply the maximum rated power i.e., P = P*. Then the 

value of mf can be calculated from (2.21) as  


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

P
m m

f

*

2               (2.22) 

The reactive power is shared in proportion to the voltage magnitude as 

)( ** QQnVV f               (2.23) 

where V and V* are the instantaneous and rated voltage respectively and Q* and Q are 

the rated and measured actual reactive power respectively. The droop coefficient is 

denoted by nf. The conventional voltage droop characteristic is shown in Fig. 2.12. In 

LV networks, in general, the voltage variation is limited to between 0.94 per unit and 

1.05 per unit. Therefore the voltage limits in the islanded microgrid is set as ± 5%. 
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Fig. 2.12. Voltage droop characteristic. 

For example, consider an autonomous 11 kV microgrid with two DGENs as 

shown in Fig. 2.13. The ratings of DGEN-1 and DGEN-2 respectively are 250 kW and 

500 kW. The frequency deviation limit is considered as  0.3 Hz. The droop gains are 

calculated according to the ratings of DGs. The values of the droop coefficients and 

system parameters are given in Table. 2.7. 

 

Rf1   

PDGEN1, 

QDGEN2  

PL, QL  

Rf2VT1 VT2

PDGEN2, 

QDGEN2  

LOAD  

DGEN-2DGEN-1

Fuel rate

Synchronous 

Generator

4-Stroke IC 

Engine

PID-

Controller

AVR

VT

Excitation

V

g


+

+
DGEN Control


+

Σ Σ m
PDGEN

P*/2



V

+
Σ Σ nQDGEN

Q*
+

+

V

Frequency Control

Voltage Control

 

Fig. 2.13. Microgrid structure with two DGENs. 
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Table. 2.7. Parameters of the DGs connected in Microgrid (Fig. 2.12). 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DGs Rated Power DGEN-1: 500 kW,  

DGEN-2: 250 kW 

Droop Coefficient (Frequency–Voltage) 

mf1 0.0075 rad/MWs 

mf2 0.015 rad/kWs 

nf1 0.02 kV/MVAr 

nf2 0.04 kV/MVAr 

 

At the beginning, the load demand is 350 kW, which is below half of the total 

DGEN rating. Subsequently at 3 s, the load demand increases to 500kW. The load 

power shared by the DGENs according to their ratings are shown in Fig. 2.14, while 

the frequencies of the DGENs are shown in Fig. 2.15, which are above or below 50 Hz 

depending on the total load requirement. 

 

 

Fig. 2.14. Load power sharing by the DGENs.  
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Fig. 2.15. DGEN frequencies before and after load change. 

Usually in LV networks, R/X ratio is high. Both the droop control strategies 

presented before depend on decoupling of real and reactive power assuming that R/X 

is small. In such cases, the conventional droop method may not be suitable for active 

and reactive power sharing [103-104]. Furthermore, this method has some drawbacks, 

such as frequency and amplitude deviation, slow transient response [105]. The 

decoupling in retrofilled networks may be difficult. However for greenfield networks, 

cables can be easily chosen to satisfy this condition. 

2.6. PSEUDO INERTIA CONCEPT  

When a microgrid contains of both inertial and non-inertial DGs, there may be 

large power and frequency excursions during transients. Consider the Fig. 2.1 with a 

DGEN and a non-inertial DG. The system response for a cold start is shown in Fig. 

2.16 and Fig. 2.17. From Fig. 2.16, it can be seen that high frequency oscillations lasts 

for about 0.5 s. Following this, the NI DG starts drawing power and the diesel 

generator balances this out by supplying a large amount of power for about 1.5 s. Also 

the system takes a long time to reach steady state, while the frequencies of the two 

DGs never coincide, as evident from Fig. 2.17. Note that the DGEN may never be able 

to supply the transient power resulting in a system collapse. 
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Fig. 2.16. Real power sharing in microgrid (operating in frequency droop). 

  

Fig. 2.17. Frequencies of DGs (operating in frequency droop).  

The angle droop control is discussed for a hybrid microgrid containing inertial 

and non-inertial DGs [106]. To match the rates of change in power output of inertial 

and non-inertial DGs, a derivative term is added in power output of the NI- DG. This 

method has few limitations as: 1) To add derivative term, droop parameter must be 

chosen very carefully and 2) It can add noise to system. The governor of synchronous 

machine controls the output power of the engine using the PID controller. This 

controller takes as input of frequency error and output power error. This also contains 

a logical signal control which is decided according to the state of the generator. 

Therefore, the response of the generator is sluggish.  

In [107], the dynamic responses of DGs are discussed in hybrid microgrid 

containing inertial and non-inertial DGs. In this paper, non-inertial DGs are 

synchronised with a microgrid which consist of inertial DG using angle droop control. 

The inertial DG operates in a frequency droop control. The angle for non-inertial DG 
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is calculated from the droop frequencies. However, when both sources are connected 

from cold start is not considered. In this case, transient oscillations can be high, since 

the angle is calculated based on the droop frequency and the measured frequency at 

the point of connection. To overcome these issues the pseudo inertia concept is 

developed.  

This involves a new converter reference voltage generation technique as shown 

in Fig. 2.18. This includes a speed governor and a swing equation. 

P*



Governor

sT

G

1

Swing

Equation

D

+
sw


Pm

 

Fig. 2.18. Block diagram of governor and swing equation. 

2.6.1. GOVERNOR 

The governor generates a mechanical power output that will be used in the 

swing equation. The reference power (capacity of the DG) is passed through transfer 

function block, as shown Fig. 2.18. The error in speed is then added to the output of 

this block [102]. The mechanical power is then given by 




  DP
sT

G
Pm

1
             (2.24) 

where  is obtained from droop (2.20) and 

*,
1

 
fm

D

 

2.6.2. SWING EQUATION 

Once the mechanical power is obtained from (2.24), it is used in a swing 

equation, in which the inertia and damping parameters are chosen carefully. The swing 

equation [92] is solved by  

sw
dt

d



 *                (2.25) 
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            (2.26) 

swDG                 (2.27) 

In the above equation, the electrical power Pe is measured at the DG terminal. 

KD and H are the damping ratio and the inertia constant respectively. The parameters 

are given in Table. 2.9. 

2.6.3. REFERENCE VOLTAGES 

Once the frequency droop equation (2.20) is solved, the frequency error is used 

to determine the required mechanical power Pm. This is then used in the swing equation 

to determine  and DG. Also, the magnitude of the required voltage is generated from 

the reactive power droop equation in (2.23). Once these quantities are available, the 

instantaneous reference voltages for the three phases are obtained as 

 

 

 
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tVv

tVv

tVv

DGc

DGb

DGa

            (2.28) 

These reference voltages are then tracked by the VSC as discussed in Appendix A. 

2.7. SIMULATION STUDIES 

Let us consider the system shown in Fig. 2.1. The DGEN has a rating of 500 

kW and the MT has a rating of 250 kW. They should therefore share power in a ratio 

of 2:1. Furthermore, the frequency should not deviate more than  0.3 Hz. From (2.14), 

we find that the DGs should operate at 50 Hz when they are supplying half of their 

rated power. Also both DGs should operate at the same frequency. For the DGEN, the 

droop coefficient can be calculated from (2.16) as 

s-kWrad 0075.0

kW 250rad/s 23.0

2

2

*





f

f

m

m

 

In the same way, the droop gain for the MT (mf1) will be twice of mf2, i.e., 0.0150 

rad/kW - s. 

Table. 2.8. Parameters of the DGs connected in Microgrid (Fig. 2.1). 
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System Quantities Values 

DG1 Feeder Impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder Impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DGs Rated Power MT: 250 kW,  

DGEN: 500 kW  

PQ Load 600 kW, 500 kVAR (before 10 s) 

300kW, 500 kVAR (after 10 s) 

Droop Coefficient (Frequency–Voltage) 

mf1 0.015 rad/MWs 

mf2 0.0075 rad/kWs 

nf1 0.02 kV/MVAr 

nf2 0.04 kV/MVAr 
 

Let us assume that the two DGs are required to supply 600 kW. The system is 

cold started at t = 0 s and load is changed to 300 kW at t = 10 s. The load power and 

the power generated by the two DGs are shown in Fig. 2.19. The ratio P1:P2 remains 

1:2 during entire period except during transients. It can be seen that MT also has slow 

response, so has the diesel generator. This response depends on the selection of the 

swing and governor parameters. During the load change, there is no large transient in 

the power supplied by the DGs. 

The frequencies of the two DGs are shown in Fig. 2.20. It can be seen that, due 

to the proper choice of droop gains, they merge following transients. Since DGEN 

rating is twice than of MT, it must supply 400 kW before 10 s and 200 kW after 10 s. 

Also note that the frequency becomes below synchronous (BS) before 10 s and above 

synchronous (AS) after 10 s. We can verify these frequencies from (2.14) as 

 
Hz fBS 82.49

2

4005005.00075.0
50 




  

 
Hz fAS 06.50

2

2005005.00075.0
50 




  
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Fig. 2.19. Real power sharing in between MT and DGEN. 

 

Fig. 2.20. Frequencies of MT and DGEN. 

Table. 2.9. Swing equation and governor parameters. 

System data Value 

Damping constant (KD) 5 MWs/rad 

Inertia constant (H) 2 MJ/MVA 

Gain (G) 1 

Time constant (T) 0.001 s 

 

2.8. CONCLUSION  

This chapter discusses the operation of DGs in a hybrid microgrid. A 

modification to angle droop has been proposed, which makes the power sharing 

independent of the output inductance. However the angle droop does not work 

satisfactorily in the presence of inertial DGs. In such cases (i.e., in hybrid microgrids), 

frequency droop is a better choice. In the frequency droop control, a new control 

algorithm for a converter interfaced DG is proposed which facilitates smooth operation 
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in the presence of inertial and non-inertial DGs. The response speed of a converter is 

reduced by introducing a governor action and a swing equation. In this way, the 

converter can be tailored to respond in harmony with inertial rotary generators. 
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CHAPTER 3 

INTEGRATION OF NON-DISPATCHABLE DGS WITHIN A 

MICROGRID 

A hybrid microgrid can have both dispatchable/non dispatchable and 

inertial/non-inertial DGs. When these varieties of sources are connected to an 

autonomous microgrid (MG), operating in frequency droop control all of them must 

operate at the same frequency. Under such a scenario, the connection and 

disconnection of the non-dispatchable DG becomes crucial, since these types of DGs 

usually have a plug-and-play nature. For example, a PV can only be connected to the 

microgrid in the morning and get disconnected in the evening and in the cloudy 

conditions. 

For the connection of a DG with a microgrid, one of the following two options 

can be chosen 

1) Synchronization 

2) Isochronous operation 

In the former method, the incoming DG is synchronized with the bus voltage 

to which it is getting connected. A simple method is proposed for this purpose. 

Alternatively, the microgrid can be forced to operate at 50 Hz such that other converter 

interfaced DGs can integrate at this frequency. An isochronous controller is proposed 

for this purpose. The discussions of this chapter are mainly focused on wind energy 

integration to a MG. 

3.1. INTEGRATION OF NON-DISPATCHABLE DGS IN A MICROGRID  

The wind energy conversion system (WECS) connected with a microgrid is 

shown in Fig. 3.1. Similarly, the PV connected with a microgrid is shown in Fig. 3.2. 

In Fig. 3.1, a permanent magnet synchronous generator (PMSG) based variable speed 

WECS is considered, which converts wind energy to a low frequency (≈10 Hz) ac 

power. Therefore it needs to be connected to the microgrid through a back to back 

(BTB) converter system. The BTB converter consists of two conventional voltage 

source converters (VSC-1 and VSC-2) connected through a common dc link capacitor. 
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VSC-1 is used to control the power flow from the wind turbine, while VSC-2 is used 

to hold the dc link capacitor voltage (Vdc) constant. Since the microgrid frequency 

varies within the droop limits according to the load demand, VSC-2 should operate at 

the same frequency of the microgrid. In Fig. 3.1, the microgrid structure is considered 

same as shown in Chapter 2, Fig. 2.13. Similarly in Fig. 3.2, the voltage source 

converter, interfacing the PV array to the microgrid, should operate at the same 

frequency of the microgrid. As mentioned before, two methods are proposed through 

which seamless interconnection is achieved. 

PMSG

Wind Turbine

VSC-1 VSC-2Vdc

Microgrid

Pw

CB 1

 

Fig. 3.1. Microgrid structure with WECS. 

Micro 
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LOAD
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Fig. 3.2. Microgrid structure with PV. 

3.2. WIND ENERGY CONVERSION SYSTEM 

3.2.1. WIND TURBINE WITH PMSG MODEL 

The wind power that is captured by the blade and converted into mechanical 

power can be calculated by [108]  

pM CAvP 3

2

1
                 (3.1) 

where  is the air density (kg m-3), A is the cross-sectional area (m2) through which 

wind passes, v is the wind speed (m s-1) and Cp is the power coefficient of the blade. 

The power coefficient Cp is calculated from [109] 
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where  is the pitch angle (degrees),  is the tip speed ratio (the blade tip moving speed 

divided by the wind speed), and  is given by 
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               (3.3) 

The wind turbine operates at the generator control mode when the wind speed 

is below the rated wind speed, and works under the pitch control mode when the wind 

speed exceeds the rated value [110].  

3.2.2. PMSG OPERATION WITH VARIED WIND SPEEDS 

In this study, a variable wind speed has been created using following equations: 
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              (3.4) 

)( 12 ttkvES                  (3.5) 

where vw is the wind speed available to the turbine, vm is the mean wind speed, k is the 

ramp change in the wind speed, t1 and t2 are the starting and ending time respectively 

of the wind speed ramping duration, vES is the external wind speed of the wind source.  

3.2.3. CONTROL OF BTB CONVERTERS WITH PMSG  

The schematic diagram of the PMSG with BTB voltage source converters is 

shown in Fig. 3.3. The kinetic energy of the wind is converted into mechanical energy 

by the wind turbine and then transmitted to the generator. VSC-1 controls the active 

power through MPPT, while VSC-2 maintains the DC voltage constant [111].  

To extract the maximum power from the wind energy, turbine blades should 

change their speed as the wind speed changes. Reference [112] gives out three methods 

to realize the MPPT control. Based on the PMSG model, to control the generator 

power, a method similar to Optimal Torque Control (OTC) is applied here, which is 

named Optimal Power Control (OPC). The principle of the OTC is that the wind 
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turbine mechanical torque T and the turbine speed  have the following relationship 

at MPPT  

2T                  (3.6) 

Assuming that the generator power is denoted by Pg, in OPC we get 

3gP                  (3.7) 

It should be noted that the values of the turbine speed and the generator speed are 

equal, considering that the PMSG model is a direct drive.  

To control MPPT wind power flow to the microgrid, VSC-1 generates voltage 

across the filter capacitor (Cfw) with an angle deviation from the PMSG output voltage. 

This power angle is calculated by a PI controller as  

     dtPPKPPK gIgP 111               (3.8) 

where Pg is the wind power calculated from (3.7) and P is the actual power from the 

PMSG. 

VSC-2 holds the voltage across the dc link capacitor constant. This is achieved 

by controlling angle (2) across the capacitor (Cfg) and this angle is computed by 

another PI controller as  

     dtVVKVVK dcdcrefIdcdcrefP 222              (3.9) 

where Vdcref is the reference dc capacitor voltage and Vdc is the actual dc capacitor 

voltage. KP2 and KI1 are the proportional and integral gain of the controller 

respectively.  
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Fig. 3.3. Schematic diagram of wind energy conversion system 

To illustrate the operation of OPC based MPPT control, consider the WECS 

that is connected to an infinite bus (Fig. 3.3). The parameters of wind turbine and 

PMSG used are listed in Table 3.1. The wind speed pattern is assumed as 

smVkstst m /10,1,4,3 21   

Fig. 3.4 (a) shows the wind speed variation pattern. At the beginning the wind speed 

is 10 m/s, which then ramps up to 11 m/s between 3 and 4 s. The power output of the 

WECS follows the same pattern of the wind speed, as shown in Fig. 3.4 (b). It has been 

assumed that the utility operates at a fixed known frequency and VSC-2 operates at 

this frequency. However when the WECS gets connected to an MG, the frequency can 

be variable depending on the load and generation. For example, assume that a 

microgrid is supplying its load at a frequency f1. When the WECS gets connected, the 

MG frequency which become higher than f1. Therefore, VSC-2 first must synchronize 

with the MG frequency and remain synchronized for any frequency change in MG.  
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Fig. 3.4. Variable wind speed and power. 

Table 3.1. Wind turbine and PMSG parameters. 

Parameters Values 

Rotor radius 58 cm 

Air density 1.225 kg/m3 

Rated wind speed 12 m/s 

Rated apparent power 0.5 MVA 

Rated line-to-line voltage 11 kV 

Rated frequency 10 Hz 

Number of pole pairs 49 

 

3.3. TECHNIQUES FOR INTEGRATION OF WECS WITH MICROGRID 

As mentioned before two methods are proposed for integration of WECS with 

a microgrid. These are discussed below. 

3.3.1. FREQUENCY DROOP CONTROL WITH ISOCHRONOUS OPERATION 

In this method, the frequency of the microgrid is held constant at 50 Hz through 

isochronous operation of frequency droop control. Therefore, VSC-2 can be connected 

to the microgrid at the constant frequency of 50 Hz. In the islanded microgrid, the DGs 

operate in frequency droop control given by  

)5.0( PPm f                 (3.10) 
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Equation (3.10) signifies that when the system frequency is rated (50 Hz), the 

DG should supply half of its rated power. The frequency will be below (above) 50 Hz 

when the DG supplies more (less) than half of its rated power. The droop gain is 

calculated based on a frequency limit (fd) of ± 0.3 Hz. In isochronous mode, the 

frequency of the microgrid must remain constant at 50 Hz. Therefore, if the droop 

control and the isochronous mode are combined, the system operates at the set 

reference frequency while sharing load power according to DG ratings. 

To achieve this, the droop line is shifted according to the load variation while 

preserving its slope. For constant droop coefficient, each DG has its own droop line 

according to its rating. The droop line shifts in such a way that it retains the same slope 

and can supply load power demand at set reference frequency. 

The droop lines of Fig. 3.5 for one of the DGs are considered. Ordinarily, the 

DG operates in line-1. This implies that when it supplies P1 the frequency should be 

1. However it is required that the DG operates at 50 Hz (*). Therefore the frequency 

must be compensated by the amount  = *-1. We also need to maintain the power 

sharing, which depends on the slope of the droop lines. Therefore the quantity  must 

be kept zero against any frequency variation due to load change. To achieve this, a 

PID controller is used. This is shown in Fig. 3.6. The output of the PID controller is 

added to the output of the droop controller, to produce 1′, which is the input to a DG 

governor/controller. Note that in steady state, 1′ = *. This means that the droop line 

has been shifted to line-2 to give power output of P1 at *. 

 

Fig. 3.5. Frequency droop control with isochronous mode. 
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Fig. 3.6. Isochronous controller. 

3.3.2. SYNCHRONIZATION WITH MICROGRID 

In this method, the microgrid operates in conventional frequency droop control 

and its frequency varies within the frequency band according to load power demand. 

Therefore, to connect the WECS with the microgrid, VSC-2 must be synchronized 

with the microgrid to operate at same frequency. To achieve this, a simple algorithm 

is used for synchronization, which is discussed below. 

ZPw

VSC-2

vcf =V

vm=Vmf Microgrid

Vdc

 

 

Fig. 3.7. VSC-2 connection with microgrid. 

Let the frequency of the microgrid be set at The instantaneous voltages (vm) 

at the point of connection of VSC-2 are given as 

 
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Using symmetrical component theory [113], the positive sequence component 

of the instantaneous voltage of (3.11) will be 
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where a = ej120  and 
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The positive sequence of the reference voltage (vcf) across the filter capacitor of VSC-

2 is  

   

 

    22

2

2

221

cossin
2

120sin

120sinsin
3

2

ff

f

ff










tjt
V

ta

tat
V

cfv

 

where 2f   





    22

22

221

sincos
2

sinsincoscos

sincoscossin
2



ff

ff

jj
V

tjtj

tt
V

































cfv

         (3.16) 

Note that from the instantaneous measurement of three phase bus voltage, α 

and β can be calculated. Let the magnitude of the voltage across the VSC-2 filter 

capacitor (vcf) be V ≈ Vm. Also its angle () is obtained by the phase shifting of vm angle 

(f) by 2It is obtained from (3.9).  

From (3.15) and (3.16), vcf1 can be calculated. The instantaneous negative 

sequence (vcf2) is the complex conjugate of the positive sequence. Also, since the 
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system is assumed to be balanced, the instantaneous zero sequence (vcf0) will be zero. 

Therefore, using inverse symmetrical component transform, the instantaneous 

reference voltages across the capacitor are obtained. Thus VSC-2 can track this 

reference output voltage across the capacitor (vcf) without any explicit frequency 

measurement.  

3.3.3 SIMULATION STUDIES 

Three different case studies of WECS and microgrid integration are 

considered. These are  

(a) Nominal operation of the islanded microgrid. 

