3 research outputs found

    A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images

    Get PDF
    The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms

    A method for coronary bifurcation centerline reconstruction from angiographic images based on focalization optimization

    No full text
    A method for the reconstruction of a vessel centerline from angiographic images is outlined in this work. A typical coronary artery segment with bifurcations was emulated with a 3D printed static phantom and several angiograms were acquired at various angular positions on the C-Arm. The effectiveness of the reconstruction turned out to be largely influenced by the intrinsic parameters of the angiographic system, particularly the homogeneous coordinates system scaling factor \u3bb. Therefore, recourse was made to a heuristic optimization method to estimate the optimal value of \u3bb for each view. We measured the reliability of the reconstruction method by varying the fitness function of the optimization step and measuring the distances of 8 test points in comparison to the corresponding points identified in the \u3bcCT centerline. Preliminary results showed that, with an adequate number of views, the adoption of the optimal fitness function allowed the median distance error to be decreased below the acceptance threshold of 10%. As expected, the reliability of the method is improved by increasing the number of processed views

    A method for coronary bifurcation centerline reconstruction from angiographic images based on focalization optimization

    No full text
    A method for the reconstruction of a vessel centerline from angiographic images is outlined in this work. A typical coronary artery segment with bifurcations was emulated with a 3D printed static phantom and several angiograms were acquired at various angular positions on the C-Arm. The effectiveness of the reconstruction turned out to be largely influenced by the intrinsic parameters of the angiographic system, particularly the homogeneous coordinates system scaling factor λ. Therefore, recourse was made to a heuristic optimization method to estimate the optimal value of λ for each view. We measured the reliability of the reconstruction method by varying the fitness function of the optimization step and measuring the distances of 8 test points in comparison to the corresponding points identified in the μCT centerline. Preliminary results showed that, with an adequate number of views, the adoption of the optimal fitness function allowed the median distance error to be decreased below the acceptance threshold of 10%. As expected, the reliability of the method is improved by increasing the number of processed views
    corecore