1,236 research outputs found
Review of the mathematical foundations of data fusion techniques in surface metrology
The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed
High-precision lateral distortion measurement and correction in coherence scanning interferometry using an arbitrary surface
Lateral optical distortion is present in most optical imaging systems. In coherence scanning interferometry, distortion may cause field-dependent systematic errors in the measurement of surface topography. These errors become critical when high-precision surfaces, e.g. precision optics, are measured. Current calibration and correction methods for distortion require some form of calibration artefact that has a smooth local surface and a grid of high-precision manufactured features. Moreover, to ensure high accuracy and precision of the absolute and relative locations of the features of these artefacts, requires their positions to be determined using a traceable measuring instrument, e.g. a metrological atomic force microscope. Thus, the manufacturing and calibration processes for calibration artefacts are often expensive and complex. In this paper, we demonstrate for the first time the calibration and correction of optical distortion in a coherence scanning interferometer system by using an arbitrary surface that contains some deviations from flat and has some features (possibly just contamination), such that feature detection is possible. By using image processing and a self-calibration technique, a precision of a few nanometres is achieved for the distortion correction. An inexpensive metal surface, e.g. the surface of a coin, or a scratched and defected mirror, which can be easily found in a laboratory or workshop, may be used. The cost of the distortion correction with nanometre level precision is reduced to almost zero if the absolute scale is not required. Although an absolute scale is still needed to make the calibration traceable, the problem of obtaining the traceability is simplified as only a traceable measure of the distance between two arbitrary points is needed. Thus, the total cost of transferring the traceability may also be reduced significantly using the proposed method
Co-Nanomet: Co-ordination of Nanometrology in Europe
Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Today’s global economy depends on reliable measurements and tests, which are trusted and accepted internationally. It must provide the ability to measure in three dimensions with atomic resolution over large areas. For industrial application this must also be achieved at a suitable speed/throughput. Measurements in the nanometre range should be traceable back to internationally accepted units of measurement (e.g. of length, angle, quantity of matter, and force). This requires common, validated measurement methods, calibrated scientific instrumentation as well as qualified reference samples. In some areas, even a common vocabulary needs to be defined. A traceability chain for the required measurements in the nm range has been established in only a few special cases. A common strategy for European nanometrology has been defined, as captured herein, such that future nanometrology development in Europe may build out from our many current strengths. In this way, European nanotechnology will be supported to reach its full and most exciting potential. As a strategic guidance, this document contains a vision for European nanometrology 2020; future goals and research needs, building out from an evaluation of the status of science and technology in 2010. It incorporates concepts for the acceleration of European nanometrology, in support of the effective commercial exploitation of emerging nanotechnologies. The field of nanotechnology covers a breadth of disciplines, each of which has specific and varying metrological needs. To this end, a set of four core technology fields or priority themes (Engineered Nanoparticles, Nanobiotechnology, Thin Films and Structured Surfaces and Modelling & Simulation) are the focus of this review. Each represents an area within which rapid scientific development during the last decade has seen corresponding growth in or towards commercial exploitation routes.
This document was compiled under the European Commission Framework Programme 7 project, Co-Nanomet. It has drawn together input from industry, research institutes, (national) metrology institutes, regulatory and standardisation bodies across Europe. Through the common work of the partners and all those interested parties who have contributed, it represents a significant collaborative European effort in this important field. In the next decade, nanotechnology can be expected to approach maturity, as a major enabling technological discipline with widespread application.
This document provides a guide to the many bodies across Europe in their activities or responsibilities in the field of nanotechnology and related measurement requirements. It will support the commercial exploitation of nanotechnology, as it transitions through this next exciting decade
Optomechanical reference accelerometer
We present an optomechanical accelerometer with high dynamic range, high
bandwidth and read-out noise levels below 8 g/. The
straightforward assembly and low cost of our device make it a prime candidate
for on-site reference calibrations and autonomous navigation. We present
experimental data taken with a vacuum sealed, portable prototype and deduce the
achieved bias stability and scale factor accuracy. Additionally, we present a
comprehensive model of the device physics that we use to analyze the
fundamental noise sources and accuracy limitations of such devices
Quantum metrology and its application in biology
Quantum metrology provides a route to overcome practical limits in sensing
devices. It holds particular relevance to biology, where sensitivity and
resolution constraints restrict applications both in fundamental biophysics and
in medicine. Here, we review quantum metrology from this biological context,
focusing on optical techniques due to their particular relevance for biological
imaging, sensing, and stimulation. Our understanding of quantum mechanics has
already enabled important applications in biology, including positron emission
tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using
nuclear magnetic resonance, and bio-magnetic imaging with superconducting
quantum interference devices (SQUIDs). In quantum metrology an even greater
range of applications arise from the ability to not just understand, but to
engineer, coherence and correlations at the quantum level. In the past few
years, quite dramatic progress has been seen in applying these ideas into
biological systems. Capabilities that have been demonstrated include enhanced
sensitivity and resolution, immunity to imaging artifacts and technical noise,
and characterization of the biological response to light at the single-photon
level. New quantum measurement techniques offer even greater promise, raising
the prospect for improved multi-photon microscopy and magnetic imaging, among
many other possible applications. Realization of this potential will require
cross-disciplinary input from researchers in both biology and quantum physics.
In this review we seek to communicate the developments of quantum metrology in
a way that is accessible to biologists and biophysicists, while providing
sufficient detail to allow the interested reader to obtain a solid
understanding of the field. We further seek to introduce quantum physicists to
some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom
- …