(b) WECS integration with the microgrid using isochronous operation of 

frequency droop. 

(c) WECS integration with the microgrid using frequency synchronization 

The system (Fig. 3.1) parameters are listed in Table 3.2. 

Table 3.2. System parameters considered in Fig. 3.1. 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DGs Rated Power DGEN-1: 500 kW,  

DGEN-2: 250 kW 

Droop Coefficient (Frequency–Voltage) 

m1 0.0075 rad/MWs 

m2 0.015 rad/kWs 

n1 0.02 kV/MVAr 

n2 0.04 kV/MVAr 

 

CASE (A): The microgrid has two DGENs with ratings of 500kW and 250kW 

respectively and its local load. The droop coefficients for each DG are calculated based 

on their ratings. The local load is assumed to be 625 kW. As shown in Fig. 3.8 (a), 

DGENs share the power in the ratio of 2:1 according to their ratings. The microgrid 

frequency is 49.8 Hz with the conventional droop control method as shown in Fig. 3.8 

(b). The isochronous controller is applied at 2 s and it can be seen from Fig. 3.8 (b) 

that the frequency converges to 50 Hz within 3 s. However the powers remain 
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unaltered. The parameters of the PID controller are listed in Table 3.3. Subsequently, 

the load power is calculated at 11 s. The results are shown in Fig. 3.9. It can be seen 

from Fig. 3.9 (a) that the power supplied by the DGs also changes maintaining the 

same ratio. However the system frequency does not diverge from 50 Hz, as can be 

seen from Fig. 3.9 (b), due to the action of isochronous controller. 

 

Fig. 3.8. Real power sharing and frequency of microgrid with conventional droop and with 

isochronous controller. 

Table 3.3. Parameters of the PID controller. 

System data Value 

Proportional gain (KPi) 0.1 

Integral gain (KIi) 10 

Constant coefficient (a) 200 

 

Fig. 3.9. Real power sharing and frequency with load variation in Case (A). 
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CASE (B): The microgrid operates in frequency droop control with isochronous mode. 

Therefore, the microgrid operates at the constant reference frequency of 50 Hz and 

hence VSC- 2 can operate at 50 Hz. The results are discussed below. 

CASE (B.1): MICROGRID WITH CONSTANT SPEED WECS  

For this case, it has been assumed that when the WECS system is connected to 

the microgrid at 2 s, the sources are operating in the steady state. The WECS supplies 

its total power to the microgrid. The real power flow in the microgrid is shown in Fig. 

3.10 (a). It can be seen from this figure that the power supplied by the DGs reduces 

proportionally, maintaining the sharing ratio. The frequency of the microgrid is shown 

in Fig. 3.10 (b). It can be seen that the system frequency is retained at the set reference 

value of 50 Hz even after the integration of the WECS. The dc link capacitor voltage 

is shown in Fig. 3.11. It is held constant at 2.5 kV by VSC-2 barring some transients 

when the WECS connects to the microgrid. 

 

Fig. 3.10. Real power flow in microgrid with WECS and microgrid frequency in Case (B.1). 
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Fig. 3.11. DC capacitor voltage in Case (B.1).  

CASE (B.2): MICROGRID WITH VARIABLE SPEED WECS 

In this case, the wind speed of the WECS is considered variable. As shown in 

Fig. 3.12, initially the wind speed is constant at 10 m/s. Then at 10 s, it starts ramping 

up to 12 m/s till 12 s. The output power of WECS also follows the pattern of the wind 

speed as shown in Fig. 3.13 (a). Once the wind speed increases the output power of 

WECS also increases and therefore the power supplied by the DGENs reduces. The 

system frequency however is maintained at the set reference value of 50 Hz as shown 

in Fig. 3.13 (b).  

 

Fig. 3.12. Wind speed in Case (B.2). 
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Fig. 3.13. Power flow in microgrid with WECS and microgrid frequency in Case (B.2). 

CASE (B.3): TRIPPING OF WECS 

Usually wind turbines start to operate when the wind speed exceeds 4-5 m/s, 

and are shut off at speed over 25 to 30 m/s [108]. If wind speed is less than the cut in 

speed or higher than the cut off speed then WECS will be disconnected from the 

microgrid. In this case, the wind speed is reduced from 10 m/s to the cut in speed of 4 

m/s as shown in Fig. 3.14. Therefore, the power PW from WECS becomes zero after 

11 s. It can be seen in Fig. 3.15 (a) that now load power is supplied only from the 

DGENs. Furthermore, the system frequency is retained constant at the set reference 

value of 50 Hz as shown in Fig. 3.15 (b). 

 

Fig. 3.14. Wind speed in Case (B.3). 
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Fig. 3.15. Power flow in microgrid with WECS and frequency in Case (B.3). 

CASE (C): The microgrid operates in conventional frequency droop control and the 

frequency of the microgrid varies within the frequency band according to load 

variations. Therefore, for connecting the WECS with the microgrid, the 

synchronization algorithm is used. The simulation results are discussed below  

CASE (C.1): MICROGRID WITH CONSTANT SPEED WECS 

It is assumed that when WECS connects to the microgrid at 2 s, the wind speed 

is constant at 10 m/s. From Fig. 3.16 (a), it can be seen that the power supplied from 

the DGENs reduces and the system frequency also increases due to power reduction. 

This is shown in Fig. 3.16 (b). The dc capacitor voltage is held constant by VSC-2 

during the connection of WECS with microgrid as shown in Fig. 3.17.  

It can be seen in Fig. 3.18 (a) that once the load is increased to 625 kW at 10 s, 

the power of DGENs increases in the same proportion and the power of WECS (Pw) 

remains constant. The frequency of the microgrid also reduces as shown in Fig. 3.18 

(b). 
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Fig. 3.16. Real power sharing and frequency of the microgrid in Case (C.1). 

  

Fig. 3.17. DC capacitor voltage (Vdc) in Case (C.1). 

 

Fig. 3.18. Real power sharing and frequency of the microgrid with local load variation in Case (C.1). 
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CASE (C.2): MICROGRID WITH VARIABLE SPEED WECS 

In this case, it is assumed that the wind speed ramps up from 10 m/s to 11 m/s. 

The power flow from the WECS follows the wind speed pattern and the DGENs power 

reduce according to the available WECS power and load requirement. This is shown 

in Fig. 3.19 (a). The variation in microgrid frequency is shown in Fig. 3.19 (b).  

 

Fig. 3.19. Real power sharing and frequency of microgrid in Case (C.2). 

3.4. INTEGRATION OF PV 

In this section, the integration of a PV array to a microgrid is discussed. It is 

assumed that the PV array operates in MPPT control to supply maximum available 

power. Therefore, the VSC interfacing the PV array to microgrid must supply this 

amount of power to the microgrid [114]. Hence, VSC must be synchronized with the 

microgrid. To achieve this, synchronization algorithm explained in Section-3.3.2 is 

used.  

Note that the load angle (2) used for synchronization (3.16) is obtained from 

the maximum power available from the PV array, i.e., 

     dtPPKPPK MPPTIMPPTP2            (3.17) 

where PMPPT is the MPPT available power and P is the actual power from the VSC. 

3.4.1. SIMULATION STUDIES  

For integration of the PV, two different case studies are considered. The system 

(Fig. 3.2) parameters are given in Table 3.4. 
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CASE (A) LOAD SHARING IN THE PRESENCE OF PLUG AND PLAY PV:  

The microgrid shown in Fig. 3.2, contains microturbine (MT) and diesel 

generator (DGEN) with the rating of 250 kW and 500 kW respectively. Together, they 

are supplying 500 kW load power, when the PV is connected at 5 s using 

synchronization method. It is assumed that the PV injects 150 kW power at upf. It is 

disconnected at 15 s. The results are shown in Fig. 3.20 and Fig. 3.21. It can be seen 

from Fig. 3.20 that the power sharing is in the ratio 1:2 even when the PV is connected. 

Also both power and frequency return to their initial states (before PV connection) 

once the PV is disconnected, as can be seen from these figures. This proves that the 

power sharing control scheme works effectively in the presence of plug and play DG. 

Also no frequency oscillation occurs since the VSC can effectively track PCC voltage 

for PV connection using synchronization method.  

 

Fig. 3.20. Power sharing in presence of plug and play PV. 

 

Fig. 3.21. Frequency variations in the presence of plug and play PV. 
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Table 3.4. System parameters considered in Fig. 3.2.  

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DG3 Feeder impedance Rf3 = 3.025 , Lf3 = 57.8 mH 

DG Rated Power PV: 150 kVA at unity power factor 

MT: 250 kW; DGEN: 500 kW 

 

CASE (B) LOAD SHARING IN THE PRESENCE OF PLUG AND PLAY PV WITH LOAD 

VARIATION:  

In this case also the MT and the DGEN supply 500 kW power initially when 

the PV, supplying 150 kW power, is connected at 5 s. Subsequently, the load power 

drops to 150 kW at 10 s. The load, PV, MT and DGEN powers are shown in Fig. 3.22. 

It can be seen from this figure that, since the PV generates the same amount of power 

as the load, the MT and DGEN generate almost negligible power. They only supply 

the line losses. Their frequencies are shown in Fig. 3.23, where they reach the no-load 

frequency of 50.3 Hz after load reduction. Also notice that the MT has a slightly faster 

response than the DGEN. These two responses however can be made exactly the same 

by tuning the inertia and damping parameters of the MT swing equation as discussed 

in Chapter 2. 

 

Fig. 3.22. Real Power sharing in case (B). 
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Fig. 3.23. Frequency variations in case (B). 

3.5. CONCLUSION:  

In this chapter, two different methods of integration of non-dispatchable DGs 

with a microgrid are proposed. The microgrid operates in frequency droop control. In 

the first method, an isochronous controller is used in which the droop line is shifted 

such that each DG supplies its required power at 50 Hz. The other approach is to 

synchronize the non-dispatchable DGs at the microgrid frequency. A simple 

synchronization method is proposed in which only measurements of the instantaneous 

PCC voltages are needed. Both these two proposed methods are validated through 

computer simulation using PSCAD/EMTDC. It has been shown that both of them 

work satisfactorily during load change and non-dispatchable DGs connection or 

disconnection with the microgrid. The operation is seamless where no large transient 

is visible.  
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CHAPTER 4 

TECHNIQUES FOR BESS CONNECTION TO PREVENT 

OVERLOADING IN AN ISLANDED MICROGRID 

For an autonomous microgrid, if total load demand plus losses exceed the 

combined available power of all DGs then overloading can occur. Thus, to maintain 

reliability, battery energy storage systems (BESSs) are viable options [115]. It has been 

shown in Chapter 3 that dispatchable DGs in an autonomous hybrid microgrid can 

share power in the ratio of their rating, even in the presence of plug and play of non-

dispatchable DGs, under the assumption that the peak load demand is less than the 

total rating of the all dispatchable DGs. Since the non-dispatchable DGs are not 

operational all the time, the DGs size selection should be made in such a way that 

dispatchable DGs are able to meet the total peak power demand. This however is a 

difficult proposition since the peak load keeps on increasing. Resizing of existing DGs 

is not an option. Therefore every autonomous microgrid must be equipped with some 

storage devices that can quickly come online when peak load exceeds the total 

generation of DGs. However, the load shedding may be required in an autonomous 

microgrid, if there is not sufficient number of storage power available [64]. This 

scenario is however not considered in this thesis. 

In this chapter, three control strategies are proposed for smooth transition of 

BESSs to prevent the overloading of distributed generators (DGs) in an autonomous 

microgrid.  

4.1. SYSTEM STRUCTURE 

Fig. 4.1 shows the structure of the autonomous microgrid under consideration, which 

contains DGs, loads and BESSs. The BESS normally floats at the microgrid bus 

neither consuming nor supplying power. It can then come online quickly without any 

substantial transient during any contingency. Since the main purpose is to provide 

power support during overloading in an autonomous microgrid through BESS, only 

two dispatchable sources are considered in the microgrid. The DGs supply a balanced 

load and share it in proportion to their respective ratings. 
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Load
Autonomous 

Microgrid

Diesel Generator
Diesel Generator

BESS

BESS

Load

 

Fig. 4.1. System Structure. 

4.2. EFFECT OF DGS OVERLOADING IN AN AUTONOMOUS MICROGRID 

DGs in the microgrid are controlled through a frequency droop, given by 

 PPm fr  5.0                (4.1) 

Dispatchable DGs (inertial and non–inertial type) in an autonomous hybrid microgrid 

can share the power according to their rating using frequency droop control as already 

discussed in Chapter 2. However, if the load requirement is higher than the total rating 

of the DGs, there can be some catastrophic failure.  

For example, let us consider the system of Fig. 4.2, where the DGEN-1 has a 

rating of 250 kW and the DGEN-2 has a rating of 500 kW. The droop parameters of 

the DGs are chosen such that the frequency excursion (fd) is limited to ± 0.3 Hz from 

the nominal value of 50 Hz [92]. This means that when DGs supply zero power, the 

frequency will be 50.3 Hz and the frequency will become 49.7 Hz when DGs supply 

750 kW. 
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P3, Q3  

vt  

DGEN-2  

Fig. 4.2. The schematic diagram of the microgrid. 

First let us assume that the total load demand is 700 kW and both DGs are 

supplying power according to their rating (i.e. 2:1). At 5 s, the load is increased by 150 

kW, which is beyond the total rating of the DGs. It can be seen in Fig. 4.3 that due to 

their inertias, the DGENs start releasing their stored kinetic energy to support the load 

demand. However, the DGENs speeds, shown in Fig. 4.4, keep on dropping till 16.8 

s, after which a catastrophic failure occurs. This causes voltage (shown in Fig. 4.5) to 

collapse and forces the powers to become zero (Fig. 4.3). It is to be noted that this 

behavior is shown for demonstration purpose. In practice however, the under 

frequency relays will trip the DGs much before the collapse can occur. 

 

Fig. 4.3. Real power sharing between DGEN-1 and DGEN-2. 

 
Fig. 4.4. Speed of DGENs during overloading. 
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Fig. 4.5. PCC voltage during overload. 

In an autonomous microgrid, system frequency differs from 50 Hz depending 

on the load. However, the frequency should not deviate more than frequency band ( 

fd). With this band of frequency, proper droop gain of DGs can be chosen as discussed 

in Chapter 2. When the DGs are supplying their maximum available power, the 

frequency of the system hits to its lower limit (fm). Since the maximum allowable 

frequency deviation (fd) is chosen as 0.3 Hz, fm = 50- fd = 49.7 Hz. When the loads 

increase such that the microgrid frequency falls below fm, storage devices must be 

switched on. In this chapter, only BESS as the storage option has been considered. 

Three different BESS operational strategies are proposed. These are 

 BESS supplies a fixed amount of power. 

 BESS supplies power under droop control. 

 BESS supplies only that amount of power which cannot be supplied by the 

DGs. 

4.3. BESS OPERATION TO SUPPLY FIXED AMOUNT OF POWER 

In this scheme, the BESS supplies its rated power and rest of the load demand 

is supplied by the DGs in the ratio of their ratings. This implies that, the droop 

frequency of the system will rise above the threshold value. As the battery turns on, it 

injects power at the same frequency of the system. Thus, battery should synchronize 

with respect to vt (terminal voltage as shown in Fig. 4.2). For this purpose, the 

synchronisation algorithm is used as discussed in Chapter 3, Section 3.3.2. 

When the load demand reduces, battery should be disconnected from the 

system. The turn off signal can also be generated from the frequency. The threshold 
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value of the frequency depends on the rating of the battery. Let us define, the balance 

between the DG rated power and BESS rated power as 

dgP = 

1P  

2P   

bP                 (4.2) 

where P1
*, P2

* and Pb
* are rated real power of DG-1, DG-2 and BESS respectively. 

When the load demand plus losses are less than of Pdg, the battery can be turned off. 

This can be detected from the frequency of the system with a threshold calculated from 

Chapter 2.  

4.3.1. SIMULATION STUDIES 

Let us consider the microgrid structure which is shown in Fig. 4.2, DGEN-1 

has a rating of 250 kW, while DGEN-2 is rated at 500 kW and BESS has a rating of 

100 kW. The parameters of the microgrid are listed in Table. 4.1. Initially, the total 

load demand is 400 kW and both DGs are supplying power according to their rating 

in frequency droop control as shown in Fig. 4.6. At t = 5 s, the load is increased to 800 

kW that exceeds the total power rating of the DGs. It can be seen from Fig. 4.7 that 

frequency of DGEN-1 hits to lower limit of the frequency band, which triggers the 

battery turn-on signal, as shown in Fig. 4.8. Thereafter, the battery starts supplying its 

rated power as can be seen in Fig. 4.6. The terminal voltage of the system is sinusoidal 

at BESS transition time, as shown in Fig. 4.9 and this shows a smooth seamless 

operation when the battery starts supplying power.  

Table. 4.1. The parameters of the microgrid (Fig. 4.2). 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DG3 Feeder impedance Rf3 = 3.025 , Lf3 = 57.8 mH 

DG Rated Power DGEN-1: 250 kW, DGEN-2: 500 kW 

BESS: 100 kW 

Droop Coefficient (Frequency–Voltage) 

m1 0.015      rad/MWs 

m2 0.0075    rad/kWs 

n1 0.04        kV/MVAr 

n2 0.02        kV/MVAr 
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Fig. 4.6. Real power output of the DGs and load demand as battery connects (Fig. 4.2). 

 

Fig. 4.7. Frequency variation of DG in autonomous microgrid (Fig. 4.2). 

 

Fig. 4.8. Battery turn–on/off control signal (Fig. 4.2). 

 

 



 

64 

 

 

 

Fig. 4.9. BESS terminal voltage (Fig. 4.2). 

At t = 10 s, the load demand reduces to 500 kW and it can be supplied by the 

DGs. The term Pdg then computed as from (4.2) 

kW650100750 dgP  

Since the rating of DGEN-2 is twice that of DGEN-1, the former must 2/3rd amount of 

the total power demand (Pdg), i.e., 2×650/3 = 433.33 kW. From this, the threshold 

value of the frequency to disconnect the BESS from the system can be calculated. Note 

that when DGEN-2 supplies 433.33 kW, the system frequency is 

 
Hz fS 78.49

2

33.4335005.00075.0
50 





 

Therefore, the system frequency falls below fs, the load demand has reduced below 

total rating of the DGs. This is the trigger signal that the battery unit must be switched 

off. This is shown in Fig. 4.10. The power and frequency plots are shown in Fig. 4.11 

and Fig. 4.12, respectively. From these figures, it can be seen that power supplied by 

battery is zero and other DGs supply load demand in frequency droop according to 

their rating. From Fig. 4.13, it can be seen that the terminal voltage of the system 

remains sinusoidal at the time of battery disconnection. 
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Fig. 4.10. Battery turn–on/off control signal. 

 
Fig. 4.11. Real power output of DGs and load demand as battery disconnects. 

 
Fig. 4.12. Frequency variation of the DGs in autonomous microgrid. 
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Fig. 4.13. BSU terminal voltage. 

4.4. BESSS OPERATION IN FREQUENCY DROOP CONTROL 

In this schema, BESSs are connected in the microgrid during an overload to 

operate in the same frequency droop control as the dispatchable DGs operate. The 

schematic diagram of the microgrid is shown in Fig. 4.14 . The main purpose is to 

introduce the principle of BESS’s power sharing during overload, therefore for 

simplicity two BESSs are considered. The droop coefficients for BESSs can be 

calculated in a same manner as for dispatchable DGs, as discussed in Chapter 2.  

DGEN-2DGEN-1

Rf1 Lf1 Lf3 Lf4Lf2
 

Rf2
 

PDGEN1, 

QDGEN1  
PDGEN2, 

QDGEN2  
PL, QL  

LOAD

 

Rf3

Pb1, Qb1  

 

Pb2, Qb2  

Rf4

BESS-1 BESS-2  
Fig. 4.14. Schematic diagram of the microgrid. 

4.4.1. BESS CONTROL  

BESSs are the converter interfaced sources. The time response of BESS is 

faster than the DGENs. Therefore, pseudo inertia concept is used to slow down its 

response. This has been discussed in detail in Chapter 2, Section 2.6. The reference 

voltages of BESSs are calculated from (2.28), where frequency and angle are estimated 

from the swing equation and voltage magnitude is calculated from the voltage droop 
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control. The VSC structure and control used to track this reference voltage is discussed 

in Appendix A.  

4.4.2. BESS TURN ON 

In a microgrid, the load can be dispersed. Therefore if overload were to be 

detected by power consumption only, an aggregator and communication will be 

required. These may not be readily available. To avoid this, an algorithm is designed 

in which frequency is the triggering signal for overload protection. As mentioned 

before, the microgrid frequency excursion limit is ± fd. Also it has been mentioned in 

(4.1) that if system frequency is fm then DGENs operate at their rated power to supply 

local load plus losses. Also it can be seen from Fig. 4.3 that the DGs can supply an 

overload for over 16 s, according to available inertial source in a microgrid. This 

provides sufficient time for the BESSs to come online. The turn-on concept here is the 

same as that used in Section 4.3. 

Once BESSs are turned-on, they operate in same frequency droop to supply 

power according to their current rated power rather than supplying fixed amount of 

power as in the previous case. This however will cause a shift in the frequency upwards 

as the DGs will reduce their power generation. 

4.4.3. BESS TURN OFF 

When the load demand reduces, BESSs should either be charged or come off 

from the grid. The turn off signal for BESSs can also be detected from the system 

frequency. The threshold value of frequency for turn-off signal depends on the power 

sharing ratio of the sources. In the microgrid (Fig. 4.14), the maximum rated power of 

DGEN-1, DGEN-2, BESS-1 and BESS-2 respectively are 500 kW, 250 kW, 50 kW 

and 100 kW. Therefore the power sharing ratio of BESS-1: BESS-2: DGEN-2: DGEN-

1 is 1:2:5:10. Let us now assume that the load demand has dropped to or below 750 

kW when the over loading condition is over. The BESSs still keep on supplying power 

as they share power in droop. Obviously, the BESSs should cut off when the load 

reduces to 750 kW or less. During this time, DGEN-1 supplies (10/18) × 750 kW. 

Therefore the frequency of DGEN-1 for this level of power supply is 

 
Hz fth 80.49

2

66.4165005.00075.0
50 





            (4.3) 
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If the load demand is less than 750 kW, or system frequency will be less than 

fth. In this case, BESSs are not required in system to supply load demand. Therefore, 

fth is considered to be the threshold value of frequency to turn off the BESS. Also note 

that once the BESSs are switched off, the system frequency may fall below fth.  

4.4.4. BATTERY CHARGING STRATEGY 

BESSs can be charged from DGs during the off peak times for their use during 

peak load event. We know that when the frequency is 50 Hz, DGs supply half of their 

rated power. Therefore, when the system frequency is 50 Hz or more, the microgrid 

load demand is half or less than half of its total capacity. This can be defined as off-

peak time. Therefore, the BESSs can be charged when the frequency is 50 Hz or above. 

4.4.5. SIMULATION STUDIES 

In this section, three case studies are presented for the system of Fig. 4.14. 

CASE (A): BSU CONNECTION 

Let us consider the microgrid structure shown in Fig. 4.14. The parameters of 

the microgrid are listed in Table. 4.2. It is assumed that the microgrid is operating 

stably at beginning and supplying 550 kW load power. DGENs share load power 

according to their rating (i.e. 2:1). The load demand increases at 1.0 s to 800 kW, which 

is higher than the total rating of DGENs and therefore BESS are turned-on. The swing 

parameters of the BESSs are listed in Table 4.3. The real powers are shown in Fig. 

4.15. The frequencies are shown in Fig. 4.16. It can be seen that the frequencies of all 

the units merge in the steady state. Since the load demand is now less than the total 

capacity of the DGENs and BESS, the frequency is higher than the lower threshold of 

49.7 Hz. The PCC (load bus) voltages are maintained sinusoidal as shown in Fig. 4.17. 
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Fig. 4.15. Real power sharing in microgrid with BESSs. 

 

Fig. 4.16. Frequencies of BESSs and DGEN. 

 

Fig. 4.17. PCC voltage. 

CASE (B): BESS DISCONNECTION 

In this case, the load reduces by 100 kW. This is shown in Fig. 4.18. Even 

though DGENs together can supply the load demand, BESSs still remain connected, 

as can be seen from this figure. The frequencies of the DGEN-1 and the two BESSs 

are shown in Fig. 4.19. The system frequency reaches 49.82 Hz (≈ fth) at around 13.8 

s, at which point, BESSs are turned off.  
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Fig. 4.18. Real power sharing in microgrid with BSUs. 

The real powers when BESSs turn off are shown in Fig. 4.20. It can be seen 

when they turn off, the powers supplied by the DGENs increase. The frequencies of 

the DGEN-1 and the two BESSs are shown in Fig. 4.21. It can be seen that the BESS 

frequencies hit the upper limit as they are not supplying any power. The PCC voltages 

at the point of BESS disconnection are shown in Fig. 4.22. Since they do not undergo 

any large transient or sag/swell, it can be surmised that the BESSs disconnection is 

seamless. 

 

Fig. 4.19. Frequencies of BSUs and DGEN. 
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Fig. 4.20. Real power flow when BSUs are disconnected. 

 

Fig. 4.21. Frequencies of BSUs and DGEN. 

 

Fig. 4.22. PCC voltage. 

CASE (C): BESS CHARGING 

A case is considered when microgrid load is off peak. In Fig. 4.23, it is shown 

that load demand is 250 kW, where both DGENs are supplying power less of their half 

of rated and the system frequency is greater than 50 Hz. It is shown in Fig. 4.24. 

Therefore, at 5 s, BESSs are connected to the microgrid for charging. It can be seen 
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from Fig. 4.23 that both BESS powers are negative, indicating BESSs are drawing 

power. This causes the system frequency to reduce as can be seen in Fig. 4.24. 

Table. 4.2. The parameters of the microgrid (Fig. 4.14).  

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DG3 Feeder impedance Rf3 = 3.025 , Lf3 = 57.8 mH 

DG Rated Power DGEN-1: 500 kW 

DGEN-2: 250 kW 

BESSs Rating BESS-1: 50 kW 

BESS-2: 100 kW 

Droop Coefficient (Frequency–Voltage) 

m1 0.0075   rad/MWs 

m2 0.015   rad/kWs 

mb1 0.075   rad/MWs 

mb2 0.15   rad/kWs 

n1 0.02     kV/MVAr 

n2 0.04     kV/MVAr 
 

Table. 4.3. Swing equation parameters for BESSs. 

System data Value 

Damping constant (KD1) 5 MWs/rad 

Inertia constant (H1) 2 MJ/MVA 

Damping constant (KD2) 2.5 MWs/rad 

Inertia constant (H2) 1 MJ/MVA 

 

Fig. 4.23. Off peak load power and BSUs charging. 
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Fig. 4.24. Frequencies of DGEN-1 and DGEN-2. 

 

4.5. BESS OPERATION TO SUPPLY ONLY OVERLOAD POWER 

Usually a BESS is expensive and its life time can be shortened by several 

charge/discharge cycles. Therefore such a unit must come online only when required 

and must supply only the amount of power that cannot be supplied by DGs in an 

autonomous microgrid. Normally, the microgrid operates in frequency droop control. 

To prevent any overloading, if the BESS is also controlled in the same frequency droop 

control as DGs, it will share the load power with the existing DGs according to its 

rating, thereby failing to supply only the required excess power. Therefore, DGs will 

not be utilized to their maximum capacity and BESS will discharge faster. Therefore 

it might be completely discharged if the overload persists longer. Also note that when 

more than one BESS is used for overload prevention, they should be optimally utilized 

such that each of unit shares power in accordance to its current state of charge (SOC). 

To achieve this objective, BESS operates in angle droop control to fill the gap in 

between power generation and load, when the generation of the two DGENs is at its 

maximum. The microgrid structure is shown in Fig. 4.25.  
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Fig. 4.25. Microgrid Structure. 

4.5.1. DYNAMIC BRIDGING THROUGH BESS 

As mentioned before, BESSs are used to reduce the gap between load and 

generated power. Therefore the BESS acts as a bridge to meet the load requirement 

and hence this type of BESSs utilisation is termed as dynamic bridging. Through this 

process, the BESSs can prevent both system collapse and load shedding, thereby 

enhancing the overall system performance. 

Therefore the overload detection plays a vital role in this process. This 

detection is carried out in the following manner. 

1) A lower threshold of fth is chosen, to be is slightly higher than fm. When the 

droop frequency hits this threshold, both frequency droop controllers operate 

at minimum frequency fm and a trigger signal (tON) is generated. This trigger 

signal is used to command the BESSs to start supplying power. 

2) The BESSs generate the power that is required to meet the shortfall under an 

angle droop control. The generation of the reference angle for this operation is 

discussed in the next section. 

Once the BESSs start supplying power, they continue to do so till the overload 

is removed. The BESSs can be switched off when the power through them reverses. 

Consider the situation when a BESS is supplying the excess power demand and the 

load demand reduces below the maximum generation limit. Both the DGENs still 

supply a fixed amount of power with a fixed frequency of fm. Therefore the excess 

generation will flow towards the BESS. From the angle droop discussed in Chapter 2, 

it can be seen that the BESS voltage angles will reduce and the BESSs will start 
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receiving power. When the power through BESSs reverses, the frequency droop 

automatically reverts back within specified limits. When this occurs, the BESSs are 

switched off. The flowchart of Fig. 4.26 explains this operation. Note that the BESSs 

can be charged when the system frequency is greater than 50 Hz, since the load demand 

is less than the half of the total capacity of the system during this time. The charging 

process of BESS is not discussed.  

4.5.2. PROPOSED DYNAMIC BRIDGING CONTROL STRATEGY 

When the load power exceeds the maximum limit of the two DGs, the excess 

load power is supplied through dynamic bridging BESS units. It has been shown in 

Chapter 2, Section 2.2.1, how two BESS units operate in an autonomous mode 

assuming a constant system frequency of 50 Hz, in which the reference angle is 

irrelevant and can be chosen arbitrarily. However, when they are connected for 

overloading prevention, they cannot operate at 50 Hz. Also, each BESS needs to be 

synchronized with the bus to which it is connected and its reference angle has to be 

determined depending on the prevailing system conditions as discussed below. 

Battery Unit 

ON

Battery 

power 

Pb>0

Battery Unit 

OFF

Droop 

Controller 

Frequency  

f < fth 

YES

NO

Droop 

Controller 

f = fm 

Droop 

Controller 

fm <  f < fmax

YES

Continue in 

Droop 

Controller

 fm <  f < fmax

NO

 

Fig. 4.26. Flowchart showing BESS connection and disconnection. 
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4.5.2.1. GENERATION OF REFERENCE ANGLE 

When an overloading occurs, the system frequency keeps on dropping. 

Therefore the BESS should be synchronised with the system so as to inject power at 

the same frequency. Also, the reference angle of the BESS output voltage cannot be 

chosen arbitrary when it is connected in parallel with a strong source (like DGEN). 

One approach for this reference angle calculation is discussed below. One way of 

determining the reference angle is from a strong source in the system. 

The DGEN is the strong source in the microgrid system of Fig. 4.25. The 

reference angle for BESSs is calculated with maintaining the power flow from the 

DGEN constant at its rated power. To achieve this, a PID controller is employed, 

which takes the error e between the rated DGEN power (P*
DGEN) and the actual output 

power (PDGEN). The output of the PID controller is the reference angle b
*, given by 

esK
s

K
K D

I
Pb 








*                (4.4) 

where  

DGENDGEN PPe  *

 

This reference angle (b
*) is used in angle droop to calculate angle (b) of BESS as 

 bbbbb PPm  *                (4.5) 

where Pb
* and Pb are the rated and measured actual real power of BESS respectively. 

The droop coefficient is denoted by mb. 

4.5.2.2. DYNAMIC INTEGRATION 

It has been mentioned in the previous sub-section that in order to avoid any 

large transient due to BESS connection, it needs to be synchronized at the system 

frequency with phase angle difference of (b) to supply only the excess amount of 

power. To achieve this, a simple algorithm based on instantaneous symmetrical 

component theory is used as discussed in Chapter 3, Section 3.3.2. 
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Fig. 4.27. Schematic diagram of a BESS connected to the microgrid. 

Consider the system shown in Fig. 4.27 in which Vf is the bus voltage to 

which a BESS is connected. The system frequency is unknown. The BESS injects at 

voltage Vb(f+b), where Vb is pre-specified voltage magnitude and b is the angle 

obtained from angle droop (4.8). The positive sequence of BESS output voltage is 

obtained using b from (3.16). Once positive sequence is calculated, negative sequence 

is also calculated by taking complex conjugate of it. The system is balanced, therefore 

zero sequence component is zero. Hence, using inverse symmetrical component 

transform, the three-phase instantaneous reference voltages required from BESS can 

be computed without explicit frequency measurements.  

4.5.3. SIMULATION STUDIES 

In this section, three case studies are presented for the system of Fig. 4.25.  

CASE (A): BESS CONNECTION 

Two different loads, Load -1 and Load-2 are considered. At the beginning 

Load-1draws a power of 400 kW, while the R-L Load-2 draws 120 kW. The total load 

demand is less than the maximum available power from DGENs. Therefore, BESS 

converter switches are blocked and both DGENs supply power according to their 

rating in frequency droop control. At 1 s, Load-1 is increased to 680 kW such that total 

load demand becomes 800 kW, which exceeds the total rating of DGENs. As a 
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consequence, the droop frequency reaches the lower threshold of 49.7 Hz, as evident 

from Fig. 4.28. It generates the trigger signal BTrig ON as shown in Fig. 4.29. 

Thereafter, BESSs start supplying the excess power requirement of the system under 

angle droop control while sharing power according to their rating. This is shown in 

Fig. 4.30, where DGENs supply their maximum rated power.  

 

Fig. 4.28. Frequency variation during overload. 

 

Fig. 4.29. Triggering signals for BESS and droop controller. 
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Fig. 4.30. Power flow in microgrid during overload with dynamic bridging. 

CASE (B): LOAD VARIATION WHEN BESSS ARE CONNECTED 

At 8 s, the load demand is further increased to 820 kW. It can be seen from Fig. 

4.31 that both DGENs still supply their maximum rated power and this increased 

amount of power is supplied by BESSs. However, the system frequency does not vary 

from 49.7 Hz, as is evident from Fig. 4.32. 

 

Fig. 4.31. Power flow in microgrid during further increase in overload. 
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Fig. 4.32. System frequency during overload change. 

CASE (C): BESS DISCONNECTION 

At 16 s, the consumption of Load-1 is brought back to its nominal level of 400 

kW. However both DGENs still supply their maximum rated power. Therefore the 

excess power that loads do not require will start flowing towards the batteries. The 

speciality of angle droop (4.8) is that it can work irrespective of the direction of the 

power flow. As a result, BESSs will start consuming power according to their ratings. 

The negative power flow to any or both BESSs is used to deactivate BTrig, which will 

switch BESS units off. The load, DGEN and BESS powers are shown in Fig. 4.33. It 

can be seen that the BESS power becomes zero indicating that only DGENs are 

supplying the load demand. The frequency recovers to its nominal value as shown in 

Fig. 4.34. 

 

Fig. 4.33. Power flow in microgrid when overloading is removed. 
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Table. 4.4. The system parameters of microgrid (Fig. 4.25).  

System Quantities Values 

Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

Rf2 = 3.025 , Lf2 = 57.8 mH 

Rf3 = 3.025 , Lf3 = 57.8 mH 

Rf4 = 3.025 , Lf4 = 57.8 mH 

Rf5 = 3.025 , Lf5 = 57.8 mH 

DGENs rated power DGEN-1: 250 kW, DGEN-2: 500 kW  

BESS rated power Battery-1: 100 kW, Battery-2: 50 kW 

Load-2 RLa=1000 Ω, LLa= 100 mH 

RLb=1000 Ω, LLb = 100 mH 

RLc=1000 Ω, LLc = 100 mH 

Droop Coefficient (Frequency–Voltage) 

mf1 0.015      rad/MWs 

mf2 0.0075    rad/kWs 

nf1 0.04        kV/MVAr 

nf2 0.02        kV/MVAr 

Droop Coefficient (Angle Droop) 

mb1 0.4  rad/MWs 

mb2 0.8  rad/MWs 

 

 

Fig. 4.34. System frequency when overloading is removed. 

4.6. CONCLUSION 

To prevent overloading during an autonomous operation, energy storage 

devices are brought online quickly. Three different methods of overload prevention 

are discussed in this chapter. These algorithms facilitate smooth transition of BESS in 

microgrid and power sharing algorithm also works perfectly either when BESS is 
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connected or disconnected. In the first method, BESS supplies its rated power and rest 

amount of load power is supplied by the available DGs in the microgrid. BESSs are 

smoothly synchronized with the microgrid using the algorithm discussed in Sub-

section 3.3.2. In this only the measurements of the instantaneous three-phase voltages 

at the point of connection are required, irrespective of the microgrid frequency. In this 

way, large system transients are avoided at a time when the system is already stressed. 

This first method has limitation of providing only fixed amount of power for overload 

prevention and in this method, DGs are also not operated at their maximum capacity.  

In the second method, various BESSs can be considered. For simplicity, only 

two BESSs are considered here. These BESSs share load power with available DGs in 

the microgrid rather than only supplying rated power. In this case, BESSs share the 

load power according to their ratings, also note that BESSs even share power with 

DGs. Therefore, DGs are not used at their maximum rate.  

In third method, BESS operates in such a way that it supplies only the excess 

amount of power to prevent the overloading. Also note that when more than one BESS 

is used for overload prevention, they should be optimally utilized such that each of 

unit shares power in accordance to its current state of charge. To achieve this, BESSs 

operates in angle droop control. Ordinarily, the switches of BESS units are blocked 

and are unblocked depends upon receiving signal that an overloading in the system has 

occurred. They are switched off when the power flowing through them reverses 

polarity. Also note that if the BESS capacities are sufficient and if the overloading 

does not persist for a long time, no load shedding will be required. 
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CHAPTER 5 

IMPROVING POWER QUALITY IN AN ISLANDED MICROGRID 

Many industrial and domestic loads use switch mode power supplies, which 

generate harmonics. Propagation of harmonics in power system has been studied for a 

long time. Usually harmonics generated by a load can impact other loads connected to 

the same system. However in case of islanded microgrid, such loads can affect the 

performance of the synchronous generators. These deleterious effects of distorting 

loads can be corrected using a distribution static compensator (DSTATCOM). 

A microgrid, which contains a group of parallel inverters with linear and non-

linear loads, techniques for power sharing with non-linear loads have been discussed 

in [116-117]. These techniques enable the equal sharing of linear and non-linear loads. 

If a microgrid consists of inertial generators (e.g. diesel generators) that supply non-

linear loads, harmonic current will flow through the armatures of the generators [118]. 

This will distort the armature reaction, leading to voltage distortion affecting output 

power. It will also lead to electromagnetic torque pulsation, generating heat and 

reducing the life of the generators [119, 120]. Therefore, to improve the power quality, 

capacity, reliability and redundancy, various custom power devices are being used 

[121]. A DSTATCOM can be used to eliminate load harmonics, as well as, for voltage 

regulation [122]. 

If an islanded microgrid operates in a frequency droop control to share the 

power according to available DGs, the frequency of the microgrid can vary within a 

specified limit. To mitigate the harmonics in an islanded microgrid, the DSTATCOM 

must operate at the same frequency of the microgrid. Therefore, in this chapter two 

different strategies are proposed as: 1) Synthesis the DSTATCOM voltage at the actual 

system frequency and 2) Maintain the frequency of microgrid at set reference value of 

50 Hz through isochronous controller. 

5.1. SYSTEM STRUCTURE AND CONTROL 

The schematic diagram of the microgrid is shown in Fig. 5.1. It contains a 

diesel generator (DGEN) and a converter interfaced distributed energy resource 
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(DER). The diesel generator set consists of a 4-stroke internal combustion (IC) engine 

coupled to a synchronous generator. The IC engine speed is controlled through the fuel 

input rate by a speed governor. A PID controller is used in the governor to maintain 

output speed. The automatic voltage regulator (AVR) controls the field supply of the 

generator to maintain the required terminal voltage. The DER uses a voltage source 

converter (VSC) which is a three phase, three leg converter with 6 switches. Each 

switch is an insulated gate bipolar transistor (IGBT) with proper snubber circuit and 

anti-parallel diode. An LCL (T) filter is used with VSC to couple with the microgrid. 

The detailed operation and control of VSC is discussed in Appendix A and detailed 

model of DGEN is discussed in Chapter-2. The feeder with resistance of Rfi and 

inductance Lfi, i = 1, 2 are considered in Fig. 5.1. The load consists of a linear passive 

RL-LL component and a nonlinear component (uncontrolled rectifier). The microgrid 

operates in frequency droop control as discussed in Chapter-2, Section 2.2.3. Note that 

in the frequency droop, half the rated power is used such that the frequency can vary 

 0.5 Hz from the fundamental frequency of 50 Hz. The droop coefficients are chosen 

accordingly to restrict the frequency variation to within these specified limits.  

The DSTATCOM is connected at the point of common coupling (PCC) of the 

load with the feeder. The DSTATCOM used in this research is a transformer-less 

three-phase three-leg DSTATCOM which consists of six switches. Each switch in 

VSC is an insulated gate bipolar transistor (IGBT) along with a snubber circuit and an 

anti-parallel diode. It is supplied from a dc storage capacitor (Cdc). Also an LC filter 

(Lf-Cf) is connected at the output of the VSC to suppress high frequency switching 

harmonics.  

The main aim is to regulate the PCC voltage against any variation in the load. 

The load can be unbalanced and non-linear. Let the desired three-phase PCC voltage 

be given by 

 

 

 











120sin

120sin

sin







tVv

tVv

tVv

TTc

TTb

TTa

               (5.1) 
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Fig. 5.1. The microgrid structure under consideration. 

where |VT| is a pre-specified voltage magnitude and  is an angle that maintains the 

power flow from the source to the load. When it is supplied through a dc capacitor, the 

angle  should be such that the required amount of power flows from the source to the 

load and the DSTATCOM does not consume or generate any power. However, 

practically the DSTATCOM needs some amount of power from the source to 

compensate for its switching and internal losses. Therefore if the capacitor voltage can 

be held constant, then the required amount of power can flow from the source to PCC. 

Based on this logic, a PI controller is designed to regulate the dc voltage and its output 

sets the angle, given by 

     dtVVKVVK dcdcrefIdcdcrefP              (5.2) 

The DSTATCOM needs to synthesize these three-phase voltages (5.1) at its 

output. A linear quadratic regulator (LQR) based state feedback controller is used for 

switching control of the DSTATCOM. The converter structure and feedback control 

are discussed in Appendix A.  

5.2. DSTATCOM OPERATION WITH FREQUENCY MISMATCH 

The microgrid frequency can vary  0.5 Hz from the fundamental frequency of 

50 Hz, while DSTATCOM injects a voltage at 50 Hz [92]. This frequency mismatch 

effect on microgrid performance is analysed for two different cases. Phase-a of the 

DSTATCOM voltage is given by 

   tVv TTa 0sin                 (5.3) 
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where 0 is the synchronous frequency (100 rad/s)  

5.2.1. DC LINK OF VSC IS A DC SOURCE  

 In this case, the DSTATCOM operates at 50 Hz frequency and  is chosen as 

zero. This implies that there is no regulated power flow between the MG and the DC 

bus. Since the DSTATCOM operates from strong source and holds its output voltage 

at a frequency of 50 Hz, it supplies/absorbs power from the MG such that its frequency 

becomes 50 Hz. The DSTATCOM supplies/consumes power such that other DGs 

available in microgrid only supply the half of their rated power to merge the system 

frequency to 50 Hz. It can be seen in Fig. 5.2 that the load power is 510 kW, which is 

higher than half of the total capacity (700 kW) of microgrid and DG-1 (rated at 500 

kW), DG-2 (rated at 200 kW) supply 250 kW, 100 kW (P1, P2) respectively. The rest 

amount of the load demand is supplied by the DSTATCOM. The frequency of the 

microgrid, shown in Fig. 5.3, is constant at 50 Hz. 

 
Fig. 5.2. Real power in the microgrid. 

 
Fig. 5.3. Microgrid Frequency when load is 510 kW. 
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When a load variation occurs in the microgrid, power supplied by 

DSTATCOM is changed to retain the system frequency constant at 50 Hz. It can be 

seen in Fig. 5.4 that load power changes from 320 kW to 350 kW at 4 s and 

DSTATCOM power is also changed from negative value to zero to maintain the power 

supply from the other DGs constant. Therefore, the system frequency is retained 

constant at 50 Hz, as can be seen in Fig. 5.5.  

 

Fig. 5.4. Real power variation in the microgrid. 

 

Fig. 5.5. Microgrid Frequency with load variation.  

The above example shows that DSTATCOM with a dc source forces other DGs 

available in the microgrid to operate at 50 Hz. Therefore, DGs always supply their half 

rated power corresponding to load variation. It implies the DGs do not function 

efficiently when such a DSTATCOM is allowed to operate in this fashion. 

5.2.2. DC LINK SOURCE OF VSC IS A DC CAPACITOR  

In this case, DSTATCOM will not operate at 50 Hz but will latch on to the 

system frequency due to available DGs in the microgrid can be considered as strong 
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sources. Under this scenario, the angle  calculated from the PI controller in (5.2) is 

not stationary. It will fall monotonically when the system frequency is sub-

synchronous and will rise when the system frequency is super-synchronous. 

Since the DSTATCOM latches on to the system frequency, the voltage that get 

injected is 

 10sin   ttVv TTa                (5.4) 

where 1 is a fixed offset angle that regulates the power flow [19]. 

Assuming the system frequency to be , from the above equation we get 

  0                  (5.5) 

Therefore  is negative when the frequency is less than 50 Hz and is positive when 

the frequency is above 50 Hz. Comparing (5.3) with (5.4), we get 

1  t                  (5.6) 

This implies that the angle drops (rises) by 0.2 = 0.6283 rads each second for 

0.1 Hz variation from the nominal frequency. The outputs of the angle controller for 

two different values of system frequency (49.76 Hz and 50.06 Hz) are shown in Fig. 

5.6 (a) and Fig. 5.6 (b) respectively. It can be seen that the angle monotonically falls 

when the system frequency is sub-synchronous and rises when it is super-synchronous.  

 

Fig. 5.6. The angle controller response when DSTATCOM injects voltages at 50 Hz. 
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The dc capacitor voltage also varies in sympathy with the variation in . 

Differentiating both sides of (5.2), we get 

  kV     VV
dt

d
dcdcref  0.1


              (5.7) 

Since d/dt is the frequency error, we can write 

kV VV dcrefdc                 (5.8) 

Therefore the dc capacitor voltage drops from nominal voltage 16 kV to 14.5 

kV when the nominal frequency is 49.76 Hz ( = - 1.5 rad/s), and rise to 16.38 kV 

from the nominal voltage 16 kV when the frequency is 50.06 Hz ( = 0.38 rad/s). It 

is shown in Fig. 5.7. 

 

Fig. 5.7. The dc capacitor voltages when the DSTATCOM synthesis voltage at 50 Hz. 

The above example shows that the DSTATCOM latches on the frequency of 

the source voltage, albeit at the cost of phase angle and dc capacitor voltage. Neither 

of these situations is acceptable. If the frequency deviation is restricted between  0.5 

Hz, from (5.9) it can be estimated that the capacitor voltage can drop as much as 12.85 

kV or rise to 19.14 kV. As the dc capacitor voltage drops, the VSC tracking 

performance degrades, eventually resulting in system voltage collapse.  

Also, though all sources in the microgrid operate at the same frequency, there 

is no frequency mismatch in the system. This angle runs off due to the integrator in the 

loop. As a consequence, it might reach the integrator limits and saturate, which will 
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cause a system collapse. To alleviate this problem, the DSTATCOM must inject a 

voltage at the system frequency. 

5.3. STRATEGIES OF DSTATCOM OPERATION IN MICROGRID 

5.3.1. SYNTHESIS THE DSTATCOM VOLTAGE AT THE ESTIMATED 

FREQUENCY 

From the discussion presented above, it is obvious that the DSTATCOM must 

inject a voltage at the actual system frequency. Therefore, frequency calculated from 

a simple frequency estimation technique is now utilized for the formation of the 

reference voltages. This frequency estimation technique based on the symmetrical 

component theory is discussed in Appendix B. Instead of (5.1), the reference voltages 

are now given by 

 

 

 
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tVv
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                          (5.9) 

where 𝜔̂ = 2π𝑓 and 𝑓 is the estimated frequency, while the dc link control remains the 

same as given in (5.2). 

To evaluate the performance of a DSTATCOM at actual system frequency 

using frequency estimation technique, simulation studies are described below.  

5.3.1.1. SIMULATION STUDIES  

For simulation studies, the DGEN is assumed to be rated at 500 kW, while the 

DER is rated at 200 kW. First it has been assumed that the DSTATCOM is not 

connected in the system and the microgrid supplies a balanced and rectifier load. The 

electromagnetic torque produced by the diesel generator is shown in Fig. 5.8 (a). It can 

be seen that the torque ripple is more than 0.1 per unit (pu). However when the 

DSTATCOM is connected to the system, the torque ripple reduces to below 0.01 pu. 

This is shown in Fig. 5.8 (b). 
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Fig. 5.8. Electromagnetic DGEN torque with and without the DSTATCOM. 

In this study, the frequency variation limit from the 50 Hz is considered ± 0.5 

Hz. The total capacity of the microgrid is 700 kW. The power consumption in the 

microgrid will be zero when the frequency of the microgrid is 50.5 Hz and will be 700 

kW when the frequency of the microgrid is 49.5 Hz according to considered frequency 

variation limit. Therefore, for each 70 kW variation from the half the rated power of 

700 kW, the frequency variation is 0.1 Hz. For example, a DG rated at 500 kW will 

supply 250 kW power at 50 Hz. When frequency is 50.1 Hz, it supplies 200 kW power 

and when frequency is 49.9 Hz, it supplies 300 kW power. Since the frequency of the 

microgrid can vary between 49.5 to 50.5 Hz, the frequency based DSTATCOM can 

hold the load bus voltage constant irrespective of load type. 

The steady state load current and current supplied by the DGEN are shown in 

Fig. 5.9 (a) and (b) respectively. The power supplied by the DGEN and the DER are 

shown in Fig. 5.10. The DGEN supplies 370 kW, which is 2.5 times the 148 kW power 

supplied by the DER. The estimate system frequency of 49.76 Hz, as shown in Fig. 

5.11, matches with calculated frequency from the droop as discussed above. The dc 

capacitor voltage is held constant at 16 kV, as shown in Fig. 5.12. The output angle of 

the PI controller (5.2) is shown in Fig. 5.13.  
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Fig. 5.9. Load current and DGEN current in microgrid. 

 

Fig. 5.10. The Real power of the DGs and DSTATCOM. 

 

Fig. 5.11. Microgrid frequency. 
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Fig. 5.12. The dc capacitor voltage. 

 

Fig. 5.13. Angle of PI controller output (5.2). 

5.3.2. OPERATION OF THE DSTATCOM AT SET REFERENCE FREQUENCY 

WITH ISOCHRONOUS CONTROLLER  

The microgrid as shown in Fig. 5.1 operates in frequency droop control, given 

by 

)5.0( PPm f                (5.10) 

)( * QQnVV fr                (5.11) 

where  and * are the instantaneous and rated frequency of the system. Note that in 

the P droop equation, droop gain mf is chosen according to the considered value of 

frequency variation fd ( 0.5 Hz) as discussed in Chapter 2, Section 2.2.3. 
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5.3.2.1. ISOCHRONOUS CONTROLLER 

Note that in the frequency droop, given in (5.10), half the rated power is used 

such that the frequency can vary  0.5 Hz from the fundamental frequency of 50 Hz. 

However, the DSTATCOM is restricted to operate at the actual frequency of the 

system as discussed in section 5.2. However it is desirable that the DSTACOM 

operates at the fundamental frequency of 50 Hz. In this case,  in (5.1) can be chosen 

as 100π and the angle controller of (5.2) can be applied directly. To achieve this, it is 

required to recover the droop frequency through an isochronous controller such that 

available DGs in microgrid operate at the set reference frequency of 50 Hz. 

+

+
+

- +
+ +
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K I






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Fig. 5.14. Schematic diagram of the isochronous controller. 

The schematic diagram of the isochronous controller is shown in Fig. 5.14, 

which is essentially a PID controller. The frequency obtained from the droop control 

for each DG, is first compared with the reference (synchronous frequency). The error 

is then passed through a PID controller. The controller output is added with the droop 

frequency to obtain . This frequency is then used to control the DG. It has been 

discussed already in Chapter 3 Section 3.3.1. 

5.4. SIMULATION STUDIES 

For simulation studies, the microgrid and the DSTATCOM parameters are 

listed in Table. 5.1 and Table. 5. 2 respectively. The DGEN has a rating of 500 kW 

and the DER has a rating of 200 kW. The balanced R-L load and rectifier load are 

considered to validate the performance of the DSTATCOM in the microgrid which is 

operated in a frequency droop control with isochronous controller.  
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CASE (A): MG OPERATION WITH DSTATCOM AND RECTIFIER LOAD  

In this case, both the rectifier load and the DSTATCOM are connected at the 

beginning (cold start). The total load demand is 500 kW. The real power flow in the 

microgrid is shown in Fig. 5.15 (a). It can be seen that power supplied by the DGEN 

and DER is in the ratio of 2.5:1, while the DSTATCOM absorbs negligible power. It 

is to be noted that the load power will contain distortion due to the presence of 

harmonics. However only the average power is shown here and hence the distortions 

are not visible. The microgrid frequency with isochronous controller is shown in Fig. 

5.15 (b). The frequency of the microgrid should be 49.76 Hz if it operates in frequency 

droop control from (5.10). However, it can be seen from Fig. 5.15 (b) that the 

frequency of the microgrid is merged to 50 Hz due to isochronous controller with 

frequency droop control. The isochronous controller parameters are given in Table 5.3. 

 

Fig. 5.15. Real Power and microgrid frequency with isochronous controller. 

 

Fig. 5.16. Three phase load and DGEN currents. 
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Fig. 5.17. The dc link capacitor voltage and angle controller (5.2) output angle. 

The three phase load currents are shown in Fig. 5.16 (a), which contain the 

harmonic components in them. The currents supplied by the DGEN are sinusoidal due 

to the voltage correction by the DSTATCOM as can be seen in Fig. 5.16 (b).The dc 

link capacitor voltage is shown in Fig. 5.17 (a). It can be seen that it settles to the 

desired voltage of 16 kV within 2 s. The output of angle controller is shown in Fig. 

5.17 (b). 

CASE-(B): MG OPERATION DURING A LOAD CHANGE 

With the system operating in the steady state, the linear R-L load is suddenly 

increased by 50 kW at 1 s. From the plots given in Fig. 5.18 (a), it can be seen that 

both the DGs increase their power output in the specified ratio, while the power 

from/to the DSTATCOM remains unchanged. The DG frequencies come back to their 

steady state values within 0.5 s as shown in Fig. 5.18 (b). The three phase load current 

and DGEN current are shown in Fig. 5.19 (a) and Fig. 5.19 (b) respectively. The angle 

controller is effective as dc capacitor voltage and the angle settle within 2 s, as can be 

seen in Fig. 5.20. 
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Fig. 5.18. The real power sharing and microgrid frequency with load variation in the microgrid.  

 

Fig. 5.19. The three phase load current and DGEN current after load changes. 

 

Fig. 5.20. The dc capacitor voltage and angle controller (5.2) output angle with load variation. 
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Table. 5.1. Parameters of the microgrid. 

System Quantities Values 

Feeder impedance Rf1 = 1.21 , Lf1 = 38.5 mH 

Rf2 = 2.42 , Lf2 = 77.0 mH 

DGEN Rating 500 kW 

DER Rating 200 kW 

Load-1 RLa=272 Ω, LLa = 419 mH 

RLb=272 Ω, LLb = 419 mH 

RLc=272 Ω, LLc = 419 mH 

Non-Linear Load Full bridge rectifier with a load of 1500 Ω and 

100 mH. 

Droop Coefficient (Frequency–Voltage) 

mf1 0.0126      rad/MWs 

mf2 0.0314    rad/kWs 

nf1 0.02        kV/MVAr 

nf2 0.05        kV/MVAr 

 

Table. 5. 2. Parameters of the DSTATCOM. 

Parameters Values 

Rf 0.001 Ω 

Cf 50 μF 

Lf 33 mH 

Vdcref 16 kV 

Cdc 5000 μF 

PI controller parameters 

Proportional gain -0.1103 

Integral gain -1.0103 

 

Table. 5. 3. The parameters of isochronous controller (Fig. 5.14). 

System data Value 

Proportional gain (KP) 0.1 

Integral gain (KI) 10 

Differentiator gain (KD)  0.004 

Constant coefficient (N) 200 
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5.5. CONCLUSION 

If a DSTATCOM is connected in a microgrid for load voltage regulation and 

harmonic mitigation, it has been shown in this chapter that the DSTATCOM should 

be operated at the actual frequency of the microgrid. Two methods are discussed to 

synthesize the DSTATCOM voltages at the actual frequency of the microgrid. In the 

first method, the actual frequency is estimated from simple frequency estimation 

technique based on the symmetrical component theory and DSTATCOM voltages are 

synthesised at the measured actual frequency of the microgrid. In other method the 

isochronous controller is used to merge the microgrid frequency at 50 Hz with 

corresponding to the load variation. Therefore, microgrid frequency retains at the set 

reference frequency 50 Hz and DSTATCOM voltages are synthesised at the frequency 

of 50 Hz. A few case studies are presented to validate the proposed methods. 
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CHAPTER 6 

INTERCONNECTION OF MICROGRIDS FOR MUTUAL SUPPORT 

DURING CONTINGENCIES 

Installation of microgrids can be beneficial in remote areas where there is no 

existing high voltage line or where drawing such lines is not economically feasible. A 

microgrid in such areas is expected to operate in islanded mode. However as discussed 

in Chapter 4, such islanded operation will require storage to prevent either load 

shedding or system collapse or both.  

In such scenarios, when there are two microgrids in close proximity, they can 

be connected together. It is preferable to interconnect them through a back to back 

(BTB) converter such that each can nominally operate independent of other. However 

during an emergency overloading in one microgrid (MG), the other can provide 

support with its surplus available power [66].  

In this chapter such a collaborative arrangement between two neighboring 

microgrids has been considered. It has been assumed that these microgrids operate in 

autonomous modes. Furthermore, one of the two microgrids contains inertial 

generators and hence operates in conventional frequency droop control. The other 

microgrid has only converter interfaced DGs and hence operates in an angle droop [19, 

28]. Therefore these two microgrids cannot be simply connected by a tie-line. Even 

though these two neighboring microgrids can nominally operate independent of each 

other, they however exchange their excess available power during stress in one of 

them. This requires the precise calculation of excess power in the microgrid that needs 

to supply power to other microgrid. This also requires overload detection to get support 

from the other. These strategies are different for each microgrid since they employ 

different droop control strategies. The back-to-back converter system facilitates the 

bidirectional power flow between the microgrids. The microgrids do not communicate 

with each other directly. BTB converter system actually controls the power flow 

between the microgrids during any contingency. It determines the overloading (if any) 

and the level of available surplus power in the microgrids based on the local 

measurement and received data from each microgrid. The benefit of the 
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interconnection is in the avoidance of unnecessary load shedding. A load shedding 

may still be required if the cumulative generation capacity of the two microgrids is 

less than their cumulative load demand.  

6.1. SYSTEM STRUCTURE 

System structure is considered as shown in Fig. 6.1. There are two microgrids 

– A and B. These two are connected together through a back-to-back voltage source 

converter (VSC). Microgrid-A (MG-A) contains dispatchable DGs, which operate in 

frequency droop control. On the other hand, Microgrid-B (MG-B) contains only 

converter interfaced DGs, which operate in modified angle droop control. These two 

microgrids are connected through BTB converter, which consists of two VSCs 

connected through a common dc capacitor (Cdc). Each VSC contains H-bridges that 

are supplied from common dc bus. The output of each H-bridge is connected with LCL 

(T) filter to link with the microgrid. The detailed structure and control of VSCs are 

discussed in Appendix A. The nominal operation of this BTB converter system is 

discussed next. 

 

Fig. 6.1. Interconnection of two microgrids. 

6.2. OPERATION OF BACK-TO-BACK CONVERTERS 

The BTB converter system contains two VSCs – VSC-1 and VSC-2. VSC-1, 

connected to MG-A, holds the dc capacitor voltage (Vdc) constant by drawing power 

from MG-A through angle control. VSC-2, which is connected to MG-B, controls the 

power flow in either direction. For this, it needs the information of operating status of 

all DGs in microgrid (e.g. the ON/OFF status of their coupling circuit breakers). Thus, 

a low-cost, low-bandwidth communication system is required.  
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Nominally, BTB converter does not need to transfer power in either direction. 

It is assumed that in this scenario both MGs have sufficient reserve power to supply 

their local demand. In this case switches of VSC-2 are blocked. Note that each VSC 

will have its associated losses. Therefore the switches of VSC-2 are blocked to save 

power. The switches are de-blocked only when power transfer in either direction is 

required. However, VSC-1 remains active since it needs to hold the voltage across the 

dc link capacitor constant. If the switches of VSC-1 are blocked as well, then the dc 

capacitor needs to be charged when power transfer is required. This is the time at which 

one of the MGs is stressed. Large capacitor charging transient will further weaken the 

interconnection and make both MGs unstable. 

VSC-1 is connected with MG-A, in which the frequency can drift from the 

nominal frequency of 50 Hz. Therefore, it needs to be synchronized with the MG 

frequency. This is implemented by the synchronization procedure, as discussed in 

Chapter 3 Section 3.3.2. VSC-2 is connected with MG-B which always operates at 50 

Hz. Hence no synchronization is required for this VSC. 

6.3. OPERATION AND CONTROL OF MG-A 

6.3.1. NOMINAL OPERATION 

The DGs in MG-A are controlled in a frequency droop, 

 AAfr PPm  5.0
               (6.1) 

)( *

AAfr QQnVV 
               (6.2) 

where r and  are the rated and instantaneous frequency of the system respectively. 

The rated and actual real power are denoted by PA
*

 and PA respectively. QA
*

 and QA are 

the rated and actual reactive power respectively. mf, nf are the droop coefficients of the 

frequency and voltage droop lines. 

Note that it has been assumed that all the DGs in this microgrid are 

dispatchable. The frequency deviation (fd) is limited to ± 0.3 Hz from base frequency, 

while the voltage deviation from the base voltage is set at ± 5% for MG-A. 
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6.3.2. SURPLUS POWER CALCULATION 

Surplus power of a microgrid can be defined as power difference between load 

demand and the total generation capacity of the microgrid. Consider the frequency 

droop of (6.1). From this we get 

f

r
AA

m
PP

 
5.0

 

Assume that the minimum frequency is m rad/s (which is equivalent to 49.7 Hz). At 

this frequency, DG must supply the maximum rated power i.e., PA = PA
*. Then the 

value of mf can be calculated from (6.1) as  






A

mr
f

P
m


2                 (6.3) 

Now the surplus power of a DG is calculated from (6.1) as 






 A

f

r
AA P

m
PP 5.0* 

               (6.4) 

Substituting the value of mf from (6.3) into (6.4), we get 

2
1
















 A

mr

r
AA

P
PP




               (6.5) 

The solution of the above equation gives 

f

mA

mr

m
AA

m

P
PP





 











2
              (6.6) 

Assume that there are n DGs operating in MG-A. Since the minimum 

frequency of all the DGs is the same, the surplus powers of these DGs are then given 

by  

nk
m

PPP
fk

mk
AkAksurpAk ,....,1; 


  

             (6.7) 

Therefore the total power surplus in the microgrid is given by 
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



n

k

surpAksurpA PP
1

                (6.8) 

Now assume that DGs are cumulatively supplying a total power of PL, then all 

the DGs share this power as per their droop gains such that the frequency is constant 

throughout the microgrid. The surplus power can be calculated from (6.8), knowing 

the value of droop gains and the microgrid frequency. Now suppose one of the DGs 

(say DG-m) gets disconnected. This means that the load is increased by PL + Pm. This 

will then be supplied by the rest of the DGs and a drop in the frequency will occur. 

The surplus power will then be calculated based on 






n

mk
k

surpAksurpA PP
1

                (6.9) 

mkn,k
m

PPP
fk

mk
AkAksurpAk 


  ,,1; 


           (6.10) 

Thus from (6.9), the total surplus power of the MG can be calculated with any addition 

or removal of the DG.  

The schematic diagram of MG-A is shown in Fig. 6.1. This consists of a diesel 

generator (DGEN) and a micro-turbine (MT). The system data used are given in Table. 

6.1 in which DG-1 (MT) and DG-2 (DGEN) have ratings of 250 kW and 500 kW 

respectively. The droop coefficient parameters of DGs are 0.015 rad/kW-s and 0.0075 

rad/kW-s respectively. The nominal frequency of the microgrid is assumed to be 49.92 

Hz. The surplus powers for DG-1 and DG-2 respectively are 92.15 kW and 184.30 

kW, while the total power surplus in the microgrid is 276.45 kW, as shown in Fig. 6.2. 
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Table. 6.1. Parameters of the Microgrid-A 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DG Rated Power MT: 250 kW, DGEN: 500 kW 

Droop Coefficient (Frequency–Voltage) 

mf1 0.015      rad/MWs 

mf2 0.0075    rad/MWs 

nf1 0.04        kV/MVAr 

nf2 0.02        kV/MVAr 

 

 

Fig. 6.2. Surplus power of DGs in MG-A. 

6.3.3. OVERLOAD POWER CALCULATION 

Since MG-A operates in the frequency droop, the frequency is used as the 

overload detection signal. Once, system frequency hits to the lower limit of the 

frequency band (i.e., 49.7 Hz), the overload signal triggers on, indicating that the peak 

load demand is higher than the total cumulative rating of the DGs. When this occurs, 

the inertial DGs (DGENs) start releasing their stored kinetic energy (KE) to supply the 

excess power requirement. Therefore the frequency of the DGEN that is calculated 

from the droop control will start reducing. On the other hand, since the MTs do not 

have any significant KE, then they will supply their maximum amount of power. 

Therefore the MG-A frequency will drop below 49.7 Hz. Note that if this condition 

persists for a longer period of time, the system will collapse once the stored KE of the 



 

106 

 

DGENs diminishes as shown in Chapter 4, Section 4.2. Hence power must be drawn 

from MG-B to prevent this.  

Suppose MG-A contains m DGs. From (6.1), the overload power of the DGs 

are calculated as 

mk
m

PP
fk

rk
AkAk ,...,1;5.0 













 
  

           (6.11) 

Therefore the total overload power is given as 





m

k

AkAkov PPP
1

              (6.12) 

For example, assume that the total load demand increases suddenly to 820 kW 

when the system is operating stably in the steady state. The DGEN droop controller 

frequency output is shown in Fig. 6.3. It is evident that the frequency starts reducing 

and reaches a steady value as overload persists in the system. The overload power is 

calculated using the DGEN droop frequency from (6.11) and (6.12) as 

MWP

P

ov

A

0767.05.05767.0

5.7

159.314708.311
5.05.02










 


 

Note that the excess power demand is 70 kW. However the overload power 

calculated above is slightly above this value to cater for the line losses. The DGs in a 

microgrid should not only supply the load demand but the I2R losses as well. 

 

Fig. 6.3. DGEN frequency during overload. 
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6.3.4. VSC-1 CONTROL 

VSC-1 control scheme is shown in Fig. 6.4. It contains a T-filter to suppress 

switching frequency harmonics. Assume that it is connected at point T of the MG-A. 

The reference voltage across the capacitor (Vfv1) of the VSC-1 (Vcf1ref,abc) is needed to 

synthesize at the same frequency of the MG-A. Also the angle of the reference voltage 

(Vcf1ref,abc) should be such that the DC capacitor voltage is held constant. Therefore this 

angle is set through a PI controller as given in (3.9). The VSC reference voltage is 

synthesized using synchronisation algorithm as discussed in Chapter 3, Section 3.3.2. 

Once the voltage references are synthesized [121], these are tracked through the 

switching controller. 
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Fig. 6.4. VSC-1 control scheme. 

6.4. OPERATION AND CONTROL OF MG-B 

6.4.1. NOMINAL OPERATION 

Microgrid-B consists of only converter interfaced DGs as shown in Fig. 6.1. 

Since the converters can track a voltage reference almost instantaneously [92], it has 

been shown in [28] that an angle droop can have faster and superior performance than 
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a frequency droop. However, the angle droop control is mentioned in [28] shows that 

power sharing ratio depends on the output impedance of the converters. Therefore, to 

share the power amongst DGs independent from the output inductance of the DG, 

modified angle droop control is used in MG-B as discussed in detail in Chapter 2, 

Section 2.2.2. 

In modified droop control, the angle droop equations are used to synthesize the 

bus voltages as 

 BBa PPm  **
             (6.13) 

 BBa QQnVV  **

             (6.14) 

where *
 and  are the rated and instantaneous angle of the terminal voltage 

respectively. The rated real power and instantaneous real power are denoted by PB
* 

and PB respectively. QB
* and QB are the rated and instantaneous reactive power 

respectively. ma, na are the droop coefficients of the angle and voltage droop lines.  

Once, the quantities voltage magnitude (Vgi) and angle (gi) are calculated as 

discussed in Chapter 2, Section 2.2.2, then instantaneous three phase reference voltage 

are obtained as 

 

 

 


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tVv







           (6.15) 

DG-i (i=1,2..n) has to synthesis these three voltages (6.15) at its output terminal. The 

converter structure of the DGs are considered same as discussed in Appendix A. 

6.4.2. SURPLUS POWER CALCULATION AND OVERLOAD DETECTION 

Microgrid-B operates in angle droop control therefore the surplus power 

depends on voltage angle. It can be calculated from the droop angle which is given in 

(6.13). If the reference angle is chosen as 0, (6.13) can be written for ith DG as 

ai

i
BiBisurpBi

m
PPP


 *

             (6.16) 
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Therefore, the total power surplus is the sum total of all DGs in this microgrid. If one 

of the DGs is switched off, the surplus power is calculated in the similar fashion as 

given in (6.9).  

The advantage of the angle droop is that it does not require any extensive 

detection method for any overloading condition. In an autonomous microgrid, an angle 

droop control scheme can be designed by choosing the reference angle as zero for all 

the DGs. Therefore, as it can be surmised from (6.13) that, when overloading occurs, 

the droop angles become negative. This can be used as a trigger signal. Therefore, the 

overload has to be detected as soon as the angles reach zero. Hence the lower threshold 

for the angles is chosen zero. This is used for deblocking VSC-2. 

Note that for both surplus power calculation and overload detection in this 

scheme, the droop angles are required at the BTB converter. Furthermore the operating 

status of the DGs will be required for surplus power calculation. Therefore a 

communication medium will be required for this purpose. 

6.4.3. VSC-2 CONTROL FOR POWER TRANSFER FROM MG-B TO MG-A 

In this case, the overload occurs in MG-A. The overload detection and power 

calculation is discussed in Section 6.3.3. The control scheme of VSC-2 is shown in 

Fig. 6.5. The main aim is to make power exchange from MG-B to MG-A (Pex) equal 

to overload power (Pov). This is accomplished by a PI controller that controls the angle 

of the voltage vcf2 across the capacitor (Cvf2). This angle is computed as 

     dtPPKPPK exovIexovPcf 2
          (6.17) 

The main aim of this controller is to deflect the angle cf2 from the angle of the voltage 

(VB,a) in such a way that the required amount of power flows from MG-B to MG-A. 
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Fig. 6.5. VSC-2 control scheme. 

6.4.4. VSC-2 CONTROL FOR POWER TRANSFER FROM MG-A TO MG-B 

In this mode, the overload occurs in MG-B. Here it is assumed that the power 

drawn from MG-A will be shared with the DGs of MG-B. However, MG-A can only 

supply the available excess amount of power, as discussed in Section 6.3.2. Therefore, 

its droop coefficients are determined dynamically. Assume that MG-B has n number 

of DGs. Then we define a constant Θ as 

anBnaBaB mPmPmP   2211                         (6.18) 

This constant now dictates what the droop gain of an incoming DG will be, 

given its rated power. Now when MG-B needs power from MG-A, VSC-2 can draw 

power from MG-A using the same angle droop constant. Hence the droop gain based 

on the surplus power is given as  

surp

asurp
P

m


                            (6.19) 

In this case the converter output reference voltage is computed from the angle droop 

control as discussed in Section 6.4.1. This control scheme is shown in Fig. 6.6, where 

Vcf2ref,abc is calculated from angle droop controller. 
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Fig. 6.6. VSC-2 control scheme. 

6.5. THE OVERALL VSC CONTROL STRATEGY 

The overall VSCs control strategy is shown in Fig. 6.7. VSC-1, which is 

connected with MG-A, operates at same frequency of the microgrid while holding the 

DC capacitor voltage constant. This is synchronized with the microgrid through the 

algorithm presented in Chapter 3, Section 3.3.2. VSC-2 is connected to MG-B and 

operates at a fix frequency of 50 Hz. This converter controls the power flow from MG-

A to MG-B or vice versa. 

The mode of operation of VSC-2 depends on the overload triggering signal. In 

the nominal mode of operation, both microgrids have sufficient amount of power to 

support their own local loads. When MG-A is overloaded and MG-B has sufficient 

power, TrigovA will be equal to one and TrigovB should be zero. In this case, the exact 

amount of power shortfall will be supplied by MG-B to MG-A. On the other hand, 

when MG-B is overloaded, TrigovB will be equal to one. If MG-A has sufficient power 

during this time, TrigovA should be zero and MG-A will supply MG-B using the same 

angle droop used by the DGs in MG-B. 
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Fig. 6.7. The overall control scheme for VSCs. 

6.6. SIMULATION STUDIES  

6.6.1. NOMINAL OPERATION  

The system structure shown in Fig. 6.1 is considered. The parameters of the 

MG-A, MG-B and VSCs are listed in Table. 6.1, Table 6.2 and Table 6.3 respectively. 

The total local load demand in MG-A is 450 kW and MG-B is 200 kW. The powers 

supplied by the DGs, along with the load power in MG-A are shown in Fig. 6.8. The 

frequencies of the DGs in this microgrid are shown in Fig. 6.8 (b). Since the load 

demand is more than the half of rated power, the frequency is expected to be below 50 

Hz.  

 

Fig. 6.8. Power and frequency in MG-A during nominal operation. 
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In MG-B, power shared by the two DGs and the power consumed by the load 

are shown in Fig. 6.9, where the load is suddenly reduced to 150 kW. However the 

power supplied by the DG-1 is remained twice the amount that supplied by DG-2. The 

power drawn through VSC-2 is zero, while the dc capacitor voltage Vdc is held constant 

at 2.5 kV by VSC-1, as shown in Fig. 6.10. 

 

Fig. 6.9. Real power sharing in MG-B through angle droop control. 

 

Fig. 6.10. Power exchange and dc capacitor voltage during nominal operation. 

6.6.2. MG-A OVERLOADED  

In this case, the local load of MG-A is increased to 820 kW at 1 s, which 

exceeds the total maximum available power in this MG. The overload power 

requirement, calculated from (6.12), is given to VSC-2 controller. Therefore this 

amount of power is drawn from MG-B. The load and DGs powers for MG-A and MG-
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B are shown in Fig. 6.11 and Fig. 6.12 respectively. It can be seen that DGs in MG-A 

reach their maximum limit. However, the power supplied by the DGs in MG-B 

increases, even though the load consumption in this microgrid remains constant.  

 

Fig. 6.11. Power in MG-A during an overload in MG-A. 

 

Fig. 6.12. Power in MG-B during an overload in MG-A. 

The power flow through VSC-2 is shown in Fig. 6.13 (a). It is negative 

indicating that a power is flowing from MG-B to MG-A. The dc capacitor voltage is 

shown in Fig. 6.13 (b). It can be seen that it remains constant at 2.5 kV barring some 

initial transients.  

The overload power drawn from MG-B also depends on its available surplus 

power which can be calculated from (6.16). This available surplus power must be 

higher than the overload power to support MG-A. In case, the overload power which 

need to draw from MG-B is higher than the available surplus power then load shedding 

will be required which is not considered in this thesis. 
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Fig. 6.13. Power through VSC-2 and dc capacitor voltage during an overload in MG-A. 

 6.6.3. MG-B OVERLOADED  

With the system operating in the steady state, the power demand rises to 290 

kW in MG-B. Since this is still within the supply capacity of the DGs, they continue 

to supply the demand according to their ratio, as shown in Fig. 6.14 (a). The droop 

angles are close to zero but higher than zero, as can be seen from Fig. 6.14 (b). 

However, if the load demand increases to 350 kW that is beyond the total capacity of 

the DGs, the droop angles become negative and voltage drop catastrophically, as 

shown in Fig. 6.15. To avoid this, when the droop angles reach a pre-set lower 

threshold zero, VSC-2 is switched on.  
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Fig. 6.14. Illustration of near overload in MG-B. 

 

Fig. 6.15. Illustration of overload in MG-B. 

In this case, let us assume load demand in MG-B is increased to 320 kW which 

is higher than the total power generation capacity of the DGs in this MG. Therefore, 

the angle of DGs nearly reaches zero and this triggers the overloading signal to ON 

state. This signal is used to de-block the switches of VSC-2. Then VSC-2 starts 

drawing power in same angle droop control with DGs of MG-B according to available 

surplus power and rest of the load power supplied from the DGs of the MG-B as shown 

in Fig. 6.16 (a). The angles of the DGs are shown in Fig. 6.16 (b).  
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Fig. 6.16. DGs power and frequency in MG-B during overload in MG-B. 

The power supplied by the DGs in MG-A are shown in Fig. 6.17 (a). It can be 

seen that power supplied by DGs increases, even though its local load requirement 

does not change. The frequency of the DGs also reduces as shown in Fig. 6.17 (b). The 

power supply through the VSC-2 is shown in Fig. 6.18 (a). It is positive indicating that 

a power is flowing from MG-A to MG-B. The dc capacitor voltage Vdc is held constant 

at 2.5 kV barring some initial transients as shown in Fig. 6.18 (b). 

 

Fig. 6.17. DGs power and frequency in MG-A during overload in MG-B. 
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Fig. 6.18. Power exchange and dc capacitor voltage during overload in MG-B. 

Table. 6.2. Parameters of the microgrid-B. 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DGs Rated Power DG-1: 200 kW, DG-2: 100 kW 

Output Inductor L1 = L2 = 10 mH 

Droop Coefficient (Angle–Voltage) 

ma1 2.0     rad/MW 

ma2 1.0     rad/MW 

na1 1.0      kV/MVAr 

na2 0.5      kV/MVAr 

 

Table. 6.3. Parameters of VSCs. 

 Parameters Values 

Rfvi, i=1,2 0.1 Ω 

Cfvi, v= 1,2 50 μF 

Lvi i=1,2  15 mH for VSC-1 and 10 mH for VSC-2 

Vdcref 2.5 kV 

Transformer  0.1 MVA, 3/11 kV, leakage inductance (Lfvi, 

i=1,2) of 5% 
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Table. 6.4. Parameters of PI controller (VSC-1). 

System data Value 

Proportional gain (Kp1) -0.2 

Integral gain (KI1) -5 
 

Table. 6.5. Parameters of PI controller (VSC-2). 

System data Value 

Proportional gain (Kp) -0.5 

Integral gain (KI) -20 

 

6.7. CONCLUSION 

In this chapter, a new interconnection strategy is presented for two neighboring 

microgrids, operating in autonomous mode. It has been shown how a microgrid, 

operating in frequency droop control can be joined together through a BTB VSC 

system to a microgrid operating in angle droop. The operation of BTB converter plays 

an important role to support the microgrid during contingency. The overloading 

detection and excess power calculation methods for the microgrid operating under 

frequency droop control are discussed. The overloading in the angle droop control is 

detected through the angle of any converter output voltage and available excess power 

is calculated based on droop angles. Extensive digital computer simulation results are 

provided to validate the proposals. 
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CHAPTER 7 

CONCEPT OF POWER EXCHANGE HIGHWAY FOR CLUSTER 

OF MICROGRIDS 

The interconnection of the number of microgrids can make distribution system 

more reliable and efficient [66]. It can enable utilities to make more efficient use of 

their existing assets through peak shaving and service quality control. The 

interconnection of the microgrids through highways for power exchange can rapidly 

escalate the microgrid capabilities [81]. If only two microgrids are connected to each 

other then they can be connected directly through a back to back converter as discussed 

in Chapter-6. In [123], a hybrid microgrid (MG) structure composed of three single 

phase back to back converters which shares the load among different phases is 

presented. So far a large majority of published work only have considered 

interconnection of two microgrids. If there are three microgrids, they can be connected 

in the triangular arrangement as shown in Fig. 7.1.  

Microgrid-1 Microgrid-2

Microgrid-3

PMG-3

VSC-1 VSC-2

PMG-1 PMG-2

 

Fig. 7.1. Interconnection of three microgrids. 

In this figure, each microgrid is connected through a back to back converter to 

exchange power between them during any contingency. The operation of the back to 

back converter can be the same as discussed in Chaper-6 for two interconnected 
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microgrids. However, there may be several microgrids that need to be interconnected. 

Thus direct back to back connection is not always feasible. 

7.1. SYSTEM STRUCTURE 

When several MGs are to be connected together, they need a common platform 

for power exchange. The schematic diagram of the proposed topology is shown in Fig. 

7.2. In this, the power between the microgrids is exchanged only through the power 

exchange highway (PEH). To isolate a MG from power exchange highway, each 

microgrid is interconnected through a back to back (BTB) converter. The DGs 

available in microgrids operate in frequency droop to supply their loads. The BTB 

consists of two voltage source converters (VSC-1 and VSC-2) which are connected 

through a common dc capacitor. VSC-1 is connected with the microgrid and operates 

at the same frequency of the microgrid. It holds the dc link capacitor voltage constant. 

VSC-2 operates in dynamic frequency droop to control power exchange in between 

microgrids through PEH. 

As shown in Fig. 7.2, a total N numbers of microgrids are connected to PEH 

through BTB converter. The PEH only has to exchange power in between MGs. Thus 

it can be either three phases or single phase. In this thesis, only three phase type of 

PEH is considered. Since the PEH is isolated from a MG, the voltage and frequency 

of PEH can differ from these of any MG. Furthermore, these MGs also can operate at 

different frequencies base on their local loads.  

The main purpose of the topology is to provide support to microgrids during 

contingency in any one of them. It increases the functionality of a microgrid and 

extends its maturity. It can increase the total effective capacity of individual microgrid 

to support peak load. During peak load demand, the excess power can be supplied by 

other microgrids effectively and instantly using this topology. The microgrids can have 

different types of DGs such as inertial, a converter interfaced DG (non-inertial). It has 

been assumed that all DGs operate in frequency droop independently. They will be 

joined together at PEH through another power-frequency droop. Note that the PEH is 

only required to flow power between microgrids – no local load is connected to PEH. 

It is well known that power flow in ac circuits mainly depends on the relative angle 

difference. Voltage magnitude does  
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Fig. 7.2. Topology of microgrids interconnection. 

not have any significant role in the power flow. Therefore, for PEH, no voltage 

magnitude-reactive power droop needs to be employed. 

7.2. OPERATION AND CONTROL OF MICROGRID 

7.2.1. NOMINAL OPERATION 

The generalized topology of the microgrid is shown in Fig. 7.3 where, DGs are 

controlled through a frequency droop [92], given by 

 MMMr PPmff  5.0               (7.1) 

)( * QQnVV r                  (7.2) 

where fr and f are the rated and instantaneous frequency of DG respectively and the 

subscript M denotes microgrid. 
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Fig. 7.3. The microgrid topology. 

The dispatchable types of DGs are considered in all MGs. These DGs can be 

diesel generator (DGEN) and converter interfaced type (microturbine (MT), UPS etc.). 

To operate converter interfaced DG at same response rate of inertial DG, pseudo inertia 

is used as discussed in Chapter 2 and the detail model of the DGEN and MT are also 

discussed in the same Chapter. The frequency deviation in MGs is considered within 

± fd (0.5 Hz) from standard frequency 50 Hz and the voltage magnitude deviation from 

base voltage is set at ± 5%. The droop coefficients of DGs are calculated based on the 

above stipulations.  

7.2.2. SURPLUS POWER  

Surplus power (Pee) is the excess available power in a microgrid that can be 

used to support other microgrids, if required. The surplus power is calculated following 

the procedure discussed in Chapter 6, Section 6.3.2. A simpler calculation of surplus 

power is proposed in this chapter, which only depends on the estimated microgrid 

frequency and total generation capacity of the microgrid at a given time.  

The difference of total capacity of a MG (PM
*) and power supplied (PM) by it 

can be defined as the surplus power. It is assumed that each microgrid should keep 

20% of its total generation as a reserve power to support its own peak load demand. 

Therefore only 80% of its maximum generation can be used for surplus power 

calculation. If a microgrid operates at frequency f, then from (7.1), we get 

M

m
MMee

m

ff
PPP


 8.0               (7.3) 
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where f is actual frequency of MG and fm is set as 49.7 Hz, which is the microgrid 

frequency when it supplies 80% of power PM
*. The calculation of droop gain is given 

in terms of rad/s.MW by (2.22) in Chapter 2. It can be directly written in term of 

frequency as 






M

minmax
M

P

ff
m                 (7.4) 

where fmax is the maximum frequency (50.5 Hz) and fmin is the minimum frequency 

(49.5 Hz) the MG can have. 

Substituting the value of mM from (7.4) into (7.3), we get 





 M

m
ee P

ff

ff
P

minmax

               (7.5) 

Define, fmax – fmin = 2fd, we get 





 M

d

m
ee P

f

ff
P

2
                (7.6) 

From (7.6), the surplus power of the MG can be calculated based on the actual 

frequency and the total capacity of the microgrid in presence of plug and play DGs as 

mentioned in Chapter 6, this requires the status of all DGs.  

7.2.3. POWER BALANCING DURING CONTINGENCY 

From (7.1) it can be seen that once MG frequency hits to the lower limit of the 

frequency band, the MG supplies its total maximum capacity power (PM
*) to the load 

(PL) which implies P (PM
*  PL) will be zero. Once the peak load demand of the MG 

increases more than its total capacity (P<0), frequency of the microgrid drops below 

the lower limit and available inertial DGs in the microgrid start releasing their stored 

kinetic energy (KE) in their rotor to support the microgrid. If this condition persists for 

a longer period of time, the system will collapse once the stored KE of inertial DGs 

diminish. However, this power can be drawn from other microgrids (if the surplus 

power available in them) through the PEH to counter the overload. The drawing of this 

exact amount of power is tantamount to a reduction of load such that P becomes 0. 

At this point, the microgrid frequency becomes 49.5 Hz. Thus the basic aim is to get 
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the frequency back to 49.5 Hz by drawing power from the other microgrids through 

the PEH. 

Hence, the overload power is computed in such a way that MG frequency is 

maintained at lower limit of frequency droop and drawn from the other microgrids. To 

achieve this, a PI controller is used, the output of which is overload power. This is 

given by 

     dtffKffKP IPov min1min1              (7.7) 

where fmin is the lower limit of the frequency and f is actual frequency of MG. KP1 and 

KI1  are the proportional and integral gain of the controller respectively. 

The overload power estimated from (7.7) can be supplied from the other 

microgrids, which are connected through PEH. How this estimated overload power 

can be shared by the others MGs according to their available surplus power is 

explained in Section 7.4. 

The block diagram of the overload prevention scheme is shown in Fig. 7.4. The 

microgrid frequency f is compared with a fixed frequency of 49.5 Hz. If this is greater 

than 0, then a trigger signal (Trg) is activated. Otherwise the trigger signal remains 

zero. If Trg = 1, then the input to the PI controller is ef (49.5- f). When the Trg changes 

from 1 to 0, a one shot Schmitt trigger is used to generate a pulse that will reset the 

integrator. In input to the PI controller is then changed to 0 such that no overload power 

is required from PEH. 

49.5 Hz Yes+

No


dcP

rgT

rgT rgT

rgT

0

ef > 0
ef

s

K
K

If

Pf 

Reset

rgT

f

 

Fig. 7.4. Schematic diagram of the overload prevention scheme. 
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7.3. OPERATION OF POWER EXCHANGE CONVERTERS (PECS) 

The BTB converter, connection an MG with the PEH, is termed as a power 

exchange converter (PEC) as its sole purpose is to exchange power between the MG 

and PEH. The control system block diagram of PEC is shown in Fig. 7.5. VSC-1 holds 

the dc link capacitor voltage (Vdc) constant by drawing power from the MG. The MG 

operates in frequency droop therefore from (7.1) its frequency can drift from 50 Hz 

according to available local load. Hence, VSC-1 is synchronized with the MG 

frequency to operate at same frequency of MG as discussed in Chapter 3. The control 

strategy of the VSC-1 is illustrated in Fig. 7.5. The angle () of reference voltage of 

VSC-1 is calculated from a PI controller that maintains the dc capacitor voltage 

constant and the reference voltage is synthesized by phase shifting terminal voltage of 

the microgrid by angle ().  

VSC-2 operates in a dynamic frequency droop to share available surplus power 

(belonging to its MG) with the other microgrid through PEH, which is discussed in 

details in the next section. Nominally PEC does not need to transfer any power through 

PEH. This implies that all MGs have sufficient generation to supply its local load. 

However, VSC-1 and VSC-2 both remain active since VSC-1 has to maintain the dc 

capacitor voltage constant and VSC-2 has to supply the overload power instantly. If 

VSC-1 starts charging the dc capacitor voltage when power transfer is required then 

large capacitor charging transient can cause a large transient in the PEH, which may 

cause a failure in the overloaded MG.  
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Fig. 7.5. Control scheme of Power Exchange Converter. 

VSC-2 switches can remain blocked during nominal operation and can be 

deblocked when a contingency occurs in any of the MGs. This might require extensive 

communication between the MGs [101] and can cause delay. To avoid this, VSC-2 is 

kept ON all the time such that it operates like a DG in a microgrid. A DG in an MG 

supplies power based on its rating, as determined by its fixed droop gain. However the 

PEC in an MG, connected to PEH, cannot have a fixed droop gain since its power 

supplies depend on the surplus power available in the MG. Therefore PEH droop has 

to be dynamically adjusted as discussed below.  

 

7.4. DYNAMIC DROOP CONTROL 

The dynamic droop is used to control power flow through the PEH, where the 

power flow depends on the overload power required by a microgrid and the available 

surplus power in the other microgrids. It has been discussed in Section 7.2.2 that the 

surplus power of a microgrid depends on its frequency. Therefore it changes when the 

local load of a microgrid varies. Thus the surplus power can be considered as the 

present capacity of a microgrid that can be used to support others. 

Therefore, droop coefficients of the converters connected to the PEH need to 

be calculated dynamically. Note that the droop coefficient of any DG depends on its 



 

128 

 

rated capacity. Generally the ratings of dispatchable DGs are constants and hence their 

droop coefficients are also constant. The dynamic droop, on the other hand, varies with 

the maximum level of power that an MG can supply. It is given by 

 HHHHrH PPmff                  (7.8) 

where PH
* is the available surplus power in microgrid connected to PEH, PH is actual 

power supplied by converter to PEH and mH is the dynamic droop coefficient, which 

is calculated from frequency range and PH
* as  






H

HminHmax
H

P

ff
m

)(
               (7.9) 

Note that fH in (7.8) is 50 Hz when PH
* = PH, which is equal to fHmin and frequency 

deviation (fHd) is 0.5 Hz. Therefore fHmax is 50.5 Hz at which PH = 0. The relation 

between the droop in PEH and that in an MG is discussed below. 

Once an MG starts supplying power to another MG through PEH its frequency 

decreases. This will cause Pee to in (7.6) to reduce. If the reference power of the 

dynamic droop is changed for every change in local or external (PEH) load, the droop 

gains will fluctuate continuously. Therefore PH
* is computed from Pee – these two 

quantities are not necessarily the same. It has been mentioned before, every microgrid 

will always keep 20% of total generation capacity (PM
*) to supply a suddenly peaking 

load in the microgrid. Therefore PH
* in the dynamic droop computation is kept constant 

until the local load demand of microgrid is changed more than its reserved power (20% 

of PM
*). 

Hence, the estimation of dynamic droop coefficient (mH) and reference power 

(PH
*) depends on the corresponding microgrid frequency and the dynamic droop 

frequency. In Fig. 7.6, the droop lines of PEC and microgrid are shown. It can be seen 

that when no power flows in the PEH, frequency of the PEC is at its maximum limit 

of 50.5 Hz. Now consider case when PH1 amount of power flows from PEC to PEH, 

while the MG is supplying P1 amount of power such that its frequency is f1. Now if 

the local load increases such that this MG has to supply P2 amount of power, the 

frequency changes to f2. This change is solely caused by the change in the local load 

and power flowing from the MG to PEH remains unaltered. Therefore the frequency 

of the dynamic PEH droop will remain constant at fH1 (see Fig. 7.6). 
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Fig. 7.6. Droop line for PEH when MG frequency variation is less than 0.2 Hz due to local load 

change in MG. 

Note that the power variation in MG can be calculated from its frequency. 

Since the frequency variation is limited to be within  0.5 Hz, each 0.1 Hz variation in 

the MG frequency corresponds to 10% variation in PM
*. Therefore, if the MG 

frequency reduction is less than 0.2 Hz due to local load variation, as indicated by no 

change in fH1, the dynamic droop line will not change and the droop gain will remain 

constant at mH1.  

However the MG frequency can vary with both the variation in local load and 

power flow in PEH. An increase (decrease) in the supplied power by the MG is equal 

to that in PEC output indicates that there is no change in the power consumption level 

of the MG local load. This can also be determined by the microgrid and the dynamic 

droop frequencies. Consider the droop lines of Fig. 7.7. It can be seen that the MG 

frequency changes from f1 to f2 as a consequence of the change in the PEH droop from 

fH1 to fH2. From (7.1), the power variation in the MG is 

M

21
M

m

ff
P

)( 
               (7.10) 

Now since fmax = 50.5 Hz and fmin = 49.5 Hz, from (7.4), we get 

*

1

M

M
P

m                 (7.11) 

Combining (7.10) and (7.11), we get 
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  *

M21M PffP                (7.12) 

In a similar way, the frequency variation in PEH is given by 

  *2 HH2H1H PffP               (7.13) 

Therefore when PM = PH, it can be surmised that the entire power change is due to 

an increase in the power flow through PEC. 
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Fig. 7.7. Droop lines for the PEH and the MG. 

It has been mentioned that an MG should have 20% reserve available power to 

cater to the peaks in its local load. Therefore we can write 

**8.0 HMM PPP   

Now consider the case when PM changes by more than 20% of PM
*. For example 

consider the case when the rating (PM
*) of a microgrid is 1 MW and it is supplying PM 

= 250 kW. Then we can choose PH
* as 550 kW. Now suddenly the local load increases 

to 450 kW. This implies that PH
* has to be reduced to 350 kW. On the other hand, if 

the local load increases by 50 kW, there is no need to change PH
* since there still will 

be a reserve of 150 kW. 

Thus, if the local load changes more than the 20% of the total capacity of the 

microgrid, then PH
* is estimated from currently available Pee, which is 

)(8.0 HMMHee PPPPP               (7.14) 
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where PM is calculated from (7.1) using the value of MG frequency and PH is 

calculated from (7.8) using the value of the PEH frequency. Substituting the value of 

P*
H from (7.14) to (7.9), the value of mH also can be estimated.  

In Fig. 7.8, it can be seen that the power (PH) supplied from PEC remained 

same and the power supplied by the microgrid is changed from point 1 to 2 which is 

more than the 20% of the total capacity of the microgrid. Therefore the reference power 

is changed from P*
H1 to P*

H2 and dynamic droop coefficient is changed from mH1 to 

mH2.  
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Fig. 7.8. Droop line selection for PEH. 

In Fig. 7.9, a cluster of microgrids is shown with their control schemes, where 

only two microgrids are shown. It can be generalized to n number of microgrids. Let 

us assume, one of the microgrids has power shortage due to overload. Therefore, the 

other microgrid, which is assumed to have available surplus power, will start supplying 

power through the PEH. The PEC operates in dynamic droop control. The overload 

power (Pov) is estimated from (7.7). If this amount of power is drawn from the other 

microgrid, the frequency can be maintained at the lower limit of (fmin). Then Pov is 

taken as the reference power for the PEC (VSC-2) of the overloaded MG. It needs to 

extract this amount of power from the other MGs. Therefore, it is accomplished by a 

PI controller that controls the angle of the output voltage of PEC (VSC-2), given by 

     dtPPKPPK HovIHovP 22            (7.15) 
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The main aim of this controller is to deflect the angle  from the angle of the voltage 

(vH) in such a way that the required amount of power flows from the PEH. To operate 

at the same frequency of the PEH, VSC-2 reference voltage is generated in such that 

it is synchronized with vH at angle difference . It works as a constant P load for the 

PEH. 
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Fig. 7.9. Dynamic droop control in cluster of microgrids 

The other MGs operate in dynamic droop to share this overload power 

according to available surplus power. The available maximum power in MGs is 

calculated from (7.6), which is equivalent to PH
*. The dynamic droop coefficient (mH) 

is selected according to reference power (PH
*). With these parameters, the frequency 

of the PEC (VSC-2) is calculated from (7.8). 
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7.5. SIMULATION STUDIES 

The proposed control strategy is validated in PSCAD. The parameters of the 

MGs are given in Table 7.1, Table 7.2 and Table 7.3. Various test conditions are 

chosen for studies. The results are discussed below. 

7.5.1. FREQUENCY BASED OVERLOAD PREVENTION 

This example verifies the Section 7.2.3. Let us consider a microgrid contains 

two DGENs each with a rating of 500 kW. In the steady state, the local load of MG is 

850 kW. The load demand is increased to 1050 kW which is higher than the total 

capacity of the MG. This MG is connected with the PEH through PEC. The overload 

power is estimated in such a way that frequency of the MG is maintained at the lower 

limit through the PI controller. Results are shown in Fig. 7.10 and Fig. 7.11. It can be 

seen from Fig. 7.10 (a) that microgrid frequency is brought back to 49.5 Hz and the 

estimated overload power from PI controller also settle to a steady state value, as 

shown in Fig. 7.10 (b). Both these settle within 6 s. The power flow in microgrid is 

shown in Fig. 7.11, where it can be seen that the DGENs supply their rated power in 

steady state and overload power is extracted from the PEH.  

 

Fig. 7.10. MG frequency and overload power balancing through PEC.  
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Fig. 7.11. Power flow in MG during contingency. 

7.5.2. MICROGRIDS CLUSTER OPERATION 

Two different case studies are considered. These are 

Case (A) No power exchange through PEH 

Case (B) Power exchange through PEH for power balancing during   

   contingency 

CASE (A): NO POWER EXCHANGE THROUGH PEH 

In this case, all microgrids have sufficient amount of available power to support 

their local loads. Therefore, there is no need of power exchange in between MGs 

through PEH. Let us assume that three MGs are considered in structure shown in Fig. 

7.2, which are connected through PEH. Each MG has different capacity as parameters 

of DGs in MG are given in Table 7.1, Table 7.2 and Table 7.3. MG-1 has total capacity 

of power 750 kW and consists of local load of 300 kW. Similarly, the total capacity of 

MG-2 and MG-3 are 600 kW and 1000 kW respectively. In steady state the local loads 

of MG-2 and MG-3 are 280 kW and 850 kW respectively. Therefore, the power 

exchange from PEH is zero as can be seen from Fig. 7.12 (a). The frequency of each 

microgrid is shown in Fig. 7.12 (b), it can be seen that each MG is operating 

independently at different frequency to support its local load. The frequency of the 

VSC-2 connected to PEH is at upper limit of the dynamic frequency droop (50.5 Hz), 

shown in Fig. 7.12 (b). It illustrates that there is no power exchange through PEH. 
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Fig. 7.12. Power flow in PEH and Frequencies in PEH and MGs 

Table. 7.1. Parameters of Microgrid-1. 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf2 = 3.025 , Lf2 = 57.8 mH 

DG Rated Power DG-1: 250 kW, DG-2: 500 kW 

Droop Coefficient (Frequency–Voltage) 

mf1 0.0251      rad/MWs 

mf2 0.0126    rad/MWs 

nf1 0.004        kV/MVAr 

nf2 0.002        kV/MVAr 

Table. 7.2. Parameters of Microgrid-2. 

System Quantities Values 

DG1 Feeder impedance Rf1 = 1.21 , Lf1 = 38.5 mH 

DG2 Feeder impedance Rf2 = 2.42 , Lf2 = 77.0 mH 

DG Rated Power DG-1: 200 kW, DG-2: 400 kW 

Droop Coefficient (Frequency–Voltage) 

mf1 0.0314      rad/MWs 

mf2 0.0157    rad/MWs 

nf1 0.002        kV/MVAr 

nf2 0.001        kV/MVAr 

 

 

 



 

136 

 

Table. 7.3. Parameters of Microgrid-3. 

System Quantities Values 

DG1 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG2 Feeder impedance Rf1 = 3.025 , Lf1 = 57.8 mH 

DG Rated Power DG-1: 500 kW, DG-2: 500 kW 

Droop Coefficient (Frequency–Voltage) 

mf1 0.0126      rad/MWs 

mf2 0.0126    rad/MWs 

nf1 0.04        kV/MVAr 

nf2 0.04        kV/MVAr 

 

CASE (B): POWER BALANCING IN MG-3 

Let us assume that the local load demand in MG-3 is increased to 1065 kW 

which is greater than the total capacity of the MG-3 and other MGs having same rating 

as mentioned in case A. Therefore, the frequency of MG-3 reduces and hits to the 

lower limit of frequency droop. Hence, overload power estimator activates to extract 

the power from the other microgrids in the same manner as shown in Section 7.5.1. 

The dynamic frequency droop controls the power sharing based on the available 

surplus power in other MGs. At this time the surplus power in MG-1 and MG-2 are 

300 kW and 200 kW respectively. It can be seen in Fig. 7.13 (a) that PEC-3 extracts 

75 kW power from PEC-1 and PEC-2, which is shared by them. The frequency of the 

dynamic droop is shown in Fig. 7.13 (b), which is 50.5 Hz when there is no power 

flow through PEH and it reduces to 50.42 Hz according to the power flow in PEH. 

The power flow in the microgrids connected to the PEH through the PEC is 

shown in Fig. 7.14. In nominal situation, MG-1 consists of two DGs with rating of 250 

kW and 500 kW and the local load is 300 kW. The power flow in MG-1 is shown in 

Fig. 7.14 (a.1). It can be seen that power from MG-1 increases as it starts supplying 

power to MG-3. The frequency of the MG-1 also reduces according to power as can 

be seen in Fig. 7.14 (a.2). VSC-1 connected with the MG-1 holds the dc capacitor 

voltage at constant value of 2.5 kV, baring some transients during power flow change 

in the PEC, as shown in Fig. 7.14 (a.3).  

In nominal situation, MG-2 consists of two DGs with rating of 200 kW and 

400 kW and the local load is 280 kW. The power flow in MG-2 and the frequency of 



 

137 

 

DGs are shown in Fig. 7.14 (b.1) and Fig. 7.14 (b.2) respectively. The dc link capacitor 

voltage of the VSC-1 connected with MG-2 is shown in Fig. 7.14 (b.3). In nominal 

situation, MG-3 contains two DGs which are the same rating of 500 kW and its local 

load is 850 kW. When the power increases to 1075 kW, the DGENs supply at the 

maximum capacity (Fig. 7.14 (c.1)). Frequency is held at 49.5 Hz (Fig. 7.14 (c.2)) and 

the dc capacitor voltage remains 2.5 kV (Fig. 7.14 (c.3)).  

 

Fig. 7.13. Power flow and frequency in PEH. 

 

Fig. 7.14. The power flow and frequencies in microgrids with VSC-1 (PEC) dc capacitor voltage.  
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7.5.3. MG NON PARTICIPATION IN POWER SHARING 

A MG may not participate in power sharing through PEH, especially when 

there is no sufficient reserve in it. The following conditions are set based on which an 

MG may not participate in power sharing. 

 The reference power of dynamic droop is less than 20% of the total capacity 

of the microgrid and the dynamic droop frequency is higher than half of the 

maximum limit of frequency (fHmax). It means others have well sufficient 

power to support any overloaded microgrid and the microgrid does not have 

sufficient reserve. 

 If frequency of the microgrid (f) is less than 50 Hz and load has increased 

more than 10% of reserve power. This will result in frequency drop of 0.1 

Hz and a more in the MG. In either case the MG has to plug out. 

A simple way of plugging out is to halt the power flow. Refer to Fig. 7.5, where 

inductor LH connects the VSC-2 output voltage (VcfH) to PEH voltage (VH). If the 

reference for VcfH is chosen as VH, there will be no power flowing through LH. In this 

way VSC-2 remains in the circuit supply zero power, but ready for any contingency in 

its own MG. The results are shown in Fig. 7.15. In this case four MGs are connected 

through PEH. It can be seen in Fig. 7.15 (a) that MG-4 is overloaded and consuming 

120 kW power from other three microgrids. At 1 s, MG-1 stops participating in power 

sharing through PEH and power supplied by other microgrids are increased to support 

MG-4. The frequency of the PEH is reduced as MG-1 stopped power supplying to 

PEH as shown in Fig. 7.15 (b). 

 

Fig. 7.15. Power flow in PEH during non-participation of MG in power sharing and PEH frequency. 
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7.6. CONCLUSION 

In this chapter, a topology of the cluster of microgrids interconnection is 

proposed. The power exchange highway concept is used to interconnect the microgrids 

and to support any microgrid during contingency. In this chapter, mainly control 

strategy of power sharing amongst microgrids which are connected through the power 

exchange highway is focused. Each microgrid operates in independent frequency 

droop control. To isolate these microgrids, back to back converter is connected 

between PEH and microgrid. This BTB converter is termed in this chapter as power 

exchange converter. The dynamic droop control is discussed to control the power flow 

in PEH.  

Few issues of proposed topology in this chapter such as how long the MG can 

support to the overloaded microgrid and MGs connection/disconnection in PEH, can 

be decided based on the MG frequency which represent its available surplus power. A 

situation, when two and more microgrids need power during contingency and other 

microgrids also do not have surplus power at same time then load shedding has to be 

considered. These issues are beyond the scope of this thesis. Few extensive digital 

computer simulation results are provided to validate the proposed control strategy of 

microgrids cluster interconnection.  
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CHAPTER 8 

CONCLUSIONS 

The general conclusion of the thesis and scope of future work are presented in 

this chapter. The conclusion are based on the work carried out and reported in the 

earlier chapters. 

8.1. GENERAL CONCLUSIONS 

These are listed below. 

1. When a microgrid contains inertial and non-inertial generators, the 

difference in their time constants can lead to large transient oscillations. To 

avoid this, the response speed of converter interfaced generators can be 

made slower using the pseudo inertia concept that imitates a governor 

action, as well as includes a swing equation. The governor and swing 

equation parameters can be tailored to respond in harmony with inertial 

rotary generators. 

2. A modification of the angle droop, which considers the bus voltages rather 

than converter output voltages, can overcome the main drawback of this 

technique, which is the dependence on the converter output inductances for 

power sharing. 

3. For the interconnection of non-dispatchable DGs with an islanded 

microgrid that is operating in a frequency droop, two strategies can be 

employed. One of these strategies includes a synchronisation algorithm, 

which requires only the instantaneous measurements of PCC bus voltages. 

In the other strategy, an isochronous controller can be integrated with 

frequency droop control such that the system operating frequency always 

remains at 50 Hz. 

4. A DSTATCOM can be used in a microgrid for power quality improvement. 

However the DSTATCOM must operate at the microgrid frequency. When 

an isochronous controller is used, the DSTATCOM can operate at 50 Hz. 

Alternatively microgrid operating frequency needs to be estimated, based 

on which the DSTATCOM must synthesize its voltages. 
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5. Energy storage devices (e.g. BESSs) are required to prevent collapse in an 

islanded microgrid due to an overload. To improve the lifetime of the 

BESSs, they must operate in a fashion such that only the amount of 

overload power is supplied. The modified angle droop can facilitate this 

even when a microgrid contains rotary generators and operates in 

frequency droop. 

6. Two microgrids that are in close proximity can be interconnected for 

mutual support during any contingency. To maintain the integrity of 

operation of these two microgrids, they must be connected by an 

interlinking back to back converter system. To control the power flow 

during contingency in any of the two microgrids, the overload power 

estimation and available surplus power computation are required. The 

interlinking converter then regulates the bidirectional power flow based on 

these quantities. 

7. A cluster of microgrids can be interconnected through common ac feeder, 

which has been termed as a power exchange highway (PEH), to support 

during contingency in any microgrid. Each microgrid in such a cluster must 

be connected through an interlinking converter with the power exchange 

highway such that each microgrid can operate independent of all other 

microgrids. To control the power flow amongst microgrids, an outer layer 

droop control is required. Since the available surplus power in a microgrid 

is not a constant quantity and varies with the changes with the microgrid 

local load, the droop gains of the outer layer should be dynamically 

selected. The interlinking converter then facilitates a bidirectional power 

flow between a microgrid and the power exchange highway. 

8.2. SCOPE FOR FUTURE WORK 

Some scopes of future work can be identified as given below. 

1. The pseudo inertia concept only slows down the speed of response of a 

converter interfaced DG and cannot supply any electrical power during 

overload power due to lack of stored kinetic energy. However the DC bus 

of the converter can be equipped with ultra-capacitors, which do not 

discharge rapidly. This needs to be thoroughly investigated. 
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2. In cluster of microgrids, the power exchange highway can be three-phase 

AC, single-phase AC or even DC. The converter configuration, rating and 

power flow control scheme for the single-phase AC or even DC power 

exchange highway can be investigated. 

3. In this thesis, mainly the control strategy for the power flow control 

amongst cluster of microgrid is focused. This strategy only considers the 

surplus available power in each microgrid. The cost factor has not been 

considered. The outer layer droop control can be modified to include the 

cost power supply from each microgrid independently. 

4. A supervisory control scheme and communication infrastructure will be 

needed for including the cost in the outer layer. They can also be 

investigated. 
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APPENDIX A 

The voltage source converter structure and control used in this thesis are 

presented in this appendix which is already published by other authors. These 

converter structures have been used in converter interfaced DGs and back to back 

converters. Depending on the requirement, the LCL and LC type of filter is used. The 

control strategies of the converter adopted in this thesis are output feedback controller 

and state feedback controller according to requirements. 

A.1. CONVERTER STRUCTURE AND POLE SHIFT SWITCHING CONTROL 

The structure of the voltage source converter (VSC) is shown in Fig. 2.7. It 

contains three H-bridges that are supplied from the common dc bus. The output of each 

H-bridge is connected to a T-filter consisting of an inductor (L1), a capacitor (Cf) in 

the secondary side of the single-phase transformer. The secondary sides of the 

transformers are connected in wye. The transformers provide galvanic isolation and 

voltage boosting. The resistance Rf represents the switching and transformer losses, 

while the inductance Lf represents the leakage reactance of the transformers. Note that 

the inductor L1 is taken as the output inductor of VSC. In droop control, the desired 

instantaneous output voltage of VSC is obtained from droop equations. The aim of the 

VSC switching control is to establish this desired voltage across the capacitor Cf. The 

pole shift controller is used to achieve VSC switching control [124]. The filter 

parameters of VSC are given in Table. A.1. 
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Fig. A.1. The structure of VSC. 

 



 

144 

 

Table. A.1. VSC filter parameters (Fig. A.1). 

Parameters Values 

Rf 1 Ω 

Cf 50 μF 

L1 25 mH 

Vdcref 2.5 kV 

Transformer 1 MVA, 3/11 kV, leakage 

inductance (Lf) of 2.5% 
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(a) LC type output filter               (b) LCL type output filter 

Fig. A.2. Single phase converter equivalent circuit. 

From the equivalent circuit of Fig. A.2 (a), a state vector is defined as x(t) = 

[vcf (t) if (t)]. Then the state-space equation of one phase of the VSC is expressed as 

)()()( 11 tuBtxAtx c1               (A.1) 

While the state space equation for Fig. A.2 (b) can be given as 

)()()()( 22 tvBtuBtxAtx p2c2               (A.2) 

where uc is the continuous time version of switching function u. Based on the feedback 

control law, uc is computed. 

Let the VSC output given in (A.1) is vcf. The instantaneous three phase 

reference voltages (v*) are generated with the voltage magnitude value V and voltage 
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angle f. Therefore, input-output relationship of VSC [124] can be written in discrete 

form as  

)(

)(

)(

)(
1

1






zN

zM

zu

zv

c

cf
               (A.3) 

The switching control uc is computed from 
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The closed transfer function is 
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Based on the pole placement strategy [125] the polynomial coefficients S and 

R can be chosen. Once uc is computed, switching function u can be generated as 
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c

c
 

where h is a small number. 

A.2. CONVERTER STRUCTURE AND STATE FEEDBACK CONTROLLER  

This VSC is a transformer-less three-phase three-leg neutral-clamped VSC, 

with the schematic diagram of Fig. A.3. In this figure, each switch represents an 

insulated gate bipolar transistor (IGBT) along with a snubber circuit and an anti-

parallel diode. The dc link of the VSC is composed of two series-connected dc 

capacitors (Cdc), each with a dc voltage of Vdc/2, where their common node is 

connected to the system neutral to provide a path for the circulation of the zero-

sequence component of the load current. An LC filter (Lf-Cf) is connected at the output 

of each phase of the VSC to suppress the high frequency switching harmonics of the 

current and voltage output of VSC. The resistance Rf represents the converter losses. 
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Fig. A.3. The VSC structure. 

In a state feedback controller, to generate the switching signal for the converter 

the chosen states are compared with their reference values. The two state variables, vcf
* 

is the reference capacitor voltage, while it is rather difficult to form the reference if
*. 

Fortunately the current if is only required for feedback stabilization – its contribution 

to reference tracking is not required. We can therefore stipulate that if should only 

contain low frequency components and its high frequency components should be 

forced to zero [121]. Therefore, the high frequency components of if are extracted by 

passing it through a high-pass filter (HPF), with a cutoff frequency of , which is 

compared to zero and is used for uc computation. The HPF is given by  




s

s

i

i

f

fHPF
                  (A.6) 

A discrete-time linear quadratic regulator (DLQR) is used for the switching 

control, in per phase basis. The control law is shown in Fig. A.4.  

+


if

vP

uc

0

vP
*

+


k1

k2

+

+

HPF

uc
*

Sampler

ZOH

 

Fig. A.4. VSC feedback control law. 
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In Fig. A.4, k1 and k2 are feedback gains, obtained using DLQR procedure. The 

resulting control signal uc is sampled by a sampler and held by a zero order hold (ZOH) 

circuit to obtain uc
*. The VSC switching control scheme is shown in Fig. A.5. This 

consists of a triangular carrier waveform (vtri) that varies from  1 to + 1 with a duty 

ratio of 0.5.  The control output uc is sampled twice in each cycle – at negative and 

positive peaks of the carrier waveform. The switching signals are generated from the 

comparison of the carrier waveform and the sampled output, as shown in Fig. A.5. 

Note that the switches S1 and S1 are complimentary as shown in this figure. 
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Fig. A.5. PWM switching control of VSC. 

 

Table. A.2. VSC filter parameters (Fig. A.3). 

Parameters Values 

Rf 0.001 Ω 

Cf 50 μF 

L1 33 mH 

Vdcref 16 kV 
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APPENDIX B 

B.1. FREQUENCY ESTIMATION TECHNIQUE 

Let us consider a three phase voltage  

 

 

 f

f

f







120sin

120sin

sin

1

1

1

tVv

tVv

tVv

mcu

mbu

mau

              (B.1) 

where Vm is the peak voltage magnitude, 1 is unknown frequency and f is phase angle 

of voltage.  

The positive sequence of the considered voltage in (B.1) is  

uucubuauu VvavavV  2              (B.2) 

where a = ej120  

Let us assume, 1 =  = 100 rad/s, f0 and peak voltage 1 p.u. From (B.2), 

vector is 

 905.1  uuV ; t = 0, 0.02s, 0.04 s…            (B.3) 

This vector starts its rotation at t = n  0.02 s, n = 0, 1, 2,  from point A as shown in 

Fig. B.1. It completes its one rotation (360) in 50 Hz (t = (n + 1)  0.02 s). The rotation 

per Hz is 360/50 = 7.2. If frequency of this vector is less than 50 Hz it takes more 

than (n + 1) 0.02 s to complete one rotation. Therefore, in (n + 1) 0.02 s it reaches 

to point B as shown in Fig. B.1. In the other hand, frequency of vector is higher than 

50 Hz it reaches to point C.  

 
Fig. B.1. Trajectory of a balanced vector rotating at (a) 50 Hz and (b) unknown frequency. 
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Therefore, frequency (rad/s) can be estimated as 








 
 

2.7
502 1

1
nn 

               (B.4) 

Thus, accurate frequency of MG is estimated from (B.4)  

  



 

150 

 

REFERENCES 

[1] S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active 

Distribution Networks, UK: Institution of Engineering and Technology, 2009, 

pp. 57-76. 

[2] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining Control 

Strategies for MicroGrids Islanded Operation”, IEEE Transactions on Power 

Systems, vol.21, no.2, pp. 916‐924, 2006. 

[3] D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system 

integration of distributed energy resources,” in Renewable Power Generation 

IET, vol.1, no.1, pp.10-16, 2007. 

[4] Md R. Islam, and A. Gabbar Hossam, “Study of microgrid safety and 

protection strategies with control system infrastructures,” Smart Grid and 

Renewable Energy, vol.3, no.1, pp.1-9, 2012. 

[5] P. Piagi, and R. H. Lasseter, “Autonomous Control of Microgrds,” in Proc. 

IEEE Power Engineering Society General Meeting, Montreal, June 2006. 

[6] F. Katiraei, M. R. Iravani, and P. W. Lehn, “Micro-grid autonomous operation 

during and subsequent to islanding process,” IEEE Transactions on Power 

Delivery, vol.20, no.1, pp.248-257, Jan. 2005. 

[7] P. Agrawal, “Overview of DOE Microgrid Activities”, Symposium on 

Microgrid, Montreal, June 23, 2006 [Online]. Available: 

http://der.lbl.gov/2006microgrids_files/USA/Presentation_7_Part1_Poonum-

agrawal.pdf. 

[8] M. Shahabi, M. R. Haghifam, M. Mohamadian, and S.A, Nabavi-Niaki, 

“Dynamic Behavior Improvement in a Microgrid with Multiple DG Units 

Using a Power Sharing Approach,” IEEE Bucharest Power Tech Conference , 

pp.1-8, 2009. 

[9] K. D. Brabandere, B. Bolsens, J. V. D Keybus, A Woyte, J Driesen, and R 

Belmans, “A Voltage and Frequency Droop Control Method for Parallel 

Inverters,” IEEE Trans. Power Electronics, vol. 22, pp. 1107 - 1115, 2007. 

http://der.lbl.gov/2006microgrids_files/USA/Presentation_7_Part1_Poonum-agrawal.pdf
http://der.lbl.gov/2006microgrids_files/USA/Presentation_7_Part1_Poonum-agrawal.pdf


 

151 

 

[10] F. Katiraei, and M. R. Iravani, “Power management strategies for a microgrid 

with multiple distributed generation units,” IEEE Trans. Power Syst., vol. 21, 

no. 4, pp. 1821 - 1831, Nov. 2006. 

[11] L. Zhang, L. Harnefors, and H. P. Nee, “Power-Synchronization Control of 

Grid-Connected Voltage-Source Converters,” IEEE Trans. on Power Systems, 

vol. 25, pp. 809 - 820, 2010. 

[12] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected 

inverters in standalone ac supply systems,” IEEE Trans. Ind. Appl., vol. 29, no. 

1, pp. 136 - 143, Jan./Feb. 1993. 

[13] R. H. Lasseter, “Control of distributed resources,” in L H. Fink, C.D. Vournas 

(Eds.), Proceedings: Bulk Power Systems Dynamics and Control, Organized by 

IREP and National Technical University of Athens, Santorini, Greece, pp. 323-

329, Aug. 1998. 

[14] C. K. Sao, and P. W. Lehn, “Autonomous load sharing of voltage source 

converters,” IEEE Transactions on Power Delivery, vol.20, no.2, pp.1009-

1016, April 2005. 

[15] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids 

management,” Power and Energy Magazine, IEEE , vol.6, no.3, pp.54-65, 

May-June 2008. 

[16] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and 

R. Belmans, “A Voltage and Frequency Droop Control Method for Parallel 

Inverters,” IEEE Transactions Power Electronics, vol.22, no.4, pp.1107-1115, 

July 2007. 

[17] J. M. Guerrero, L. Hang, and J. Uceda, “Control of distributed uninterruptible 

power supply systems,” IEEE Trans. Ind. Electron., vol.55, no.8, pp.2845-

2859, Aug.2008. 

[18] J. C. Vasquez, J. M. Guerrero, A. Luna, P. Rodríguez, and R. Teodorescu, 

“Adaptive droop control applied to voltage-source inverters operating in grid-

connected and islanded modes,” IEEE Trans. Ind. Electron., vol. 56, no. 10, 

pp. 4088-4096, Oct. 2009. 

[19] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power Management and 

Power Flow Control with Back-to-Back Converters in a Utility Connected 



 

152 

 

Microgrid,” IEEE Transactions on Power System, vol. 25, no. 2, pp. 821-834, 

May 2010. 

[20] P. Arboleya, D. Diaz, and J. M. Guerrero, “An improved control scheme based 

in droop characteristic for microgrid converters,” in Proc. Electric power 

systems research, pp.1215-1221, 2010. 

[21] E. Rokrok, and M. E. H. Golshan, “Adaptive voltage droop scheme for voltage 

source converters in an islanded multi-bus microgrid,” IET generation, trans. 

distrib., vol.4, no.5, pp.562-578, May.2010. 

[22] W. Yao, M. Chen, and J. Matas, “Design and analysis of the droop control 

method for parallel inverters considering the impact of the complex impedance 

on the power sharing,” IEEE Trans. Ind. Electron., vol.58, no.2, pp576-588, 

Feb.2011. 

[23] J. He, and Y. W. Li, “An Enhanced Microgrid Load Demand Sharing 

Strategy,” IEEE Transactions on Power Electronics, vol.27, no.9, pp. 3984-

3995, Sept. 2012. 

[24] E. Planas, A. G. Muro, J. Andreu, I. Kortabarria, and I. M. Alegria, “General 

aspects, hierarchical controls and droop methods in microgrids : A review,” 

Renewable and Sustainable Energy Reviews, vol. 17, pp. 147–159, January 

2013. 

[25] C.T. Lee, C. C. Chu, and P. T. Cheng, “A New Droop Control Method for the 

Autonomous Operation of Distributed Energy Resource Interface Converters,” 

IEEE Transactions on Power Electronics, vol.28, no.4, pp.1980-1993, April 

2013. 

[26] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, Analysis and Testing 

of Autonomous Operation of an Inverter-Based Microgrid,” IEEE 

Transactions in Power Electronic, vol.22, no.2, pp.613-625, March 2007. 

[27] Y. W. Li, and C. N. Kao, “An accurate power control strategy for power-

Electronic-interfaced distributed generation units operating in a low-voltage 

multibus microgrid,” IEEE Trans. Power Electron., vol.24, no.12, pp.2977-

2988, Dec.2009. 

[28] R. Majumder, B. Chaudhuri, A.Ghosh, R. Majumder, G. Ledwich, and F. Zare, 

“Improvement of Stability and Load Sharing in an Autonomous Microgrid 

Using Supplementary Droop Control Loop,” IEEE Transactions on Power 

Systems, vol.25, no.2, pp.796 -808, May 2010. 



 

153 

 

[29] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Angle droop versus 

frequency droop in a voltage source converter based autonomous microgrid,” 

in Power and Energy Society General Meeting, IEEE, pp. 1-8, July-2009. 

[30] R. Majumder, F. Shahnia, A. Ghosh, G. Ledwich, M. Wishart, and F. Zare, 

“Operation and Control of a Microgrid Containing Inertial and Non-Inertial 

Micro Sources,” in TENCON IEEE Region 10 Conference, pp. 1-6, 2009. 

[31] Alfred Engler, and Nikos Soultanis, “Droop control in LV-Grids,” in 

International Conference on Future Power System, pp. 1-6, 2005. 

[32] H. Gu, X. Guo, and W. Wu, “Accurate Power Sharing Control for Inverter-

Dominated Autonomous Microgrid,” in International Conference on Power 

Electronics and Motion Control Conference (IPEMC), pp.368-372 , 2012. 

[33] T. L. Vandoorn, B. Meersman, and J. De Kooning, “Automatic power sharing 

modification of P/V droop controllers in low-voltage resistive microgrids,” 

IEEE Trans. Power Del., vol.27, no.4, pp.2318-2325, Oct. 2012. 

[34] Q. Zhong, “Robust Droop Controller for Accurate Proportional Load Sharing 

among Inverters Operated in Parallel,” IEEE Transactions on Industrial 

Electronics, pp. 1-10, 2011. 

[35] R. Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare,“Droop 

Control of Converter-Interfaced Microsources in Rural Distributed 

Generation,” IEEE Transactions on Power Delivery, vol. 25, no.4, pp. 2768-

2778, 2010. 

[36] R. Hunter, and G. Elliot, Wind-Diesel Systems, A Guide to the Technology and 

its Implementation. Cambridge, U.K.: Cambridge Univ. Press, 2005. 

[37] S. Hier, Grid Integration of Wind Energy Conversion Systems, John Wiley and 

sons, June 2014. 

[38] C. Abbey, F. Katiraei, C. Brothers, L. B. Dignard, and G. Joos, “Integration of 

distributed generation and wind energy in Canada,” IEEE, Power Engineering 

Society General Meeting, 2006. 

[39] N.H. Lipman, “Overview of wind/diesel systems” Renewable Energy vol.5, 

no.1, pp.595-617, August 1994. 

[40] F. Katiraei, C. Abbey, “Diesel Plant Sizing and Performance Analysis of a 

Remote Wind-Diesel Microgrid,” IEEE, Power Engineering Society General 

Meeting, pp.1-8, June 2007. 



 

154 

 

[41] M. Fazeli, G. M. Asher, C. Klumpner, Y. Liangzhong, and M. Bazargan, 

“Novel Integration of Wind Generator-Energy Storage Systems Within 

Microgrids,” IEEE Transactions on Smart Grid, vol.3, no.2, pp.728-737, June 

2012. 

[42] I. D. Margaris, S. A. Papathanassiou, N. D. Hatziargyriou, A.D. Hansen, and 

P. Sorensen, “Frequency Control in Autonomous Power Systems With High 

Wind Power Penetration,” IEEE Transactions on Sustainable Energy, vol.3, 

no.2, pp.189-199, April 2012. 

[43] A. Mohd, E. Ortjohann, W. Sinsukthavorn, M. Lingemann, N. Hamsic, and D. 

Morton, “Isochronous load sharing and control for inverter-based distributed 

generation,” International Conference on Clean Electrical Power, pp.324-329, 

June 2009. 

[44] K. J Bunker, and W. W. Weaver, “Microgrid frequency regulation using wind 

turbine controls,” Power and Energy Conference at Illinois (PECI), pp.1-6, 

Feb.-Mar. 2014. 

[45] K. Strunz, E. Abbasi, and D. Nguyen Huu, “DC Microgrid for Wind and Solar 

Power Integration,” IEEE Journal of Emerging and Selected Topics in Power 

Electronics, vol.2, no.1, pp.115-126, March 2014. 

[46] K. M. Abo-Al-Ez, X. Xia, and J. Zhang, “Smart interconnection of a PV/wind 

DG micro grid with the utility distribution network,” Industrial and 

Commercial Use of Energy Conference (ICUE), pp.1-8, Aug. 2012. 

[47] W. Shouxiang, L. Zhixin, W. Lei, M. Shahidehpour, and L. Zuyi, “New 

Metrics for Assessing the Reliability and Economics of Microgrids in 

Distribution System,” IEEE Transactions on Power Systems, vol.28, no.3, 

pp.2852-2861, Aug. 2013.  

[48] R. Karki, and R. Billinton, “Reliability/cost implications of PV and wind 

energy utilization in small isolated power systems,”IEEE Trans Energy 

Convers., vol. 16, no. 4, pp. 368–373, Dec. 2001.  

[49] R. Yokoyama, T. Niimura, and N. Saito, “Modeling and evaluation of supply 

reliability of microgrids including PV and wind power,” in Proc. IEEE Power 

and Energy Soc. General Meeting—Conversion and Delivery of Elect. Energy 

in the 21st Century, pp. 1–5, 2008. 



 

155 

 

[50] Y. M. Atwa, and E. F. El-Saadany, “Reliability evaluation for distribution 

system with renewable distributed generation during islanded mode of 

operation,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 572–581, May 2009. 

[51] K. Moslehi, and R. Kumar, “A reliability perspective of the smart grid,” IEEE 

Trans. Smart Grid, vol.1, no.1, pp.57-64, Jun.2010. 

[52] R. Karki, R. Billinton, and A. K. Verma, Reliability Modeling and Analysis of 

Smart Power Systems, Springer New Delhi Heidelberg New York Dordrecht 

London, pp. 33-66, 2014. 

[53] S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active 

Distribution Networks, UK: Institution of Engineering and Technology, pp. 57-

76, 2009. 

[54] H. Chen, T. N. Cong, W. Yang, C. Tan Y. Li, and Y. Ding, “Progress in 

electrical energy storage system: A critical review,” Progress in Natural 

Science, Elsevier, vol. 19, issue 3, pp. 291-312, March 2009. 

[55] W. Cox, Considine, and E. G. Cazalet, “Understanding Microgrids as the 

Essential Architecture of Smart Energy,” Grid Inerop Forum, Texas, Dec. 

2012. 

[56] B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papatlianassiou, and N. 

Hatziargyriou, “Making microgrids work,” Power and Energy Magazine, 

IEEE , vol.6, no.3, pp. 40-53, May-June 2008. 

[57] M. Moorthi, “lithium titanate based batteries for high rate and high cycle life 

application,” NEI Corporation. Web http://neicorporation.com/. 

[58] R. Lasseter, and M. Erickson, “Integration of Battery-Based Energy Storage 

Element in the CERTs Microgrid,” University of Wisconsin, Madison, Tech. 

Rep., Oct. 2009. 

[59] A. Nanotechnologies Inc., “Application for advanced Batteries in Microgrid 

Environments,” Altair Nanotechnologies Inc., December 2012. 

[60] Z. Haihua, T. Bhattacharya, T. Duong, T.S.T. Siew, and A.M. Khambadkone, 

“Composite Energy Storage System Involving Battery and Ultracapacitor With 

Dynamic Energy Management in Microgrid Applications,” IEEE Transactions 

on Power Electronics, , vol.26, no.3, pp.923-930, March 2011. 

[61] Z. Jianping, G. Zhenyu, R. Yuliang, D. Xinhui, and Y. Xiaohai, “A economic 

operation optimization for  microgrid with battery storage and load transfer,” 

Systems and Informatics (ICSAI), pp.186-191, Nov. 2014. 

http://neicorporation.com/


 

156 

 

[62] A. G. Tsikalakis, and N. D. Hatziargyriou, “Centralized control for optimizing 

microgrids operation,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 241 - 

248, Mar. 2008. 

[63] S. Adhikari, and Li Fangxing, “Coordinated V-f and P-Q Control of Solar 

Photovoltaic Generators with MPPT and Battery Storage in Microgrids,” IEEE 

Transactions on Smart Grid, vol.5, no.3, pp.1270 - 1281, May 2014. 

[64] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Enhancing Stability of an 

Autonomous Microgrid using a gain Scheduled Angle Droop Controller with 

Derivative Feedback,” in International Journal of Emerging Electric Power 

Systems,vol. 10, no. 5, pp. 1-30, 2009. 

[65] L. Xu, and D. Chen, “Control and Operation of a DC Microgrid with Variable 

Generation and Energy Storage,” IEEE Transactions on Power Delivery, 

vol.26, no.4, pp.2513-2522, Oct. 2011. 

[66] L. Che, M. Khodayar, and M. Shahidehpour, “Only Connect,” Power and 

Energy Magazine, IEEE, pp. 70-81, Jan. - Feb. 2014. 

[67] A. Bidram, and A. Davoudi, “Hierarchical Structure of Microgrids Control 

System,” IEEE Transactions in Smart Grid, , vol.3, no.4, pp.1963-1976, Dec. 

2012. 

[68] N.D. Hatziargyriou, A. Dimeas, A.G. Tsikalakis, J.A.P. Lopes, G. Karniotakis, 

and J.Oyarzabal, “Management of microgrids in market environment,” 

International Conference on Future Power Systems, pp.7-13, Nov. 2005. 

[69] A.G. Madureira, J.C. Pereira, N.J. Gil, J.A. Pecas Lopes, G.N. Korres, and N.D. 

Hatziargyriou, “Advanced control and management functionalities for multi-

microgrids,” EUROPEAN Transactions on Electrical Power, pp.1159-1177, 

January 2010. 

[70] J. M. Guerrero, F. Blaabjerg, T. Zhelev et al, “Distributed generation: toward 

a new energy paradigm,” IEEE Industrial Electronics Magazine, pp. 52-64, 

March 2010. 

[71] I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Power flow control of intertied ac 

microgrids,” Power Electronics, IET, vol. 6, no.7, pp. 1329–1338, August 

2013. 

[72] I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Distributed Operation of 

Interlinked AC Microgrids with Dynamic Active and Reactive Power Tuning,” 



 

157 

 

IEEE Transaction on Industry Applications, vol. 49, no.5, pp. 2188–2196, 

Sept.-Oct. 2013. 

[73] I. U. Nutkani, P. C. Loh, P. Wang, t. K. Jet, and F. Blaabjerg, “Intertied ac-ac 

microgrids with autonomous power import and export,” International Journal 

of Electrical Power and Energy systems, vol. 65, no.7, pp. 385–393, Feb. 2015. 

[74] L. Xiong, W. Peng, and P.C. Loh, “A hybrid AC/DC microgrid and its 

coordination control,” IEEE Trans Smart Grid, vol. 2, no.2, pp.278–86, 2011. 

[75] S. Bala, Integration of Single-phase Microgrids. PhD thesis, University of 

Wisconsin-Madison, 2008. 

[76] S. Bala, and G. Venkataramanan, “Autonomous power electronic interfaces 

between microgrids,” IEEE Energy Conversion Congress and Exposition, 

pp.3006-3013, 20-24 Sept. 2009. 

[77] E. J. Ng, and R. A. El-Shatshat, “Multi-microgrid control systems (MMCS),” 

IEEE Power and Energy Society General Meeting, pp.1-6, 25-29 July 2010. 

[78] A. Kargarian, B. Falahati, F. Yong, and M. Baradar, “Multiobjective optimal 

power flow algorithm to enhance multi-microgrids performance incorporating 

IPFC,” IEEE Power and Energy Society General Meeting, pp.1-6, 22-26 July 

2012. 

[79] S. Shi, Y. Yan, J. Ming, W. Qianggang, and Z. Niancheng, “Hierarchical 

coordination control of multi-microgrids system in series and parallel 

structure,” China International Conference on Electricity Distribution 

(CICED), pp.1-5, 10-14 Sept. 2012. 

[80] D. Moore, and D. McDonnell, “Smart grid vision meets distribution utility 

reality,” Elect. Light Power pp. 1-6, Mar. 2007. 

[81] H. Farhangi, “The Path of the Smart Grid,” IEEE Power & Energy magazine, 

vol.8, no.1, pp. 18-28, Jan.-Feb. 2010. 

[82] M. Smith, “Overview of federal R&D on microgrid technologies,” in Proc. 

Kythonos 2008 Symp. Microgrids, June 2, pp. 2–8, 2008. 

[83] J. A. Aguado, and V. H. Quintana, “Inter-utilities power-exchange 

coordination: a market-oriented approach,” IEEE Transactions on Power 

Systems, vol.16, no.3, pp. 513-519, Aug 2001. 

[84] G. Fahd, and G. B. Sheble, “Optimal power flow emulation of interchange 

brokerage systems using linear programming,” IEEE Transactions on Power 

Systems, vol.7, no.2, pp.497-504, May 1992. 



 

158 

 

[85] E. Ortjohann, P. Wirasanti, M. Lingemann, W. Sinsukthavorn, S. Jaloudi, and 

D. Morton, “Multi-level hierarchical control strategy for smart grid using 

clustering concept,” International Conference on Clean Electrical Power 

(ICCEP), pp.648-653, 14-16 June 2011. 

[86] J. Wu, and X. Guan, “Coordinated Multi-Microgrids Optimal Control 

Algorithm for Smart Distribution Management System,” IEEE Transactions 

on Smart Grid, vol.4, no.4, pp. 2174-2181, Dec. 2013. 

[87] Yu Xunwei, Jiang Zhenhua, and A. Abbasi, “Dynamic modeling and control 

design of microturbine distributed generation systems,” IEEE International 

Electric Machines and Drives Conference, IEMDC '09, pp.1239-1243, May 

2009. 

[88] S. Krishnamurthy, T. M. Jahns, and R. H. Lasseter, “The operation of diesel 

gensets in a CERTS microgrid,” Proc. IEEE Power and Energy Society 

General Meeting Conversion and Delivery of Electrical Energy in the 21st 

Century, pp. 1-8, 2008. 

[89] A. R. Bergen, Power system analysis, Prentice-Hall, New Jersey, 1986 ISBN: 

0136878644. 

[90] M. G. Simões, B. Palle, S. Chakraborty, and C. Uriarte, “Electrical Model 

Development and Validation for Distributed Resources,” NREL/SR-581-

41109, 2007. 

[91] P. M. Anderson, and A. A. Fouad, Power System Control and Stability, 1st ed., 

Iowa State University Press, 1977, ISBN: 0813812453. 

[92] P. Kundur, Power System Stability and Control, McGraw-Hill, New York, 

1994. 

[93] IEEE Std 421.5 - 2005, IEEE Recommended Practice for Excitation System 

Models for Power System Stability Studies, 2006. 

[94] H. Yasin, A. A. EI-Zeftawy, M. N. Serag, and A. A. Gado, “Design of a 

controller for operating Diesel Generator to supply isolated loads,” Power 

Systems Conference, MEPCON Eleventh International Middle East, pp.487-

491, Dec. 2006. 

[95] D. N. Gaonkara, and R. N. Patel, “Modeling and simulation of microturbine 

based distributed generation system,” IEEE Power India Conference, pp.1-5, 

2006. 



 

159 

 

[96] R. H. Lasseter, “Dynamic models for micro-turbines and fuel cells,” Power 

Engineering Society Summer Meeting, vol.2, pp. 761-766, 2001. 

[97] S. R. Guda, C. Wang, and M. H. Nehrir, “A Simulink-based microturbine 

model for distributed generation studies,” Power Symposium, Proceedings of 

the 37th Annual North American , pp.269-274, Oct. 2005. 

[98] Li Gang, Li Gengyin, Wei Yue, Ming Zhou, and K. L. Lo, “Modeling and 

simulation of a microturbine generation system based on PSCAD/EMTDC,” 

5th International Conference on Critical Infrastructure (CRIS), pp.1-6, Sept. 

2010. 

[99] A. K. Saha, S. Chowdhury, S. P. Chowdhury, and P. A. Crossley, “Modelling 

and simulation of microturbine in islanded and grid-connected mode as 

distributed energy resource,” Power and Energy Society General Meeting - 

Conversion and Delivery of Electrical Energy in the 21st Century, IEEE , pp.1-

7, July 2008. 

[100] G. J. Kish, and P. W. Lehn, “A micro-turbine model for system studies 

incorporating validated thermodynamic data,” IEEE Power and Energy Society 

General Meeting, Detroit, July 2011. 

[101] T. L. Vandoorn, B. Meersman, J. D. M. De Kooning, and L. Vandevelde, 

“Analogy Between Conventional Grid Control and Islanded Microgrid Control 

Based on a Global DC-Link Voltage Droop,” IEEE Transactions on Power 

Delivery, , vol.27, no.3, pp.1405–1414, July 2012. 

[102] D. J. Glover, S. M Sarma, and J. T. Overbye, Power System Analysis and 

Design, Cengage Learning, Stamford, CT, USA, 2012. 

[103] Jinwei He, and Yun Wei Li, “An enhanced microgrid load demand sharing 

strategy,” IEEE Trans. Power Electronics, vol. 27, no. 9, pp. 3987–3995, Sep. 

2012. 

[104] A. Bidram, and A. Davoudi, “Hierarchical Structure of Microgrids Control 

System,” IEEE Trans. on Smart Grid, pp. 1-14, May 2012. 

[105] J. M. Guerrero, N. Berbel, L.G. de Vicuna, J. Matas, J. Miret, and M. Castilla, 

“Droop control method for the parallel operation of online uninterruptible 

power systems using resistive output impedance,” Twenty-First Annual 

IEEE  Applied Power Electronics Conference and Exposition, pp. 1716 - 1722, 

March 2006. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bidram,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Davoudi,%20A..QT.&newsearch=partialPref


 

160 

 

[106] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Operation and control of 

hybrid microgrid with angle droop controller,” TENCON IEEE Region 10 

Conference, pp.509-515, Nov. 2010. 

[107] M. Dewadasa, A. Ghosh, and G. Ledwich, “Dynamic response of distributed 

generators in a hybrid microgrid,” Power and Energy Society General Meeting, 

IEEE, pp.1-8, July 2011. 

[108] M. R. Patel, Wind and Solar Power Systems, USA: CRC Press, 1999, pp. 124-

130. 

[109] A. A. Jadallah, D. Y. Mahmood, and Z. A. Abdulqader, “Optimal performance 

of horizontal axis wind turbine for low wind speed regime,” International 

Journal of Multidisciplinary and Current Research, vol.2, pp. 159-164, 2014. 

[110] K. Kurohane, T. Senjyu, A. Yona, N. Urasaki, T. Goya, and T. Funabashi, “A 

hybrid smart AC/DC power system,” IEEE Trans. Smart Grid, vol. 1, no. 2, 

pp. 199-204, 2010. 

[111] A.Keyhani, M.N. Marwali, and M. Dai, Integration of Green and Renewable 

Energy in Electric Power Systems, John Wiley & Sons, USA, 2010, pp.1-2. 

[112] B. Wu, Y. Lang, N. Zargari and S. Kouro, Power Conversion and Control of 

Wind Energy Systems, IEEE John Wiley and sons, 2011. 

[113] W. V. Lyon, “Transient analysis of alternating-current machinery,” John 

Wiley, USA, 1954. 

[114] A. Elmitwally, and M. Rashed, “Flexible Operation Strategy for an Isolated 

PV-Diesel Microgrid without Energy Storage,” IEEE Transactions on Energy 

Conversion, vol.26, no.1, pp.235-244, March 2011. 

[115] K. Yukita,  K. Ichiyanagi, Y. Goto, and K. Hirose, “A Study of Electric Power 

Quality using Storage System in Distributed Generation,” 9th International 

Conference on Electrical Power Quality and Utilization, pp. 1–4, Oct. 2007. 

[116] A. Tuladhar, H. Jin, T. Unger, and K. Mauch, “Control of parallel inverters in 

distributed AC power systems with consideration of line impedance effect,” 

IEEE Transactions on Industry Applications, vol.36, no.1, pp.131-138, Jan/Feb 

2000. 

[117] U. Borup, F. Blaabjerg, and P. N. Enjeti, “Sharing of nonlinear load in parallel-

connected three-phase converters,” IEEE Transactions on Industry 

Applications, vol.37, no.6, pp.1817-1823, Nov/Dec 2001. 



 

161 

 

[118] A. H. Samra, and K. M. Islam, “Harmonic effects on synchronous generators 

voltage regulation,” IEEE Southeastcon '95. Visualize the Future, pp.376-380, 

Mar 1995. 

[119] W. Jin-quan, S. Peng-chao, C. Chen-hua, L. Jian-ke, and Y. Tao, “Analysis of 

Operation of Synchronous Generator under the Distortion of Harmonic 

Current,” Asia-Pacific Power and Energy Engineering Conference (APPEEC), 

pp.1-4, March 2012. 

[120] M. W. Davis, R Broadwater, and J. Hambric, “Modeling and Testing of 

Unbalanced Loading and Voltage Regulation,” NREL report number 

NREL/SR-581-41805, July, 2007. 

[121] A. Ghosh, and G. Ledwich, “Stability of hysteretic controlled voltage source 

converters in a power system,” IEEE PES Innovative Smart Grid Technologies 

Asia (ISGT), pp.1-8, Nov. 2011. 

[122] A. Ghosh, and G. Ledwich, “Load compensating DSTATCOM in weak AC 

Systems,” IEEE Trans. on Power Delivery, vol. 18, pp. 1302-1309, Oct. 2003. 

[123] Q. Sun, J. Zhou, J.M. Guerrero, and H. Zhang, “Hybrid Three-Phase/Single-

Phase Microgrid Architecture with Power Management Capabilities,” IEEE 

Transaction on Power Electronics, vol. 30, no. 10, pp. 5964-5977, 2015. 

[124] A. Ghosh, “Performance study of two different compensating devices in a 

custom power park,” Proc. IEE  Generation, Transmission & Distribution, 

vol. 152, no. 4, pp. 521-528, 2005. 

[125] A. Ghosh, A.K. Jindal, and A. Joshi, “Inverter control using output feedback 

for power compensating devices,” TENCON Conference on Convergent 

Technologies for the Asia-Pacific Region, pp.48-52, Oct. 2003. 

 

 

Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been omitted 

or incorrectly acknowledged. 


	Title_Page
	Thesis _final1

